
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

692

Architecture based on dynamic graphs for the
dynamic reconfiguration of farms of computers

Carmen Navarrete and Eloy Anguiano

Abstract— In the last years, the computers have increased their
capacity of calculus and networks, for the interconnection of these
machines. The networks have been improved until obtaining the
actual high rates of data transferring. The programs that nowadays
try to take advantage of these new technologies cannot be written
using the traditional techniques of programming, since most of the
algorithms were designed for being executed in an only processor,
in a nonconcurrent form instead of being executed concurrently in
a set of processors working and communicating through a network.
This paper aims to present the ongoing development of a new system
for the reconfiguration of grouping of computers, taking into account
these new technologies.

Keywords— Dynamic network topology, resource and task alloca-
tion, parallel computing, heterogeneous computing, dynamic recon-
figuration

I. INTRODUCTION AND MOTIVATION

THE use of clustering computing to solve computa-
tional problems has been the focus of high-performance

computing community for more than two decades. The ad-
vances made in microprocessors and computer networks have
caused the appearance of clusters or networks of workstations
(NOWs) to be an alternative to the more and more expensive
supercomputers. However, the demand of computing power
continues growing as long as most of the available machines
are underused. Due to this continuous growth of the capabili-
ties of networks, there are posed multiple optimization prob-
lems associated with algorithms for the design of networks
and topologies. For general optimization of hosts in farms of
computers, a methodology of dynamic resources allocation is
needed [1]–[3]. Nowadays, this is one of the main reasons of
the existence of a special interest in searching new algorithms,
which will enable the replacement of the traditional methods.
The efficiency and possibility of scaling in parallel to the
architectures of processors make the use of the traditional
methods inapplicable in many cases [4].

The main problem designing a parallel or distributed al-
gorithm resides in the communication and synchronization of
processes for its concurrent execution in different processors.
This is a very hard non-deterministic optimization problem
that not allways have the best solution. In many cases, only
an approximation can be calculated.

From the point of view of the heterogeneity of processors,
a good parallel application for Heterogeneous Network of
Computers (HNoC) must distribute computations unevenly,

C.B.Navarrete, E.Anguiano, Higher Polytechnical School of Engineering.
Universidad Autónoma de Madrid, SPAIN

C.B.Navarrete is the corresponding author to provide phone: +34 91 497
22 66; fax: +34 91 497 22 35. Authors e-mail: carmen.navarrete@uam.es

taking into account, at least, the speed of the processors,
the heterogeneous in terms of the network topology and the
resources needed by each processor. The efficiency of the
parallel application also depends on the accuracy of estimation
of the speed of the processors of the HNoCs, which is difficult
because the processors may have different speeds for different
applications due to the differences in the set of instructions, the
number of instruction execution units, the number of registers,
the structure of memory hierarchy and so on [5].

From the point of view of the communications, one of
the main problems of the implementation of networks of
communication is the one of designing a network topology
that could verify certain characteristics of trustworthiness,
assuming this as a measurement, that evaluates the probability
of success in the communication between pairs of processors.
This is an non-trivial factor in the quality of services offered
to all the computers. The evaluation of the exact parameters
that determine the trustworthiness of a communication network
is also a NP-hard problem [6], [7]. For this reason, an
optimization of the topology of the net is needed. It muss be
assured that the temporary delay due to the communication
and synchronization of the processes, is minor to the delay of
processing the data by each processors. Also it is important to
consider that when the problem is too much divided, the spent
time to transmit data between computers and to synchronize
them, exceeds the time of computation of that CPU.

The common communication network is usually heteroge-
neous. The speed and bandwidth of the network, between
different pairs of processors, may differ significantly. This
makes the problem of optimal distribution of computations
and communications across the HNoC much more difficult
than across a dedicated cluster of workstations interconnected
with a homogeneous high-performance network. Other issue
is that the common communication network can use multiple
network protocols for communication between different pairs
of processors. A good parallel application should be able
to use multiple network protocols between different pairs of
processors [8].

Our work focuses on the allocation of resources and tasks,
and on the configuration of the topology of the network,
by transfering the workload onto other computers of the
farm, to find a dynamic matching between the tasks and the
global resources of the NOWs that optimizes the application
completion time. This will be done assuming a non-static and
decentralized approach.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

693

2

II. DEFINITIONS AND BACKGROUND

The NOWs can be seen as a weighted directed graph with
costs either in the vertices (resources costs) and in the edges
(communications between pair of nodes costs). The vertices of
the graph represent the nodes of the NOWs and the edges, the
physical communication between pair of nodes of the farm.
Discretely, one node is an instance of one processor, that is,
every processor is one node. When applying the concept of the
graph to a distributed and heterogeneous environment (HNoC),
the costs associated with these weights depend on various
system characteristics, such as the processing speed of and the
communication latency between network nodes. Each node of
the NOW or of the HNoC can act as master or slave process:
masters are entrust to send the tasks to be done by the slaves
nodes and to manage the synchronism between the processes.
Slaves play the role of executing the tasks sent by the master
process. In our case of study, all nodes are equally master or
slaves.

In order to build a computing environment for farms of
computers, it is also necessary to have an algorithm that
requires the ability to predict the performance and the re-
source consumption of different cluster configurations. This
algorithm is called the Resource Management System (RMS).
The problem is that it is difficult to predict the computing
time by a node after it receives some arbitrary load. Also,
this will be even more difficult if we consider the variation
in the topology of communication of the farm. The basic
tasks of the RMS is to accept requests for resources by
applications and allocate them from the poll of resources. This
is a slightly approximation of a computer middleware. As all
nodes are equally master or slaves, we need one special node,
the supermaster, in where the RMS plays its role.

The RMS uses a predictive estimation based on a mathemat-
ical function (heuristic function Υ), in order to map tasks of
the parallel application to the pool of resources. This heuristic
function will be the one needed to define the graph partition
and assigning the workload to each node. These techniques
for predicting the performance of the dynamic system are
nowadays based on queueing techniques and/or on historical
techniques [9]. Making a comparison between layered queues
and the historical model it is well known that the layered
queue requires more CPU time to make the mean response
time prediction whereas the historical predictions model are
almost instantaneous. However queues techniques are easier
to implement with a minimum level of performance than the
historical model. This is because designing a historical model
involves specifying and validating how predictions will be
made whereas the queueing model can be solved automatically
[10]. Both techniques can be combined to take advantages of
them.

The layered queueing performance model defines an ap-
plication’s queueing network. The solution strategy, in this
case, involves dividing the problem into tasks depending
on the resources, and corresponding to the tiers of servers
in the system model generating an initial topology solution
and then iterating with the historical method, solving and
redimensioning the queues in each step of the algorithm until

the solution converge to an optimal distribution of resources,
tasks and communications delays.

For the queue model it is necessary to define a queue
structure for each node of the HNoC which will be shared
by all the incoming requests (fig. 1). The nodes can be
both clients (request information) and servers (process the
information). The queue can be managed by a FCFS (First-
Come, First-Servered), LCFS (Last-Come, First-Servered) or
SIRO (Service In Random Order) policy

Fig. 1. Example of a HNoC with 4 nodes. Each server has its own queue
for receiving the incoming requests from the rests of nodes of the farm.

The different queue models are defined by 6 factors, in
shortband notation, called Kendall’s Notation, as A/B/C/X/Y/Z
where [11]:

• A: the arrival process distribution. Distribution of proba-
bility assumed between arrivals.

• B: the service time distribution. Distribution of probabil-
ity that gives the distribution of time of the service of a
customer.

• C: the number of servers.
• X: maximum number of customers allowed in the system

including those being in service. When this number is at
the maximum value, arrivals are turned away.

• Y: the population size.
• Z: the discipline of the queue. Priority order of jobs in

the queue.
Thus, solving the problem of the optimization of the global

resources of the HNoC can be approached by solving the
problem of finding the minimum path of the associated graph
[12] taking into account the communication delays and the
execution time per task of each processor.

III. MATHEMATICAL MODEL

The HNoC system can be modelled as a weighted di-
rected graph Gs, denoted by Gs(P,L, τ, δ) referred as the
SystemGraph. P denotes a finite set of processors that
represents the nodes or vertices of the graph Gs; L is a finite
set of links that represents the communication links between
pair of processors: the edges of the graph Gs; Each vertex
pi ∈ P is characterized by a set of system parameters (mem-
ory, frequency, operating system...), based on its available
resources of the HNoC. Due to this, each processor suffers
a processing weight τ(pi) that denotes the processing cost per
unit of computation. Each link between two processors pi and



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

694

3

pj , denoted by li,j ∈ L, has a link weight δi,j that means the
communication latency between those two nodes per transfer
unit. If two nodes (pi, pj) ∈ P are not connected to each
other then li,j = ∞. We assume that all nodes of the graph
are connected to at least one node of the HNoC (connected
graph) but we not enforce constraints on the network topology
as this is not completely defined and can vary between two
steps of the simulation of the problem that is being executed in
the HNoC. It is necessary to define a neighbourhood function
which will return the set of nodes that are linked with any
node of the HNoC,

∀pi ∈ P : neig(pi) = {pk} | li,k �= ∞
So, we must define another function path(pi, pj), defined as

∀pi, pj ∈ P : path(pi, pj) = {pk}∗

were p∗k is a sorted set of nodes were each node either
pk ∈ neig(pi) or pk ∈ neig(pj) or pn

k ∈ neig(pn−1

k ). It
is necessary to define a latencies matrix CL equal to the
network latencies between any two processors, ∀pi,∀pj ∈
P,CLi,j

= lat(pi, pj), which will depend also on the physical
and data link network layer. For two adjacent nodes pi, pj ,
∈ P , CLi,j

= lat(pi, pj) = δi,j but if pi and pj ∈ P are not
adjacent in the HNoC, the latency will be defined as the sum
of the links weights on the sortest path between them,

CLi,j
= lat(pi, pj) =

∑
(δpk

| pk ∈ min(path(pi, pj)))

(fig. 2). The matrix CL could be symmetric or not, since all
communications could be different also in a duplex commu-
nication, because of the directed property of the graph.

Fig. 2. Example of a System Graph GS . The characteristics of the graph
are: nodes P = {A, B, C, D}, links L = {ca, ab, ad, bd, dc}, processing
weights τ = {2, 5, 4, 1} communication latencies δ = {1, 0, 7, 1, 2}
and neig(A) = {B, D}, path(C, D) = {C, A, B, D}U{C, A, D}, but
pathmin(C, D) = {C, A, B, D}

CL =

⎛
⎜⎝

A B C D
A 0 0 3 7
B 4 0 3 1
C 1 1 0 2
D 3 3 2 0

⎞
⎟⎠

The graph of minimum paths for a specific node of the
graph Gs, denoted by Gm

a(P,L, τ, δ) will be defined as the
graph that contain the minima paths from the node a ∈ P to
any node of the graph (fig. 3).

Fig. 3. Obtained graphs Gs for each node of the graph of the figure 2.

The application can also be modelled as a weighted di-
rected graph Ga, denoted by Ga(T, D, ω, λ) referred as the
ApplicationGraph. T denotes a set of vertices of the graph
that represents the tasks to be done. D represents a finite set of
edges of the graph where {(ti, tj) | ti, tj ∈ T}. Ei,j represents
the data dependency between two vertices ti, tj . Each vertex
has a computation weight ω(ti),∀ti ∈ T that represents the
amount of computations required by the task ti to accomplish
one step of the algorithm Each edge has a value λi,j that
represent de amount of data to be sent from vi to vj .

Thus, the execution time Γ of a task ti ∈ T on a
processor pj ∈ P , assuming the worst case in which there
is no-overlapping between computation and communication,
is defined as:

Γ(ti, pj) = ω(ti)×τ(pj)+
∑

tl∈neig(pk)

∑
pk∈P
k �=j

λ(ti, tl)×δ(pj , pk)

where ω(ti) × τ(pj) represents the amount of computation
required by the task ti per processing cost per unit of compu-
tation.

Given a system graph GS(P,L, τ, δ) and an application
graph Ga(T, D, ω, λ), the objective is to map characteristics
Γ : (T, D) �→ (P,L) for minimizing the function Γ based on
the application requirements and the system constraints such
as the topology of the system graph.

From the point of view of the queue prediction tech-
nique, we can assume that the HNoC can be modelled by
a M/G/1/∞/∞/SIRO model where the arrival process
distribution is a Markovian process [13], the service time is a
general distribution referring to a independent arrivals to the
system and there is only one server for that queue [14]. We
must allow to any server to pop an item from the queue in
an arbitrary order, according to a certain priority value. This
characteristic forces the SIRO parameter of the queue. We
will maintain only a queue per each server, but, from the point
of view of the whole system, the queues will be modelled as
a M/G/c/∞/∞/SIRO, where c is the number of nodes of
the HNoC. The length of the queue (maximum number of jobs
in the queue), L, will depend on the arrival rate λ, and on the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

695

4

service rate μ and will be calculated by the expression:

L =
λ2E[S2]

2(1 − ρ)
+ ρ

where ρ = λ
μ and E[S2] is the second moment of the expected

value of the service rate random distribution S.
The historical modelling technique involves sampling per-

formance metrics (response times, resources availability, com-
munication delays...) and will associate these measurements
with variables representing the workload being processed and
the machines architecture. The historical function, in most
cases, cannot be solved mathematically and it is necessary
to solve it, by using an optimization method as a simplex or
tableau algorithm.

IV. PROPOSAL

Until this moment, we have considered only a static network
topology, that depends on the domain decomposition, defined
before the execution of the algorithm or application in the
HNoC; in those problems in which is not trivial defining
a domain decomposition (i.e. access to data in distributed
databases) would be usefull to have a dynamic topology of
communications, which can vary around the distribution of
the data and the different latencies of the network, depending
on the different connections between the nodes.

The model proposed for the reconfiguration of nodes of
a HNoC will be based on a sufficiently ample language of
communications. Using this language any node will be able to
know in real time, what information contains any other node of
the system (data middleware), without having to communicate
first with the master node of that system. This language also
will allow the nodes to modify their roles of master/slave
depending on what value or data structure is needed and on
what node has asked for it (fig. 4).

Fig. 4. Example of the reconfiguration of a HNoC applied to a distributed
database. At least 3 nodes have changed its master/slave role, to adapt the
HNoC network topology to the data distribution. This has been made in order
to minimize the global delay for the execution of the query in the system.

The HNoC will be represented as a directed dynamic graph
(as in figure 2) in which the different connections will have
weights of edges (cost of moving directly from one vertex to
another one) equals to the different delays from network and
those due to the overload of the processors of the nodes. The
vertex of the graph will represent each processors available
at the HNoC. The information of each node of the graph

will contain the effective load of the processor, considering
this as the availability to execute other processes. Also the
node will contain as well, a statistic value proportional to
the execution time of the processes in previous steps of the
algorithm. Therefore, the edges of the graph will represent
the connections between the available processors, according
to a certain instant of the algorithm. These connections are
statistically weighted according to the network delays, the time
of transmission of the data through the net that depends as well
on the network protocol, and the physical layer used for this
communication. These two values will be important for the
calculation of the optimized values of the historical function.

In addition to the nodes that are included in the HNoC, a
super master node will exist. This node will be the one which
will administer the minimum graphs that represents the path
used by each node to communicate with the other ones (as in
figure 3). The super master node will maintain the resulting
graph of all the existing communications between any two
nodes of the HNoC and also the execution times of each
processor. With this information, and according to a statistical
and heuristic function Υ, this node will generate an optimal
graph, probably different, for each node of the HNoC. These
graphs will be calculated based on the communications that
each node needs to make with any other one, its workbalance,
the value τ(pi), some historical values, ..., and they will be
calculated according to some algorithm of minimum path for
graphs (fig. 5). Knowing that all the weights of the vertices
and of the edges of the graph are allways positive values, we
could use algorithms based on Dijkstra [15] or Bellman-Ford
[16].

Fig. 5. HNoC formed by 5 processors, 4 nodes and 1 supermaster node. The
supernode contains a complete-graph with all the possibles communication
between each two nodes and the statistical value for the delays and effective
load of each processor. The other nodes are dedicated to realize the calculus
assigned by the supermaster node. Each of these nodes can play the roll
of a master, a slave or even a mixed solution. In this example we have
also to consider that all nodes contains the same information data. The
supermaster node will calculate the minimum graphs for each processor and
will communicate it to them. With these graphs, the other nodes know to
which one must it send the information data. Each processor can resend the
information to another node as a proxy.

In order to be able to reconfigure the HNoC the language
of communications will include control dataframes and data
dataframes. The data dataframes will contain the data needed
for the execution of the algorithm in the HNoC, whereas the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

696

5

control dataframes will be those with information about the
execution times and commands, and will be sent for knowing
what nodes have what information and what hierarchy exists
between the different nodes of the HNoC. This will be
possible by developing a monitoring layer that will advise the
supermaster node on each event that occurs in any node of the
HNoC.

The control dataframes will allow also, to any node, to join
or exit the farm of computers dynamically, sending a specific
command to the supermaster node, to be included on, or to be
deleted from the grouping. When a computer join the group,
the supermaster will calculate again the graph of minimum
paths for each node of the farm, in order to put in context
the new node with the rest of computers. This calculus will
be done with the new parameters of the system. When a node
leaves the grouping, it will advise the supermaster node and
this unregistration of the node from the farm will cause again
a reorganization of the nodes of the HNoC.

The main advantage of this system is to avoid that in the task
of designing a HNoC, the administrator must be the one that
design the architecture and topology of the HNoC in function
of the accesses that are needed depending on the problem to
study. Also to eliminate the necessity of distributing the re-
sources among the different nodes in function of the availables
resources.

REFERENCES

[1] R. Canal, J.M.l Parcerisa, and A. Gonzalez. Dynamic cluster assignment
mechanisms. In HPCA, pages 133–, 2000.

[2] R. Bhargava and L. John. Improving dynamic cluster assignment for
clustered trace cache processors. Technical report, 2003.

[3] K. Amiri, D. Petrou, G. Ganger, and G. Gibson. Dynamic function
placement in active storage clusters. Technical report, 1999.

[4] A. Lastovetsky. Scientific programming for heterogeneus systems -
bridging the gap between algorithms and applications. In PARELEC’06
IEEE Proceedings, pages 3–8, 2006.

[5] A. Lastovetsky and R Reddy. HeteroMPI: Towards a message-passing
library for heterogeneous networks of computers. Journal of Parallel
and Distributed Computing, 2005.

[6] M.O. Ball. Computing network reliability. 1979.
[7] J.S. Provan and M.O. Ball. The complexity of counting cuts and of

computing the probability that a graph is connected. SIAM Journal on
Computing, (12):777 – 788, 1983.

[8] J.Dongarra and A. Lastovetsky. An overview of heterogeneous high
performance and grid computing. American Scientific Publishers, 2006.

[9] David A. Bacigalupo, Stephen A. Jarvis, Ligang He, Daniel P. Spooner,
and Graham R. Nudd. Comparing layered queuing and historical
performance models of a distributed enterprise application. In IASTED
International Conference on Parallel and Distributed Computing and
Networks, pages 608–613, 2005.

[10] David A. Bacigalupo, Stephen A. Jarvis, Ligang He, D. Spooner, D. Pe-
lych, and Graham R. Nudd. A comparative evaluation of two techniques
for predicting the performance of dynamic enterprise systems. In
PARCO, pages 163–170, 2005.

[11] L. Kleinrock. Queuing Systems: Theory. Wiley, 1975.
[12] Bassel R. Arafeh, Khaled Day, and Abderezak Touzene. A paradigm

for allocating parallel application tasks to heterogeneous computing
resources on the grid. In PARCO, pages 41–48, 2005.

[13] B. Song, C. Ernemann, and R. Yahyapour. Parallel computer workload
modeling with markov chains. In Proceedings of the 10th Job Scheduling
Strategies for Parallel Processing (JSSPP), volume 3277, pages 47–62.
Lecture Notes in Computer Science, Springer-Verlag, 2004.

[14] D. Gross and C.M. Harris. Fundamentals on Queuing Theory. Wiley,
1998.

[15] Edsger. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[16] Richard Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87 – 90, 1958.


