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Abstract—In this paper; we are interested principally in dynamic 

modelling of quadrotor while taking into account the high-order 
nonholonomic constraints in order to develop a new control scheme 
as well as the various physical phenomena, which can influence the 
dynamics of a flying structure. These permit us to introduce a new 
state-space representation. After, the use of Backstepping approach 
for the synthesis of tracking errors and Lyapunov functions, a sliding 
mode controller is developed in order to ensure Lyapunov stability, 
the handling of all system nonlinearities and desired tracking 
trajectories. Finally simulation results are also provided in order to 
illustrate the performances of the proposed controller. 
 

Keywords—Dynamic modelling, nonholonomic constraints, 
Backstepping, Sliding mode. 

 

I. INTRODUCTION 
NMANNED aerial vehicles (UAV) have shown a 
growing interest thanks to recent technological 

projections, especially those related to instrumentation. They 
made possible the design of powerful systems (mini drones) 
endowed with real capacities of autonomous navigation at 
reasonable cost.   

Despite the real progress made, researchers must still deal 
with serious difficulties, related to the control of such systems, 
particularly, in the presence of atmospheric turbulences. In 
addition, the navigation problem is complex and requires the 
perception of an often constrained and evolutionary 
environment, especially in the case of low-altitude flights.   

Nowadays, the mini-drones invade several application 
domains [4]: safety (monitoring of the airspace, urban and 
interurban traffic); natural risk management (monitoring of 
volcano activities); environmental protection (measurement of 
air pollution and forest monitoring); intervention in hostile 
sites (radioactive workspace and mine clearance), 
management of the large infrastructures (dams, high-tension 
lines and pipelines), agriculture and film production (aerial 
shooting).   

In contrast to terrestrial mobile robots, for which it is often 
possible to limit the model to kinematics, the control of aerial 
robots (quadrotor) requires dynamics in order to account for 
gravity effects and aerodynamic forces [3]. 
 

H. Bouadi and M. Bouchoucha are with Control and Command 
Laboratory, EMP, BEB, 16111, Algiers, Algeria (e-mail: 
hakimusavj@yahoo.fr, mouloud_bouchoucha@yahoo.fr). 

M. Tadjine is with Electrical Engineering Department, ENP, 10, Ave 
Hassen Badi, BP.182, EL-Harrah, Algiers, Algeria (e-mail: tadjine@yahoo.fr). 

In [7], authors propose a control-law based on the choice of 
a stabilizing Lyapunov function ensuring the desired tracking 
trajectories along (X, Z) axis and roll angle. However, they do 
not take into account nonholonomic constraints. In [9], 
authors do not take into account frictions due to the 
aerodynamic torques nor drag forces or nonholonomic 
constraints. They propose a control-law based on 
backstepping in order to stabilize the complete system (i.e. 
translation and orientation). In [1], authors take into account 
the gyroscopic effects and show that the classical model-
independent PD controller can stabilize asymptotically the 
attitude of the quadrotor aircraft. Moreover, they used a new 
Lyapunov function, which leads to an exponentially 
stabilizing controller based upon the PD2 and the 
compensation of coriolis and gyroscopic torques. While in [2] 
the authors develop a PID controller in order to stabilize 
altitude.  

Others papers; presented the sliding mode and high-order 
sliding mode respectively like an observer [14] and [15] in 
order to estimate the unmeasured states and the effects of the 
external disturbances such as wind and noise. 

 In this paper, based on the vectorial model form presented 
in [2] we are interested principally in the modelling of 
quadrotor to account for various parameters which affect the 
dynamics of a flying structure such as frictions due to the 
aerodynamic torques, drag forces along (X, Y, Z) axis and 
gyroscopic effects which are identified in [2] for an 
experimental quadrotor and for high-order nonholonomic 
constraints [11]. Consequently, all these parameters supported 
the setting of the system under more complete and more 
realistic new state-space representation, which cannot be 
found easily in the literature being interested in the control 
laws synthesis for such systems.   

Then, we present a control technique based on the 
development and the synthesis of a control algorithm based 
upon sliding mode based on backstepping approach ensuring 
the locally asymptotic stability and desired tracking 
trajectories expressed in term of the center of mass 
coordinates along (X, Y, Z) axis and yaw angle, while the 
desired roll and pitch angles are deduced from nonholonomic 
constraints unlike to [9]. 

Finally all synthesized control laws are highlighted by 
simulations which gave results considered to be satisfactory. 
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II. MODELLING 

A.   Quadrotor Dynamic Modelling  
 

 
Fig. 1 Typical example of a quadrotor 

 
The quadrotor have four propellers in cross configuration. 

The two pairs of propellers (1,3) and (2,4) as described in Fig. 
2, turn in opposite directions. By varying the rotor speed, one 
can change the lift force and create motion. Thus, increasing 
or decreasing the four propeller’s speeds together generates 
vertical motion. Changing the 2 and 4 propeller’s speed 
conversely produces roll rotation coupled with lateral motion. 
Pitch rotation and the corresponding lateral motion; result 
from 1 and 3 propeller’s speed conversely modified. Yaw 
rotation is more subtle, as it results from the difference in the 
counter-torque between each pair of propellers.  

Let ( ), , ,E O X Y Z denote an inertial frame, and ( )', , ,B o x y z  
denote a frame rigidly attached to the quadrotor as shown in 
Fig. 2.    
 

 
 

Fig. 2 Quadrotor configuration 
 

We will make the following assumptions:   
• The quadrotor structure is rigid and symmetrical. 
• The center of mass and o’ coincides. 
• The propellers are rigid. 
• Thrust and drag are proportional to the square of the 

propellers speed.   
 
Under these assumptions, it is possible to describe the   

fuselage dynamics as that of a rigid body in space to which 
come to be added the aerodynamic forces caused by the 
rotation of the rotors. 

Using the formalism of Newton-Euler, the dynamic 
equations are written in the following form:   
 

( )
f t g

f a g

v
m F F F

R RS

J J

ξ

ξ

⎧ =
⎪

= + +⎪
⎨

= Ω⎪
⎪ Ω = −Ω∧ Ω+Γ −Γ −Γ⎩

                (1) 

ξ is the position of the quadrotor center of mass with respect 
to the inertial frame. m  is the total mass of the structure and 

3 3J R ×∈  is a symmetric positive definite constant inertia 
matrix of the quadrotor with respect to B .  
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x

y

z

I
J I

I

⎛ ⎞
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⎝ ⎠

                                  (2) 

 
 Ω is the angular velocity of the airframe expressed in B : 
 

   

1 0 sin
0 cos cos sin
0 sin cos cos

θ φ
φ θ φ θ
φ φ θ ψ

⎡ ⎤−⎛ ⎞
⎢ ⎥⎜ ⎟Ω = ⎢ ⎥⎜ ⎟

⎜ ⎟ ⎢ ⎥−⎝ ⎠ ⎣ ⎦

                    (3) 

 
  In the case when the quadrotor performs many angular 
motions of low amplitude Ω  can be assimilated 

to [ ]Tψθφ   . 
  R is the homogenous matrix transformation [12]. 
 

 
C C C S S S C C S C S S

R C S S S S C C S S C C S
S S C C C

θ ψ ψ θ φ ψ φ ψ θ φ ψ φ
θ ψ ψ θ φ ψ φ ψ θ φ ψ φ
θ φ θ φ θ

− +⎛ ⎞
⎜ ⎟= + −⎜ ⎟
⎜ ⎟−⎝ ⎠

          (4) 

 
  Where C and S indicate the trigonometrically functions cos 
and sin respectively. ( )S Ω is a skew-symmetric matrix; for a 

given vector [ ]T1 2 3  Ω = Ω Ω Ω it is defined as follows: 

( )
3 2

3 1

2 1

0
0

0
S

−Ω Ω⎛ ⎞
⎜ ⎟Ω = Ω −Ω⎜ ⎟
⎜ ⎟−Ω Ω⎝ ⎠

 

  fF   is the resultant of the forces generated by the four rotors. 
 

4

1

cos cos sin sin sin
cos sin sin sin cos

cos cos
f i

i
F F

φ ψ θ φ ψ
φ θ ψ φ ψ

φ θ =

+⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑  (5) 

           2
i p iF K ω=                             (6)                   
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Where pK is the lift coefficient and iω is the angular rotor 

speed. 
 tF  is the resultant of the drag forces along ( , ,X Y Z ) axis. 

         

0 0
0 0
0 0

ftx

t fty

ftz

K
F K

K
ξ

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟−⎝ ⎠

                (7) 

Such as ,ftx ftyK K and ftzK  are the translation drag 
coefficients.  
 gF is the gravity force. 

[ ]T0 0 -gF mg=                              (8)                          

  fΓ is the moment developed by the quadrotor according to 

the body fixed frame. It is expressed as follows: 

           

( )
( )

( )

3 1

4 2

2 2 2 2
1 2 3 4

f

d

d F F
d F F

K ω ω ω ω

⎡ ⎤−
⎢ ⎥

Γ = −⎢ ⎥
⎢ ⎥

− + −⎢ ⎥⎣ ⎦

                     (9) 

d is the distance between the quadrotor center of mass and 
the rotation axis of propeller and dK is the drag coefficient. 

  aΓ is the resultant of aerodynamics frictions torques. 

              
2

0 0
0 0
0 0

fax

a fay

faz

K
K

K

⎡ ⎤
⎢ ⎥Γ = Ω⎢ ⎥
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                    (10) 

,fax fayK K and fazK are the frictions aerodynamics 
coefficients. 

gΓ is the resultant of torques due to the gyroscopic effects. 
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∑                     (11) 

Such as rJ  is the rotor inertia. 
Consequently the complete dynamic model which governs 

the quadrotor is as follows:   
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With 1 2 3, ,U U U and 4U  are the control inputs of the system 
which are written according to the angular velocities of the 
four rotors as follows: 
 

2
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and      
                  ( )1 2 3 4ω ω ω ωΩ = − + −  

 
B.  Nonholonomic Constraints 
Taking into account nonholonomic constraints for our 

system is of major importance as are in compliance with 
physical laws and define the coupling between various states 
of the system.   

From the equations of the translation dynamics (12) we can 
extract the expressions of the high-order nonholonomic 
constraints:   
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   (14) 

       
C.   Rotor Dynamic 
The rotor is a unit constituted by D.C-motor actuating a 

propeller via a reducer. The D.C-motor is governed by the 
following dynamic equations:   
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2

e

m r s r

diV ri L k
dt

dk i J C k
dt

ω

ω ω

⎧ = + +⎪⎪
⎨
⎪ = + +
⎪⎩

                    (15)  

 
The different parameters of the motor are defined such:   

 V  : motor input. 
 ,e mk k  : electrical and mechanical torque constant 
respectively. 

rk :  load constant torque. 
r  : motor internal resistance. 

rJ  : rotor inertia. 

 sC : solid friction. 
Then, the model chosen for the rotor is as follows:   

        2
0 1 2i i i ibVω β β ω β ω= − − −                (16) 

        [ ]1, 4i∈  
with: 

0 1 2, ,  and s e m mr

r r r r

C k k kk b
J rJ J rJ

β β β= = = =  

III. SLIDING MODE CONTROL OF THE QUADROTOR 
The choice of this method is not fortuitous considering the 

major advantages it presents: 
− It ensures Lyapunov stability. 
− It ensures the robustness and all properties of the 

desired dynamics. 
− It ensures the handling of all system 

nonlinearities. 
The model (12) developed in the first part of this paper can be 
rewritten in the state-space form: 

( ) ( ),X f X g X U δ= + +  and [ ]T1 12...X x x= is the state vector 

of the system such as: 
T

, , , , , , , , , , ,X x x y y z zφ φ θ θ ψ ψ⎡ ⎤= ⎣ ⎦               (17)                                         

From (12) and (17) we obtain the following state 
representation: 
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The state representation of the system under this form has 

never been developed before. 
From high-order nonholonomic constraints developed in 

(14), roll (φ ) and pitch (θ ) angles depend not only on the 
yaw angle (ψ ) but also on the movements along ( , ,X Y Z ) 
axis and their dynamics. However the adopted control strategy 
is summarized in the control of two subsystems; the first 
relates to the position control while the second is that of the 
attitude control as shown it below the synoptic scheme:   
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Fig. 3 Synoptic scheme of the proposed controller 
 

In this section we develop a sliding mode controller for the 
quadrotor based on Backstepping approach using the 
technique presented in [13]. 
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Using the backstepping approach as a recursive algorithm 
for the control-laws synthesis, we simplify all the stages of 
calculation concerning the tracking errors and Lyapunov 
functions in the following way: 
 

{ }
( ) ( ) ( ) { }1 1 1
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      (21) 
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             (22) 

The choice of the sliding surfaces is based upon the 
synthesized tracking errors which permitted us the synthesis 
of stabilizing control laws, so from (21) we define:          
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Such as ,  ,  ,  ,   and x y zS S S S S Sφ θ ψ are the dynamic 

sliding surfaces. 
To synthesize a stabilizing control law by sliding mode, the 

necessary sliding condition ( 0SS < ) must be verified; so the 
synthesized stabilizing control laws are as follows: 
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Such as ( ) 2,i iq k +∈ . 

Proof  
 
We know a priori from (21) and (22) that: 
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And from (23): 
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The chosen law for the attractive surface is the time 

derivative of (26) satisfying ( )0S Sφ φ < : 
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As for the Backstepping approach, the control input U2 is 
extracted: 
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The same steps are followed to 
extract 3 4 1,  ,  ,   and x yU U U U U . 
 

IV. SIMULATION RESULTS 
The simulation results are obtained based on the following 

real parameters [2]: 
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Fig. 4 Global tracking trajectory of the quadrotor by sliding mode 
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                             (a)                                           (b) 

 
                               (c)                                           (d) 

Fig. 5 Tracking simulation results of the desired trajectories along 

yaw angle (ψ ) and ( ), ,X Y Z axis 

 
                              (a)                                           (b) 
 

 
                              (c)                                           (d) 

Fig. 6 Tracking errors according yaw (ψ ) angle and ( ), ,X Y Z  

respectively 
 

Fig. 4 shows the tracking of desired trajectory by the real 
one and the evolution of the quadrotor in space and its 
stabilization.  

Fig. 5 highlights the tracking of the desired trajectories 
along yaw angle (ψ ) and (X, Y, Z) axis respectively. The 
response time of the system is about 3s and the tracking in 
yaw presents a rather weak permanent error when the desired 
trajectory is dynamic.  

Fig. 6 represents the errors made on the desired trajectory 
tracking.   

V.  CONCLUSION 

In this paper, we presented stabilizing control laws 
synthesis by sliding mode based on backstepping approach. 
Firstly, we start by the development of the dynamic model of 
the quadrotor taking into account the different physics 
phenomena which can influence the evolution of our system 
in the space and secondly by the development of the high-
order nonholonomic constraints imposed to the system 
motions; this says these control laws allowed the tracking of 
the various desired trajectories expressed in term of the center 

of mass coordinates of the system in spite of the complexity of 
the proposed model. As prospects we hope to develop other 
control techniques in order to improve the performances and 
to implement them on a real system. 
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