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Leader-following Consensus Criterion for
Multi-agent Systems with Probabilistic Self-delay

M.J. Park, K.H. Kim and O.M. Kwon

Abstract—This paper proposes a delay-dependent leader-following
consensus condition of multi-agent systems with both communication
delay and probabilistic self-delay. The proposed methods employ a
suitable piecewise Lyapunov-Krasovskii functional and the average
dwell time approach. New consensus criterion for the systems are
established in terms of linear matrix inequalities (LMIs) which can be
easily solved by various effective optimization algorithms. Numerical
example showed that the proposed method is effective.

Keywords—Multi-agent systems; probabilistic self-delay; consen-
sus; Lyapunov method; LMI.

I. INTRODUCTION

MULTI-AGENT systems (MASs) have received consid-

erable attentions due to their extensive applications

in many fields such as biology, physics, robotics, power

grid, and so on [1]-[2]. A prime concern in these systems

is the agreement of a group of agents on their states of

leader by interaction. Namely, this problem is a consensus

problem. Specially, consensus problem with a leader is called

a leader-following consensus problem or consensus regulation.

Recently, this problem has been applied in various fields such

as vehicle systems [3]-[4], groups of mobile autonomous agent

[5], networked control systems [6], other applications [7]-[8].

MASs are being put to use in the consensus problem for

time-delay which occurs due to the finite speed of information

processing in the implementation of this system. Here, it is

well known that time-delay often causes undesirable dynamic

behaviors such as oscillation, performance degradation, and

instability of the system. Thus, it is necessary to study the

problems for MASs with time-delay. For instance, see [9]-

[12]. However, the above mentioned literature mainly have

addressed for the consensus conditions of the MASs with only

communication delay. In implementation of many practical

systems such as aircraft and electric circuits, there exist

occasionally stochastic perturbations. The perturbations have

influence on the stochastic occurrence of self-delay. It is no

less important than the communication delay as a considerable

factor affecting dynamics in the fields of network science and

communication systems applications. Therefore, it should be

pointed out that analyzing the consensus problem of the MASs

with probabilistic self-delay can be regarded as investigating

the stability of MASs.

Motivated by this mentioned above, in this paper, new delay-

dependent consensus problem for MASs with both communi-
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cation delay and probabilistic self-delay will be studied. The

probabilistic self-delay is randomly occurring self-delay with

Bernoulli sequence. Also, delay-dependent analysis has been

paid more attention than delay-independent one because the

sufficient conditions for delay-dependent analysis make use of

the information on the size of time delay [13]. By construction

of a suitable piecewise Lyapunov-Krasovskii functional and

utilization of the average dwell time approach [14], a consen-

sus criterion for MASs with both communication delay and

probabilistic self-delay is derived in terms of LMIs which can

be solved efficiently by use of standard convex optimization

algorithms such as interior-point methods [15]. Using the

average dwell time approach can be analyzed for the problem

without the mathematical expectation operator E{·} used in

[16]-[17]. One numerical example is included to show the

effectiveness of the proposed method.

Notation: Rn is the n-dimensional Euclidean space, and

Rm×n denotes the set of all m×n real matrices. For symmetric

matrices X and Y , X > Y (respectively, X ≥ Y ) means

that the matrix X − Y is positive definite (respectively,

nonnegative). X⊥ denotes a basis for the null-space of X .

In, 0n and 0m·n denote n× n identity matrix, n× n and

m× n zero matrices, respectively. ‖ ·‖ refers to the Euclidean

vector norm or the induced matrix norm. diag{· · ·} denotes

the block diagonal matrix. � represents the elements below the

main diagonal of a symmetric matrix. ⊗ denotes the notation

of Kronecker product.

II. PROBLEM STATEMENTS

The interaction topology of a network of agents is

represented using a directed graph (digraph) G = (V , E ,A)
with the set of nodes V = {1, 2, . . . , N} and edges

E = {(i, j) : i, j ∈ V} ⊂ V × V . An adjacency matrix

A = [aij ]N×N of the digraph G is the matrix with

nonnegative elements satisfying aii = 0 and aij ≥ 0. If there

is an edge between i and j, then the elements of matrix A
described as aij > 0 ⇔ (i, j) ∈ E . The digraph G is said to be

undirected if (i, j) ∈ E ⇔ (j, i) ∈ E and aij = aji. A set of

neighbors of agent i is denoted by Ni = {j ∈ V : (i, j) ∈ E}.

A degree of node i is denoted by deg(i) =
∑

j∈Ni
aij . A

degree matrix of digraph G is diagonal matrix defined as

D = diag{deg(1), . . . , deg(N)}. The Laplacian matrix L of

graph G is defined as L = D − A. More details can be seen

in [18].

Consider the following MASs with the dynamics of
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agent i

ṗi(t) = ui(t) (i ∈ V = 1, 2, . . . , N), (1)

where N is the number of agents, n is the number of

states of agent i, pi(t) = [pi1(t), . . . , pin(t)]
T ∈ Rn and

ui(t) = [ui1(t), . . . , uin(t)]
T ∈ Rn are the state vector and

the consensus protocol vector of agent i, respectively.

According to the works [19], a consensus algorithm in agent

can be described as

ui(t) = −K
∑
j∈Ni

aij(pi(t)− pj(t))−Kbi(pi(t)− p0), (2)

where K = [kij ] ∈ Rn×n is a protocol gain matrix, p0 ∈ Rn

is the state vector of leader, aij and bi are the interconnection

weights defining

{
aij > 0,
aij = 0,

if agent i is connected to agent j,
otherwise,

{
bi > 0,
bi = 0,

if agent i is connected to the leader,

otherwise.

Remark 1: The agents of the MASs (1) with the consensus

algorithm (2) can be known in the sense that each agent

needs information from its local neighborhood. In practice,

N -unmanned vehicles or N -soccer robots move in a n-

dimensional plan with identical first-order dynamics.

Assumption 1: The self delay is randomly occurring.

This mean that, �t is a stochastic process representing the

self delay occurring process; that is, let �t be a Bernoulli

distributed sequence defined by

�t =

{
1, if the self-delay occurs,

0, if the self-delay not occurs.

From understanding the algorithm (2) and Assumption 1, a

consensus algorithm with randomly occurring self-delay can

be

ui(t) = −K�t

∑
j∈Ni

aij(pi(t− �th)− pj(t− h))

−K�tbi(pi(t)− p0), (3)

where 0 < h is a time-invariant delay.

Let us define xi(t) = pi(t)− p0. From (1) and (3), since the

following equality with ṗ0 = 0 holds

ẋi(t) = ṗi(t) = ui(t)

= −K�t

∑
j∈Ni

aij(xi(t− �th)− xj(t− h))

−K�tbixi(t),

the MASs with the error dynamics of agent i can be rewritten

as the matrix form by

ẋ(t) = −(B ⊗K�t)x(t) + (A⊗K�t)x(t− h)

−(D ⊗K�t)x(t− �th), (4)

where

A = [aij ]N×N , B = diag {b1, . . . , bN} ,

D = diag

⎧⎨
⎩

∑
j∈N1

a1j , . . . ,
∑

j∈NN

aNj

⎫⎬
⎭ .

For each �t, the system (4) can be rewritten as the following

switched systems by

ẋ(t) = Fσ(t)x(t) +Gσ(t)x(t− h), (5)

where σ(t) : [0,∞) → L = {1, 2, . . . , l} is the switch-

ing signal which in deterministic, piecewise constant and

right continuous, corresponding to it, the switching sequence

{x(t0); (i0, t0), . . . , (il, tl), . . . , |il ∈ L, l = 1, 2, . . .}, which

means that the ilth subsystem is activated when t ∈ [tl, tl+1),
and

F1 = −(B ⊗K1), G1 = −(L ⊗K1) if �t = 1,

F2 = −((D + B)⊗K2), G2 = (A⊗K2) if �t = 0.

The aim of this paper is to investigate the consensus analysis

(in other word, stability analysis) of the MASs (5). This means

that the protocol ui(t) solves the consensus problem, if and

only if the states of agents satisfy

lim
t→∞ ‖pi(t)− p0‖ = lim

t→∞ ‖xi(t)‖ = 0, ∀i ∈ V .
In order to do this, we introduce the following definitions

and lemma.

Definition 1: System (5) is said to be asymptotically

stable under switching signal σ(t) if the solution x(t) of

system (5) satisfies

‖x(t)‖ ≤ α‖x(t0)‖c1, ∀t ≥ t0, (6)

for α ≥ 1, where ‖x(t0)‖c1 = sup−h≤s≤0{‖x(t0 +
s)‖, ‖ẋ(t0 + s)‖}.

Definition 2: [14] For any T > t ≥ 0, let Nσ(t, T )
denote the switching number of σ on an interval (t, T ), if

Nσ(t, T ) ≤ N0 +
T − t

τa
(7)

holds for given N0 ≤ 0 and τa > 0. Then the constant τa is

called the average dwell time and N0 is the chatter bound.

Without loss of generality, we choose N0 = 0 in this paper.

Lemma 1 (Finsler lemma): [20] Let ζ ∈ Rn,

Φ = ΦT ∈ Rn×n, and Υ ∈ Rm×n such that rank(Υ) < n.

The following statements are equivalent:

(i) ζTΦζ < 0, ∀Υζ = 0, ζ �= 0,

(ii) Υ⊥T
ΦΥ⊥ < 0,

(iii) ∃F ∈ Rn×m : Φ + FΥ+ΥTFT < 0.

III. MAIN RESULTS

In this section, we propose new stability and stabilization

criteria for system (5). For simplicity of matrix representation,

ei ∈ R3Nn×Nn are defined as block entry matrices; e.g.,
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e2 = [0Nn, INn, 0Nn]
T . The notations of several matrices are

defined as:

ζ(t) = [xT (t), xT (t− h), ẋT (t)]T ,

Υ1 = [−B ⊗K1,−L⊗K1,−INn],

Υ2 = [−(D + B)⊗K2,A⊗K2,−INn],

Ξ1 = sym{e1(IN ⊗ P )eT3 }
+e1(IN ⊗Q)eT1 − e2(IN ⊗Q)eT2

+e3(IN ⊗ h2R)eT3 − (e1 − e2)(IN ⊗R)(e1 − e2)
T

Ξ2 = e1(IN ⊗ hS1)e
T
1 + e3(IN ⊗ hS2)e

T
3

+e1(IN ⊗M)eT1 − e2(IN ⊗M)eT2 ,

Φ = Ξ1 + Ξ2. (8)

Now, we have the following Theorem 1.

Theorem 1: For given scalars 0 < h and the gain Kl, the

agents in the system (5) converge to the state of leader, if

there exist positive definite matrices P ∈ Rn×n, Q ∈ Rn×n,

R ∈ Rn×n, Sa ∈ Rn×n(a = 1, 2) and any symmetric matrix

M ∈ Rn×n, satisfying the following LMIs:

[Υ⊥
l ]

T
Φ[Υ⊥

l ] < 0 (l = 1, 2), (9)[
IN ⊗ S1 IN ⊗M

� IN ⊗ S2

]
> 0. (10)

Then, system (5) is asymptotically stable for switching signal

with occurrence probability, Pr{�t} = �0, of self-delay and

average dwell time satisfying τa > 0.

Proof: Let us consider the following Lyapunov-Krasovskii

functional candidate as

V (x(t)) = V1 + V2, (11)

where

V1 = x(t)(IN ⊗ P )x(t)

+

∫ t

t−h

xT (s)(IN ⊗Q)x(s)ds

+h

∫ t

t−h

∫ t

s

ẋT (u)(IN ⊗R)ẋ(u)duds,

V2 =

∫ t

t−h

∫ t

s

(xT (u)(IN ⊗ S1)x(u)

+ẋT (u)(IN ⊗ S2)ẋ(u))duds.

By Jensen inequality [21], the time-derivative of V1 is calcu-

lated as

V̇1 = 2xT (t)(IN ⊗ P )ẋ(t) + xT (t)(IN ⊗Q)x(t)

−xT (t− h)(IN ⊗Q)x(t− h)

+ẋT (t)(IN ⊗ (h2R))ẋ(t)

−
(∫ t

t−h

ẋ(s)ds

)T

(IN ⊗R1)

(∫ t

t−h

ẋ(s)ds

)

≤ ζT (t)Ξ1ζ(t). (12)

Next, the V̇2 is calculated as

V̇2 = xT (t)(hIN ⊗ S1)x(t) + ẋT (t)(hIN ⊗ S2)ẋ(t)

−
∫ t

t−h

ξT (s)

[
IN ⊗ S1 0Nn

� IN ⊗ S2

]
ξ(s)ds. (13)

where ξ(t) = [xT (t), ẋT (t)]T .

Inspired by the work of [22], the following zero equality with

any symmetric matrix M is considered

0 = xT (t)(IN ⊗M)x(t)− xT (t− h)(IN ⊗M)x(t− h)

−2

∫ t

t−h

xT (s)(IN ⊗M)ẋ(s)ds. (14)

By use of Eqs. (14), we get

V̇2 = ζT (t)Ξ2ζ(t)

−
∫ t

t−h

ξT (s)

[
IN ⊗ S1 IN ⊗M

� IN ⊗ S2

]
ξ(s)ds. (15)

Here, if the inequality (10) holds, then the V̇ has an upper

bound as follows

V̇ ≤ ζT (t)(Ξ1 + Ξ2)ζ(t). (16)

Also, the system (5) with the augmented vector ζ(t) can

be rewritten as Υlζ(t) = 0 (l = 1, 2). Then, a consensus

condition for the system (5) is

ζT (t)(Ξ1 + Ξ2)ζ(t) < 0 (17)

subject to Υlζ(t) = 0.

From Lemma 1 (iii), the inequality (17) is equivalent to the

following condition

(Ξ1 + Ξ2) + FΥl + (FΥl)
T < 0 (l = 1, 2), (18)

where F is any matrix with appropriate dimension.

According to the works [23]-[24], define the following

piecewise Lyapunov-Krasovskii functional candidate as

V (x(t)) = Vσ(t)(x(t)). (19)

When t ∈ [tl, tl+1), (10) and (18) give

V (x(t)) = Vσ(t)(x(t)) ≤ Vσ(tl)(x(tl)). (20)

Using (19), at the switching instant tl, we get

Vσ(tl)(x(tl)) ≤ Vσ(t−l )(x(t
−
l )). (21)

Therefore, from (20), (21) and the relation l = Nσ(t0, t), it

follows

V (x(t)) ≤ Vσ(t−l )(x(t
−
l )) ≤ Vσ(t0)(x(t0)). (22)

Furthermore, for any t ∈ [0, h], from (19), the following

inequalities hold

a‖x(t)‖2 ≤ V (x(t)) ≤ Vσ(t0)(t0) ≤ b‖x(t0)‖2c1, (23)

where

a = λmin{P},
b = λmax{P}+ hλmax{Q}+ h3

2
λmax{R}

+
h2

2

(
λmax{S1}+ λmax{S2}

)
,

which means

‖x(t)‖ ≤
√

b

a
‖x(t0)‖c1. (24)
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By Definition 1, we know that system (5) is asymptotically

stable.

Finally, by utilizing Lemma 1 (ii), the condition (18) is

equivalent to the following inequality

[Υ⊥
l ]

T
(Ξ1 + Ξ2)[Υ

⊥
l ] < 0 (l = 1, 2). (25)

From the inequality (25), if the LMIs (9) and (10) hold, then

stability condition (17) is satisfied. This completes our proof.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples will be shown to

illustrate the effectiveness of the proposed Theorem 2.

Example 1: Consider the MASs (1) with 4-vehicles

(agents) in 2-dimensional plan, i.e., N = 4, n = 2, and the

switching interconnection topology described in Figure 1.

Fig. 1. The interconnection topology

From Figure 1, A, D and B are

A =

⎡
⎢⎢⎣

0 0 0.6 0
1.6 0 0 0.8
0 1.2 0 0
1.5 0 0 0

⎤
⎥⎥⎦ ,

D = diag{0.6, 2.4, 1.2, 1.5},
B = diag{0, 1.2, 0, 0}.

The occurrence probability, �0, of self-delay is 0.7. Then, the

operation modes of switching signal with τa = 1 are shown

in Figure 2.

0 5 10 15 20 25 30
0

1

2

3

Time

M
od

e

σ(t)

Fig. 2. The curve of the operation modes. (Example 1)

For the system mentioned above, the maximum bound of

time-delay with the following consensus protocol gain Kl by

Theorem 1 are 0.5.

K1 = diag{1, 1}, K2 = diag{0.0001, 0.0001} × 10−320.

In order to confirm this result, we set the condition on time-

delay as (C1) h = 0.5. It assumed that the state of leader set by

z0 = [2,−2]T . Then, the simulation results are given in Figure

3. These figures show that the each agent with the responses

converge to the state of leader under the switching signal σ(t)
for given initial states of the agents z1(0) = [3,−1]T , z2(0) =
[1,−1]T , z3(0) = [1,−3]T and z4(0) = [3,−3]T .

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4
(a)

Time

z i(t
)

leader
agent 1
agent 2
agent 3
agent 4

0 1 2 3 4 5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5
(b)

z
i1

(t)

z i2
(t

)

leader
agent 1
agent 2
agent 3
agent 4

Fig. 3. State trajectories of the agents and leader with the condition (C1):
(a) Time-zi(t) plan; (b) zi1(t)-zi2(t) plan. (Example 1)

V. CONCLUSION

In this paper, new delay-dependent leader-following con-

sensus criterion for MASs with both communication delay

and probabilistic self-delay is proposed. To do this, a suitable

piecewise Lyapunov-Krasovskii functional and the average

dwell time approach are used to obtain the feasible region

of consensus criterion. Numerical example has been given to

show the effectiveness of the presented criterion.
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