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The Locker Problem with Empty Lockers
David Avis, Luc Devroye and Kazuo Iwama

Abstract—We consider a cooperative game played by n players
against a referee. The players names are randomly distributed among
n lockers, with one name per locker. Each player can open up to half
the lockers and each player must find his name. Once the game starts
the players may not communicate. It has been previously shown that,
quite surprisingly, an optimal strategy exists for which the success
probability is never worse than 1 − ln 2 ≈ 0.306. In this paper we
consider an extension where the number of lockers is greater than
the number of players, so that some lockers are empty. We show that
the players may still win with positive probability even if there are
a constant k number of empty lockers. We show that for each fixed
probability p, there is a constant c so that the players can win with
probability at least p if they are allowed to open cn lockers.

Keywords—Locker problem, pointer-following algorithms.

I. INTRODUCTION

The locker problem is a cooperative game between a team
of n players numbered 1, 2, . . . , n and a referee. In the initial
phase of the game, the referee randomly places numbers
1, 2, . . . , n, one number per locker, in a locker room containing
n closed lockers. Each player enters the room in turn and is
allowed to view the contents of n/2 lockers, one at a time.
He wins if he finds his number in one of the lockers. The
players may not communicate after the game starts. The team
of n players wins if all individual players win. We would like
to know what is the best strategy for the team of n players.
The locker problem was originally considered by Peter Bro
Miltersen, see [3] and [4].

If each player independently chooses n/2 lockers to open,
he wins with probability 1/2, hence, by independence, the
team wins with probability 1/2n. However, using a pointer-
following strategy credited to Sven Skylum, that we describe
in the next section, the players can win with probablility of
about .31 independent of n. The optimality of this strategy
was shown by Curtin and Warshauer [2], and we follow
their presentation in this paper. Many variations have been
proposed [5], and Avis and Broadbent [1] have recently
considered a quantum version of the locker problem.

We consider the extension of the locker problem to the
case where there are more lockers than players and hence
some (say, k) lockers are ”empty.” This model appeared in
[3] in a different context, and the authors conjectured that the
winning probability is exponentially small if k is as large as
a linear fraction of n. However nothing is known about the
concrete winning probability of this model for any value of
k. In this paper, we show that if k is fixed then the pointer-
following strategy is still powerful, showing that extensions
of the strategy can win the game with high probability if the
players are allowed to open a constant fraction of the lockers.
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II. POINTER-FOLLOWING ALGORITHMS

For fixed integers n, k, suppose we have n players and n+k
lockers, k of which do not contain labels. When k = 0 the
players best strategy is to use the pointer-following algorithm,
due to Skylum. Each player i opens locker i and finds a label
l. If l = i he stops, otherwise he opens locker l and repeats the
process. Eventually each player must find his label. Let N(i)
denote the number of lockers opened by player i, and let N =
maxi=1,2,...,nN(i). The success probablility of this strategy is
given by the following theorem. Let Hn = 1+1/2+ ...+1/n
be the n-th harmonic number.

Theorem II.1. (See [2]) When there are no empty lockers,

Pr(N ≤ �n/2�) = Hn − H�n/2� > 1 − ln 2 > 0.306

It is clear that the players success probability will increase
if we allow them to open more lockers. In fact, for any fixed
probability p there is a constant c such that they can win with
probability at least p if they can open at least �cn� lockers. In
the next section we state and prove a more general result as
Proposition IV.1.

The main goal of this paper is to show that this result can
be obtained even if there are a fixed number of empty lockers.
Note that the problem is not so trivial already when k = 1.
Consider for example the rule that a player jumps to a random
locker when he encounters the empty locker. Then one can see
easily that this rule brings us back to the almost-zero winning
probability.

Initially consider the following naive algorithm. The players
prepare a random string of length n + k, which is common
to all the players, consisting of elements from {n + 1, n +
2, ..., n + k}. Now the players follow the pointer-following
algorithm described above. If a player opens locker i which
contains no label, he goes to the locker which is in the i-th
position in the random string. If we are lucky, all the empty
lockers are filled with different numbers from n + 1 through
n+k and so we obtain a random permutation of 1, 2, ...n+k.
Therefore we are back to the original game and the players
win with probability .306 if they are allowed to open about
half of the lockers.

However, if two or more empty lockers are filled with the
same number, then some players will never be able to find his
number by the pointer following and the algorithm fails. The
probability that all the empty lockers get different numbers is
k!/kk, which is extremely low even for small k. Therefore the
above goal will not be met by this naive algorithm.

III. NEW ALGORITHMS

We now give modifications to the pointer-following algo-
rithm to handle the case where k lockers are empty. The first
algorithm uses the observation that there will be no labels
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n + 1, ..., n + k. So a player is free to assign these labels as
he opens empty lockers.

Algorithm PF-1
1) Set j=0. Set the current locker for player i to be i.
2) If the current locker is empty he sets l = n + j and

increments j, otherwise he observs its label l.
3) If l = i the player terminates, otherwise the current

locker is l and he goes back to step 2.
In the next example, and the examples that follow, the label

”0” denotes an empty locker.

Example III.1. Algorithm PF-1: n = 9, k = 2
Lockers contain the labels: 4 5 0 3 2 0 1 6 9 8 7
Player 1 opens lockers: 1 4 3 10 8 6 11 7
Player 2 opens lockers: 2 5
Players 3,4 open same lockers as player 1
Player 5 opens same lockers as player 2
Player 6 opens lockers 6 10 8
Player 7 opens same lockers as player 1
Player 8 opens same lockers as player 6
Player 9 opens locker 9
The players need to open at most 8 lockers to find all the
labels, and so N = 8.

Algorithm PF-1 is identical to the original pointer-following
algorithm when k = 0. For any k ≥ 1 each player must
always find his label because the empty lockers are assigned
values to complete a permutation of the integers 1, 2, ..., n+k.
For k = 1 this completion is unique, as the empty locker
is simply assigned label n + 1. However if k ≥ 2 the first
empty locker opened will depend the player’s number, unless
the empty lockers happen to be n+1, ..., n+k. Therefore the
permutations arrived at by different players may be different.

A second strategy is to reduce the number of empty lockers
by sequential search. All players open the lockers sequentially
in the same order n + k, n + k − 1, n + k − 2, ... until either
they find their label or some predetermined number t of empty
lockers remain. The players who have not yet found their label
then use algorithm PF-1.

Algorithm PF-2(t)
1) Each player i opens lockers in the order n + k, n + k −

1, n+k−2, ... until either he finds his label or finds the
(k − t)-th empty locker.

2) Each player finding his label leaves the game. Let the
(k − t)-th empty locker be locker s + 1.

3) The s remaining players p(1) < p(2) < ... < p(s)
renumber themselves 1, 2, ..., s respectively. They use
algorithm PF-1 with parameters n = s and k = t. If
the label l is found, they go next to locker p−1(l).

Note that Algorithm PF-2(k) is identical to Algorithm PF-
1. We remark that the players do not need to communicate in
order to perform Step 3. All remaining players have the same
information, and in particular, know that they are the players
labelled p(1), p(2), ..., p(s).

Example III.2. Algorithm PF-2(t): n = 9, k = 2, t = 0
Lockers contain the labels: 3 2 4 5 8 6 0 1 0 9 7
In step (1) 5 lockers are opened by players 2 3 4 5 6 8.
Players 1,7,9 find their labels.

The 6 remaining players relabel themselves 1 2 3 4 5 6 and
use Algorithm PF-1 on sequence 2 1 3 4 6 5
Players 1,2,5,6 open two additional lockers.
Players 3 and 4 open one additional locker.
N = 7.

Example III.3. Algorithm PF-2(t): n = 9, k = 2, t = 1
Lockers contain the labels: 3 2 4 5 8 6 0 1 0 9 7
In step (1) 3 lockers are opened by players 1 2 3 4 5 6 8.
Players 7,9 find their labels.
The 7 remaining players relabel themselves 1 2 3 4 5 6 7 and
use Algorithm PF-1 on sequence 3 2 4 5 7 6 0 1
Players 1,3,4,5,7 open 5 additional lockers.
Players 2 and 6 open one additional locker each.
N = 8.

On the example, Algorithm PF-2(0) did better than and PF-
2(1). However this ranking differs depending on the input
permutation, We investigate the relationship between the al-
gorithms later in the paper, and see that in fact, PF-2(0) gives
the worst winning probability for the players. They do best
with PF-1.

IV. ANALYSIS OF POINTER-FOLLOWING ALGORITHMS

In this section we give an analysis of Algorithm PF-1 and
Algorithm PF-2(t) for t = 0, 1. First we generalize Theorem
II.1 to the case where one locker can be empty, and where
players are able to open some constant fraction of lockers. If
the fraction is large enough, the players can win with arbitrary
high probability.

Proposition IV.1. Let k = 0 or 1 and let N(i) denote the
number of lockers opened by player i in Algorithm PF-1. Let
N = maxi=1,2,...,nN(i). For any fixed probability p1 < 1,
there is a positive constant c1 = ep1−1 < 1 such that

Pr(N ≤ �c1(n + k)�) ≥ p1.

Proof: The proof uses the same technique as Theorem
II.1 [2]. We first prove the proposition for the case k = 0. It
is well known, and easy to prove, that the probability that a
random permutation contains a cycle of length n/2 < m ≤ n
is 1/m. Let X be the length of the longest cycle in a random
permutation, and let 1/2 ≤ c1 < 1. Then since a random
permutation can contain at most one cycle of length more
than n/2 we have

Pr(X > �c1n�) =
n∑

m=�c1n�+1

1

m
= Hn − H�c1n�

≤ ln n − ln c1n = ln
1

c1

Suppose without loss of generality that p1 ≥ 1 − ln 2 and
set c1 = ep1−1. It follows that

Pr(X > �c1n�) ≤ ln
1

c1

= 1 − p1.

If the players follow the pointer following algorithm, they only
lose if X > �c1n�, and so their winning probability is at least
p1.
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For k = 1 the proposition follows from the observation that
each player may assign label n + 1 to the empty locker. This
reduces the problem to an an equivalent game with n + 1
players and no empty lockers.

To understand the behaviour of Algorithm PF-1 for k > 1,
let us reconsider Example III.1. The players can be partitioned
into two groups, let us call them A and B. Group A are
the players which find their labels before opening any empty
locker. Each player in Group B opens at least one empty
locker before they find his label. So in the example we have
A={2,5,9} and B={1,3,4,6,7,8}, which is a partition of the
players. Consider player 7, whose label is contained in locker
n + k = 11. He opens all the empty lockers and finds the
labels of all players in B before he finds his label. Since no
player in B can find any of the labels in A, Player 7 opens
the maximum number of lockers. We will show that this is
always the case for the player whose label is in locker n + k.
Then by analyzing the size of B we can bound the number
of lockers the players need to open in order to win with high
probability. The idea is formalised in the following theorem.

Theorem IV.2. Consider a locker game with n players and a
fixed number k of empty lockers. For every probability p < 1
there is a positive constant c < 1 such that if the players can
open up to �c(n + k)� lockers, then their success probability
using Algorithm PF-1 is at least p.

Proof: (sketch) We proceed by induction on k, the cases
k = 0, 1 having been covered in Proposition IV.1. Let A be the
set of players who find their label before opening any empty
locker, and let B be the remaining players, which are those
that open at least one empty locker. No player in A can open
a locker which contains a label from B and vice versa. If
locker n + k is empty, then no-one will open this locker, so
the theorem follows by induction. Otherwise let z be the label
in locker n + k.

We first show that z opens all empty lockers and finds the
labels of all players in B. Indeed, by the behaviour of PF-1,
in order to find his label in locker n + k player z must have
already opened lockers n+1, n+2, ..., n+k−1. Consider any
other player j in B. Suppose first that j finds his label before
opening locker n + k. Since j is in B he must open locker
n + 1. Since z also opens this locker, he will then follow the
same steps as j and find j’s label. Now suppose that j opens
all empty lockers before finding his label. Then he must open
box n + k, find label z and then open locker z. From there
he follows the same steps as z and finds his label. So z finds
label j also. Note in this case j opens the same number of
lockers as z.

To complete the proof, we will show there exist two
constants c1 and c2 such that with probability at least p we
have �c1n� ≤ |B| ≤ �c2n�. This is done by analyzing the
cycle, Cz , followed by player z. Recall that Cz is the pointer
following sequence that starts from locker n+k, reaches some
empty locker, restarts from locker n+1, reaches another empty
locker, restarts from locker n+2, and so on, and finishes when
it comes back to locker n + k. Notice that this sequence is
nothing other than the prefix of a random sequence, consisting
of 1, 2, · · · , n and k 0’s, which ends at the k-th 0. This means

that the probability that the length L of Cz is at most r is
equal to the probability that the length-r prefix of the above
random sequence includes all k 0’s, and then in turn equal to
the probability that in a sample of r items from {1, 2, ..., n+k}
we find all items {n+1, n+2, ..., n+k}. Therefore the length
of this cycle follows the hypergeometric distribution. So

Pr(L ≤ r) =

(
r
k

)
(
n+k

r

) =
r(r − 1)...(r − k + 1)

(n + k)...(n + 1)

≤ (
r

n
)k ≤ ck(1 + k/n)k

where r = c(n + k) for any 0 < c < 1. There is a similar
lower bound, and so asymptotically we have

P (L ≤ r) = ck + o(1).

By choosing c1 small enough and c2 large enough, the theorem
follows.

We now prove a similar result for Algorithm PF-2(t).

Theorem IV.3. Consider a locker game with n players and a
fixed number k of empty lockers. For every probability p < 1
there is a positive constant c < 1 such that if the players can
open up to �c(n + k)� lockers, then their success probability
using Algorithm PF-2(t) is at least p.

Proof: (sketch) Let L1 be the number of lockers opened in
the first phase of Algorithm PF-2(t) (ie. step 1) and L2 be the
number of lockers opened in the second phase (ie. step 3). Both
L1 and L2 are governed by the hypergeometric distribution.
Indeed, we already showed this for L2 in Theorem IV.2. For
L1, we see that L1 ≤ r if and only if in a sample of r items
drawn from {1, 2, ..., n+k} we find t items from the set {n+
1, n + 2, ..., n + k}. Therefore we can get tight bounds on L1

and show that with high probability step 1 can be completed
by opening only a constant fraction of lockers. The contents
of the remaining lockers are uniformly distributed, and so we
may apply Theorem IV.2 to get similar bounds for L2. The
details will be given in the full paper.

In the next section we give some experimental results. In
particular, we see that Algorithm PF-2(1) gives a much better
success probability for the players than Algorithm PF-2(0),
but they do best with Algorithm PF-1.

V. EXPERIMENTAL RESULTS

In this section we investigate experimentally the behaviour
of Algorithm PF-2(t). The code was written in ansi C and
used the GNU random number package to place labels in the
lockers. Each experiment was repeated 10,000 times, and the
winning probabilities shown are the number of wins for the
players divided by 10,000.

In the first table we fix the number of empty lockers at
k = 10 and the fraction of lockers the players may open at
c = 0.9. We vary the number n + k of lockers. Recall that t
is the number of empty lockers remaining after the first step
of the algorithm has completed.

We remark that there is an almost constant winning percent-
age except for the cases of t = 0, 1. Using t = 1 the players
win with more than three the probability they achieve by using
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TABLE I
ALGORITHM PF-2(T): PLAYER WINNING PROBABILITIES WITH k = 10

AND c = 0.9

n + k t =0 1 2 3 4 5 6 7 8 9 10
100 .06 .23 .31 .34 .34 .33 .33 .33 .34 .34 .34
200 .07 .24 .32 .34 .34 .34 .34 .34 .34 .34 .34
400 .07 .23 .31 .35 .34 .34 .34 .35 .34 .33 .33
800 .07 .23 .31 .34 .34 .35 .35 .35 .33 .35 .35

1600 .07 .24 .32 .34 .35 .34 .35 .34 .35 .34 .34
3200 .07 .24 .32 .35 .35 .36 .35 .35 .35 .35 .35

t = 0. The players do best with t = k, which is equivalent to
Algorithm PF-1. Note that the winning probabilities are almost
independent of the number of lockers, n + k.

Next we fixed the number of lockers at 2520 (to avoid
rounding up) and let the number k of empty lockers vary.
The analysis of the previous section involving the hypergeo-
metric distribution suggests that if the players can open about
k/(k + 1) lockers they should have a reasonable winning
percentage. The results are shown in Table II. Again we
observe a remarkably constant winning probability for the
players except when t = 0, 1. This probability is very close
to the empty locker winning probability when the players can
open half of the lockers.

TABLE II
ALGORITHM PF-2(T): PLAYER WINNING PROBABILITIES WITH

n + k = 2520 LOCKERS, c = k/(k + 1) FOR VARIOUS VALUES OF k

k c t =0 1 2 3 4 5 6 7 8
1 1/2 .05 .32
2 2/3 .07 .31 .43
3 3/4 .08 .30 .40 .42
4 4/5 .08 .29 .39 .41 .42
5 5/6 .09 .29 .38 .40 .41 .41
6 6/7 .08 .29 .37 .39 .40 .39 .40
7 7/8 .09 .28 .36 .38 .39 .39 .40 .40
8 8/9 .09 .29 .37 .39 .39 .40 .39 .39 .39

Finally we fixed the number of lockers at 2520, the number
of empty lockers at k = 6, and let the fraction of lockers
that are allowed to be opened to be variable. The results are
shown in Table III. We observe that again, apart from t =
0, 1, Algorithm PF-2(t) gives an essentially constant winning
probability for the players, which increases steadily with c.

TABLE III
ALGORITHM PF-2(T): PLAYER WINNING PROBABILITIES WITH

n + k = 2520 LOCKERS, k = 6 FOR VARIOUS VALUES OF c

c t =0 1 2 3 4 5 6
1/2 .00 .00 .00 .01 .01 .01 .01
2/3 .00 .02 .05 .07 .08 .08 .09
3/4 .01 .08 .14 .17 .18 .17 .18
4/5 .03 .15 .22 .26 .27 .25 .27
5/6 .05 .22 .30 .33 .34 .33 .34
6/7 .08 .29 .37 .39 .40 .39 .40
7/8 .11 .34 .42 .44 .46 .45 .46
8/9 .14 .39 .47 .49 .50 .49 .50
9/10 .15 .40 .48 .50 .51 .50 .51

11/12 .22 .51 .58 .59 .58 .60 .60
23/24 .44 .74 .77 .78 .78 .77 .78
35/36 .55 .83 .85 .85 .85 .84 .85
71/72 .72 .91 .92 .92 .92 .92 .92

VI. CONCLUSION

We have presented algorithms for the locker problem where
there are a constant number of empty lockers. We have shown
that the players have a reasonable winning probability if they
can open about k/(k +1) of the lockers. Empirically we have
seen that they do best by using the modified pointer following
Algorithm PF-1, rather than systematically searching for all
of the empty lockers. The methods given here do not allow k
to be increasing with n. It remains an open problem whether
or not the players can achieve a fixed winning probability by
opening only a constant fraction of the lockers in this case.
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