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The partial non-combinatorially symmetric
N 1

0 -matrix completion problem
Gu-Fang Mou and Ting-Zhu Huang

Abstract—An n×n matrix is called an N1
0 -matrix if all principal

minors are non-positive and each entry is non-positive. In this
paper, we study the partial non-combinatorially symmetric N1

0 -matrix
completion problems if the graph of its specified entries is a transitive
tournament or a double cycle. In general, these digraphs do not have
N1

0 -completion. Therefore, we have given sufficient conditions that
guarantee the existence of the N1

0 -completion for these digraphs.
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I. INTRODUCTION

An n × n real matrix is called an N1
0 -matrix if all its

principal minors are non-positive and each entry is non-
positive (see, e.g. [2], [3]). Obviously, the diagonal entries
of N1

0 -matrix are non-positive.
The submatrix of a matrix A, of size n × n, lying in rows

α and columns β, α, β ⊆{1, 2,. . . ,n}, is denoted by A[α|β],
and the principal submatrix A[α|α] is abbreviated to A[α].

Proposition 1.1. Let A be an N1
0 -matrix. Then

(1) If P is a permutation matrix, then PAPT is an N1
0 -

matrix;
(2) If D is a positive diagonal matrix, then DA, DA is an

N1
0 -matrix;
(3) Any principal submatrix of A is an N1

0 -matrix.

A partial matrix is an array in which some entries are
specified, while others are free to be chosen from a certain
set. A partial matrix is said to be a partial N1

0 -matrix if every
completely specified principal submatrix is an N1

0 -matrix.
Matrix completion problems ask which partial matrices

have completions to a conventional matrix that has a desired
property. Matrix completion problems have been studied for
many classes of matrices, such as P -matrices [4], [5], [6],
P0-matrices [7], [8], M -matrices [9], inverse M -matrices [9],
[10], [11] and N -matrices [12], [13], [14]. In this paper, we
will study the partial N1

0 -matrix completion problem in which
all diagonal entries are prescribed.

A natural way to describe an n × n partial matrix A is
via a graph GA = (V, E), where the set of vertices V is
{1, 2, . . . , n} and {i, j}, i �= j, is an edge or arc when the (i, j)
entry is specified. A general graph allows multiple edges or
loops. A simple graph is a graph that does not multiple edges
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or loops. A digraph allows loops (but not multiple copies of
the same arc). A digraph is symmetric if whenever (i, j) is
an arc, then (j, i) is an arc. If a digraph has the property
that for each pair (i, j) of distinct vertices, at most one of
(i, j) and (j, i) is an arc, then the digraph is an underlying
graph. A tournament is defined as a digraph such that for
every pair (i, j) of distinct vertices, exactly one of (i, j) and
(j, i) is arc. A tournament is transitive if whenever (i, j)
and (j, k) are arcs of T then (i, k) is also an arc. A path
is a sequence of edges {i1, i2}, {i2, i3}, . . . , {ik−1, ik} in
which all vertices are distinct. A cycle is a closed path, that
is, a path in which the first and the last vertices coincide.
A semi-cycle is a directed graph whose underlying graph is
a cycle. A double cycle is a graph formed by two cycles
{i1, i2}, {i2, i3}, . . . , {ip−1, ip}, {ip, ip+1}, . . . , {ip+q−1},
{ip+q}, {ip+q, ip+q+1}, . . . , {ip+q+k−1}, {ip+q+k} and {ip},
{ip+1}, . . ., {ip+q−1}, {ip+q}, {ip+q}, {is}, {is}, {is+1},
. . . , {is+r−1}, {is+r}, {is+r}, {ip}, in which all vertices are
distinct, being q ≥ 0. If q = 0, we have a double cycle
with a vertex in common. If q ≥ 1, we have a double
cycle with q arcs in common (see [13]). A generalized cycle
is the disjoint union of one or more cycles. The length of
a path or cycle is the number of arcs. The cycle product
in A of a cycle {i1, i2}, {i2, i3}, . . . , {ik−1, ik}, ik}, i1} in
GA is {ai1 , ai2}, {ai2 , ai3}, . . . , {aik−1 , aik

}, aik
}, ai1}, and

a generalized cycle product in A is the product of the cycle
products corresponding to the cycles in the generalized cycle.

A graph without simple cycles of length greater than or
equal to four is called to be chordal, A nonempty subset
C ⊂ V is called a clique of G if {x, y} ∈ E for all distinct
x, y ∈ C. The clique M is called a maximal clique if M
is not a proper subset of any clique. If G1 is the clique,
denoted by Kq and G2 is any chordal graph containing the
clique, denoted by Kp, p < q, then the clique sum of G1 and
G2 along Kp is also chordal. The cliques that are used to
build chordal graphs are the maximal cliques of the resulting
chordal graph and the cliques along which the summing
takes place are the so-called minimal vertex separators of the
resulting chordal graph. If the maximum number of vertices
in a minimal vertex separator is k, then the chordal graph is
said to be k-chordal.

An n×n partial matrix A = (aij) is called combinatorially
symmetric if aij �= 0 if and only if aji �= 0 and non-
combinatorially symmetric matrix in other cases. As all di-
agonal entries are specified, we omit loops. A combinatorially
symmetric matrix has a symmetric zero-nonzero pattern and
a non-combinatorially symmetric zero-nonzero patterns in
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other cases. When the pattern is combinatorially symmetric,
an undirected graph can be used. And non-combinatorially
symmetric zero-nonzero pattern of entries can be described
by a digraph whose has an arc if an entry is nonzero. The
non-combinatorially symmetric matrices completion problems
have been studied in [13], [16]. And the non-combinatorially
symmetric N -matrix completion problem has been studied
if the graph of its specified entries is an acyclic graph or
a double cycle in [13]. The combinatorially symmetric N1

0 -
matrix completion was studied in [1]. In this paper we will
work on non-combinatorially symmetric partial matrices and
therefore with directed graphs.

Throughout the paper we denote the entries of a partial
matrix A as follows: aij denotes a specified entry, and the
entry xij an unspecified entry, 1 ≤ i, j ≤ n. The entry cij

denotes a value assigned to the unspecified entry xij during
the process of completing a partial matrix.

In section 2 we show the N1
0 -matrix completion if the graph

of its specified entries is a transitive tournament. In the section
3 we obtain the partial N1

0 -matrices completion under given
sufficient conditions assumptions if the graph of its specified
entries is a double cycle.

II. THE N1
0 -MATRIX COMPLETIONS FOR TRANSITIVE

TOURNAMENT

In this section we prove that the N1
0 -matrix completion if

the graph of its specified entries is a transitive tournament.

Property 2.1 [17]. A tournament G is a transitive if and
only if G has no cycle.

Property 2.2. Let A be an n×n partial non-combinatorially
symmetric N1

0 -matrix if the graph of its specified entries is a
transitive tournament, then A can be obtained a permutation
matrix P such that Ã = PAPT has the lower triangle part
totally unspecified and the upper triangle part completely
specified.

Property 2.3. Let A be an n × n real matrix and GA is a
graph corresponding to A, then

det A = (−1)n
h∑

j=1

(−1)nj�j ,

where h is the number of generalized cycle via all vertices of
GA, nj is the number of simple cycles of the jth generalized
cycle in GA and �j is generalized cycle product in A of the
jth generalized cycle.

Theorem 2.4. Every n × n non-combinatorially symmetric
partial N1

0 -matrix with all specified off-diagonal entries
non-positive has N1

0 -matrix completion if the graph of its
specified entries is a transitive tournament.

Proof. Let A be an n × n partial non-combinatorially
symmetric N1

0 -matrix if the graph of its specified entries is
a transitive tournament. According to Property 2.2, Ã has the
following form:

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−a11 −a12 · · · −a1,n−1 −a1n

−x21 −a22 · · · −a2,n−1 −a2n

−x31 −x32 · · · −a3,n−1 −a3n

...
...

. . .
...

...
−xn−1,1 −xn−1,2 · · · −an−1,n−1 −an−1,n

−xn1 −xn1 · · · −xn,n−1 −ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where aij ≥ 0 for any i, j ∈ {1, 2, . . . , n} such that j > i and
aii ≥ 0 (i = 1, 2, . . . , n) .

We are going to choose that all xij = t for any i ∈
{2, 3, . . . , n} and any j ∈ {1, 2, . . . , n − 1} such that i > j.
For t > 0 and large enough, consider the completion

Ãt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−a11 −a12 · · · −a1,n−1 −a1n

−t −a22 · · · −a2,n−1 −a2n

−t −t · · · −a3,n−1 −a3n

...
...

. . .
...

...
−t −t · · · −an−1,n−1 −an−1,n

−t −t · · · −t −ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

of Ã. We will prove that Ã is a N1
0 -matrix. Let α ⊆ 1, 2, . . . , n

and |α| = k, (1 ≤ k ≤ n), According to Property 2.3,
det Ãt[α] is a polynomial of t with the term −a1ntk−1. Thus,
we may make t large enough such that det Ãt[α] ≤ 0.

III. THE N1
0 -MATRIX COMPLETIONS FOR DOUBLE CYCLE

In this section we will show that the partial N1
0 -matrices

completion under given sufficient conditions assumptions if
the graph of its specified entries is a double cycle.

Lemma 3.1. Let A be an 3 × 3 non-combinatorially
symmetric partial N1

0 -matrix whose digraph is a cycle and
A satisfies the condition: the generalized cycle product
a11a22a33 is equal to the cycle product a12a23a31. Then,
there exits an N1

0 -matrix completion of A.

Proof. Without loss of generality, we may assume an 3× 3
partial non-combinatorially symmetric N1

0 -matrix is

A =

⎛
⎝ −a11 −a12 −x13

−x21 −a22 −a23

−a31 −x32 −a33

⎞
⎠ ,

whose graph of its specified entries is a cycle, where each
aij(i, j = 1, 2, 3) is nonnegative.

Our aim is to prove the existence of nonnegative c13, c21

and c32 such that the completion

Ac =

⎛
⎝ −a11 −a12 −c13

−c21 −a22 −a23

−a31 −c32 −a33

⎞
⎠ ,

is N1
0 .

We will consider the following four cases:
Case 1: a11 �= 0, a22 �= 0, a33 �= 0.
If we choose c13 = a12a23(a22)−1 ≥ 0, c21 =

a23a31(a33)−1 ≥ 0 and c32 = a31a12(a11)−1 ≥ 0, then
det Ac{1, 2} = 0,det Ac{2, 3} = 0,det Ac{1, 3} = 0 and
det Ac = 0 according to a11a22a33 = a12a23a31.
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Case 2: a11 = 0, a22 �= 0, a33 �= 0.
If we choose c13 = a12a23(a22)−1 ≥ 0, c21 =

a23a31(a33)−1 ≥ 0 and c32 ≥ 0 and large enough, then Ac is
an N1

0 -matrix according to a11a22a33 = a12a23a31.
Case 3: a11 = 0, a22 = 0, a33 �= 0.
If we choose c21 = a23a31(a33)−1 ≥ 0 and c13, c21 ≥

0 and large enough, then Ac is an N1
0 -matrix according to

a11a22a33 = a12a23a31.
Case 4: a11 = 0, a22 �= 0, a33 = 0.
If we choose c21, c32 ≥ 0 and c13 ≥ 0 and large enough,

then Ac is an N1
0 -matrix.

Case 5: a11 = 0, a22 = 0, a33 = 0.
If we choose c13, c21, c32 ≥ 0 and large enough, then Ac is

an N1
0 -matrix according to Property 2.3.

Lemma 3.2. Let A be an 3 × 3 non-combinatorially
symmetric partial N1

0 -matrix whose digraph is a double
cycle with a common arc and A satisfies the condition: the
generalized cycle product a11a22a33 is equal to the cycle
product a12a23a31. Then, there exits an N1

0 -matrix completion
of A.

Proof. Let A be an 3 × 3 partial non-combinatorially
symmetric N1

0 -matrix if the graph of its specified entries is
a double cycle.

A =

⎛
⎝ −a11 −a12 −a13

−x21 −a22 −a23

−a31 −x32 −a33

⎞
⎠ ,

where each aij(i, j = 1, 2, 3) is nonnegative.
Our aim is to prove the existence of nonnegative c21 and

c32 such that the completion

Ac =

⎛
⎝ −a11 −a12 −a13

−c21 −a22 −a23

−a31 −c32 −a33

⎞
⎠ ,

is an N1
0 -matrix.

We will consider the following four cases:
Case 1: a11 �= 0, a33 �= 0.
If we choose c21 = a23a31(a33)−1 ≥ 0 and c32 =

a31a12(a11)−1 ≥ 0, then det Ac{1, 2} = 0,det Ac{2, 3} = 0
and detAc = 0 according to a11a22a33 = a12a23a31.

Case 2: a11 = 0, a33 �= 0.
If we choose c21 = a23a31(a33)−1 ≥ 0 and c32 ≥ 0 and

large enough, then Ac is an N1
0 -matrix.

Case 3: a11 = 0, a33 = 0.
If we choose c32, c21 > 0 and large enough, then Ac is an

N1
0 -matrix.
Lemma 3.3. Let A be an 4 × 4 non-combinatorially

symmetric partial N1
0 -matrix whose digraph is a double cycle

with a common arc and A satisfies the following conditions:
the generalized cycle product a22a33a44 is equal to the cycle
product a23a34a41 and a11 = 0 or the generalized cycle
product a11a22a33 is equal to the cycle product a12a23a31

and generalized cycle product a22a33a44 is equal to the
cycle product a23a34a42. Then, there exits an N1

0 -matrix
completion of A.

Proof. Let A be an 4 × 4 partial non-combinatorially
symmetric N1

0 -matrix if the graph of its specified entries is
a double cycle. By permutation we only need to consider the
following two cases.

(i) The partial N1
0 -matrix is

A =

⎛
⎜⎜⎝

0 −a12 −x13 −x14

−x21 −a22 −a23 −x24

−x31 −x32 −a33 −a34

−a41 −x42 −a43 −a44

⎞
⎟⎟⎠ ,

where each aij(i, j = 1, 2, 3, 4) is nonnegative.
Our aim is to prove the existence of nonnegative

c13, c14, c21, c24 and c42 such that the completion

Ac =

⎛
⎜⎜⎝

0 −a12 −c13 −c14

−c21 −a22 −a23 −c24

−c31 −c32 −a33 −a34

−a41 −c42 −a43 −a44

⎞
⎟⎟⎠

is an N1
0 -matrix.

We will consider the following four cases:
Case 1: a33 �= 0, a44 �= 0.
We may choose c42 = a41, c24 = a23a34(a33)−1 ≥ 0

and c32 = a34a41(a44)−1 ≥ 0. According to a22a33a44 =
a23a34a41, we can prove det Ac{2, 4} = 0,det Ac{2, 3} = 0
and det Ac{2, 3, 4} = a22 det Ac{3, 4} ≤ 0, then Ac{2, 3, 4}
is an N1

0 -matrix. We can choose c13 = c14 = c21 = c31 = 0
and easily prove Ac is an N1

0 -matrix.
Case 2: a33 = 0, a44 �= 0.
We may choose c42 = a41, c32 = a34a41(a44)−1 ≥ 0,

c13 = c14 = c21 = c31 = 0 and c24 ≥ 0 and large enough.
According to a22a33a44 = a23a34a41 and Property 2.3, we
can easily prove Ac is an N1

0 -matrix.
Case 3: a33 �= 0, a44 = 0.
We may choose c42 = a41, c24 = a23a34(a33)−1 ≥ 0,

c13 = c14 = c21 = c31 = 0 and c32 ≥ 0 and large enough.
According to a22a33a44 = a23a34a41 and Property 2.3, we
can easily prove Ac is an N1

0 -matrix.
Case 4: a33 = 0, a44 = 0.
If we choose c13 = c14 = c21 = c31 = 0, then Ac is an

N1
0 -matrix.
(ii) The partial N1

0 -matrix is

A =

⎛
⎜⎜⎝

−a11 −a12 −x13 −x14

−x21 −a22 −a23 −x24

−a31 −x32 −a33 −a34

−x41 −a42 −x43 −a44

⎞
⎟⎟⎠ ,

where each aij(i, j = 1, 2, 3, 4) is nonnegative.
According to Lemma 3.1, Ac[{1, 2, 3}] and Ac[{2, 3, 4}]

may be completed N1
0 -matrices. Thus, we can obtain the

partial N1
0 -matrix

A1 =

⎛
⎜⎜⎝

−a11 −a12 −c13 −x14

−c21 −a22 −a23 −c24

−a31 −c32 −a33 −a34

−x41 −a42 −c43 −a44

⎞
⎟⎟⎠

whose graph is 2-chordal.
We will consider the following two cases:
Case 1: a44 �= 0.
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We can choose c32 = a34a42(a44)−1 ≥ 0, then A1[{2, 3}]
is singular according to a22a33a44 = a23a34a42. A1 can be
completed N1

0 -matrix using the Lemma 2.2 of [13].
Case 2: a44 = 0.
We can choose c32 ≥ 0 and large enough, then A1[{2, 3}]

is nonsingular. A1 can be completed N1
0 -matrix using the

Lemma 2.3 and Lemma 2.4 of [13].
Theorem 3.4. Let A be an n × n (n ≥ 3) non-

combinatorially symmetric partial N1
0 -matrix whose digraph

is a double cycle with a common arc. Then, there exits an
N1

0 -matrix completion of A.

Proof. The proof is by induction on n, the case in which
n = 3, 4 are shown in the proof of Lemma 3.2, 3.3, assume
true for n−1. By permutation, we can assume that the double
cycles are Γ1 : {1, 2}, {2, 3}, . . . , {k, k + 1}, {k + 1, 1} and
{k, k+1}, {k+1, k+2}, . . . , {n−1, n}, {n, k}, with k+1 ≥
n − k + 1, and the partial N1

0 -matrix has the form

A =
(

A11 A12

A21 A22

)
,

where

A11 =

⎛
⎜⎜⎜⎝

−a11 −a12 · · · −x1k −x1,k+1

−x21 −a22 · · · −x2k −x2,k+1

...
... · · ·

...
...

−xk1 −xk2 · · · −akk −ak,k+1

−ak+1,1 −xk+1,2 · · · −xk+1,k −ak+1,k+1

⎞
⎟⎟⎟⎠ ,

A12 =

⎛
⎜⎜⎜⎝

−x1,k+2 · · · −x1n

−x2,k+2 · · · −x2n

... · · ·
...

−xk,k+2 · · · −xkn

−xk+1,k+2 · · · −xk+1,n

⎞
⎟⎟⎟⎠ ,

A21 =

⎛
⎝ −xk+2,1 −xk+2,2 · · · −xk+2,k −xk+2,k+1

...
... · · ·

...
...

−xn1 −xn2 · · · −ank −xn,k+1

⎞
⎠ ,

A22 =

⎛
⎝ −ak+2,k+2 · · · −xk+2,n

... · · ·
...

−xn,k+2 · · · −ann

⎞
⎠ .

We will choose xk+1,2 = ak+1,1 and denote the resulting
partial matrix by A1. A1[{2, 3, . . . , n}] is an (n−1)× (n−1)
partial N1

0 -matrix whose associated graph is a double cycle
with a common arc. By the induction hypothesis there exists
an N1

0 -matrix completion C of A1[{2, 3, . . . , n}]. We consider
the completion Ac of A obtained by replacing the principle
submatrix A[{2, 3, . . . , n}] by C and by choosing x1j(j =
3, 4, . . . , n) and xi1(i = 3, 4, . . . , n) according to Theorem
3.3 of [1]. By applying Proof of Theorem 3.3 in [1], Ac is an
N1

0 -matrix.
In addition, we will prove that non-combinatorially

symmetric partial N1
0 -matrix whose associated digraph is a

double cycle with h common arcs, h > 1.

Lemma 3.5. Let A be an 4 × 4 non-combinatorially
symmetric partial N1

0 -matrix whose digraph is a double

cycle with two common arcs and A satisfies the following
conditions: the generalized cycle product a22a33a44 is equal
to the cycle product a23a34a42 and a11 = 0. Then, there exits
an N1

0 -matrix completion of A.

Proof. Let A be an 4 × 4 partial non-combinatorially
symmetric N1

0 -matrix if the graph of its specified entries is
a double cycle with two common arcs.

The partial N1
0 -matrix is

A =

⎛
⎜⎜⎝

0 −a12 −x13 −x14

−x21 −a22 −a23 −x24

−x31 −x32 −a33 −a34

−a41 −a42 −x43 −a44

⎞
⎟⎟⎠ ,

where each aij(i, j = 1, 2, 3, 4) is nonnegative.
Our aim is to prove the existence of nonnegative

c13, c14, c21, c24, c31, c32 and c43 such that the completion

Ac =

⎛
⎜⎜⎝

0 −a12 −c13 −c14

−c21 −a22 −a23 −c24

−c31 −c32 −a33 −a34

−a41 −a42 −c43 −a44

⎞
⎟⎟⎠

is N1
0 -matrix.

We will consider the following four cases:
Case 1: a22 �= 0, a33 �= 0, a44 �= 0.
We may choose c24 = a23a34(a33)−1 ≥ 0, c32 =

a34a42(a44)−1 ≥ 0 and c43 = a42a23(a22)−1 ≥ 0. By ap-
plying the Case 1 of Lemma 3.1 and a22a33a44 = a23a34a41,
we can easily prove Ac[{2, 3, 4}] is an N1

0 -matrix. We can
choose c13 = c14 = c21 = c31 = 0 and easily prove Ac is an
N1

0 -matrix.
Case 2: a22 = 0, a33 �= 0, a44 �= 0.
We may choose c24 = a23a34(a33)−1 ≥ 0, c32 =

a34a42(a44)−1 ≥ 0, c13 = c14 = c21 = c31 = 0 and c43 ≥ 0
and large enough. According to a22a33a44 = a23a34a41 and
Property 2.3, we can easily prove Ac is an N1

0 -matrix.
Case 3: a22 = 0, a33 �= 0, a44 = 0.
We may choose c24 = a23a34(a33)−1 ≥ 0, c13 = c14 =

c21 = c31 = 0 and c32, c43 ≥ 0 and large enough. According
to a22a33a44 = a23a34a41 and Property 2.3, we can easily
prove Ac is an N1

0 -matrix.
Case 4: a22 = 0, a33 = 0, a44 = 0.
If we choose c13 = c14 = c21 = c31 = 0, then Ac is an

N1
0 -matrix.

Theorem 3.6. Let A be an n × n(n ≥ 4) non-
combinatorially symmetric partial N1

0 -matrix whose digraph
is a double cycle with h(h ≥ 2) common arcs. Then, there
exits an N1

0 -matrix completion of A.

Proof. The proof is by induction on n, the case in which
n = 4 are shown in the proof of Lemma 3.6, assume true
for n − 1. By permutation, we can assume that the double
cycles are Γ1 : {1, 2}, {2, 3}, . . . , {k, k + 1}, . . . , {k + h −
1, k + h}, {k + h, 1} and Γ2 : {k, k + 1}, . . . , {k + h− 1, k +
h}, {k + h, k + h + 1}, . . . , {n − 1, n}, {n, k}, with h ≥ 2,
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and the partial N1
0 -matrix has the following form

A =
(

A11 A12

A21 A22

)
,

where

A11 =

⎛
⎜⎜⎝

−a11 −a12 · · · −x1k

−x21 −a22 · · · −x2k

...
... · · ·

...
−xk1 −xk2 · · · −akk

⎞
⎟⎟⎠ ,

A12 =

⎛
⎜⎜⎝

−x1,k+1 · · · −x1,k+h · · · −x1n

−x2,k+1 · · · −x2,k+h · · · −x2n

... · · ·
... · · ·

...
−ak,k+1 · · · −xk,k+h · · · −xkn

⎞
⎟⎟⎠ ,

A21 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−xk+1,1 −xk+1,2 · · · −xk+1,k

...
... · · ·

...
−ak+h,1 −xk+h,2 · · · −xk+h,k

−xk+h+1,1 −xk+h+1,2 · · · −xk+h+1,k

...
... · · ·

...
−xn1 −xn2 · · · −ank

⎞
⎟⎟⎟⎟⎟⎟⎠

,

A22 =

⎛
⎜⎜⎜⎝

−ak+1,k+1 · · · −xk+1,k+h · · · −xk+1,n

−xk+h,k+1 · · · −xk+h,k+h · · · −xk+h,n

−xk+h+1,k+1 · · · −xk+h+1,k+h · · · −xk+h+1,n

... · · ·
... · · ·

...
−xn,k+1 · · · −xn,k+h · · · −ann

⎞
⎟⎟⎟⎠ .

We will choose xk+h,2 = ak+h,1 and denote the resulting
partial matrix by A1. A1[{2, 3, . . . , n}] is an (n−1)× (n−1)
partial N1

0 -matrix whose associated graph is a double cycle
with h(h > 2) common arcs. By the induction hypothesis
there exists an N1

0 -matrix completion C of A1[{2, 3, . . . , n}].
We consider the completion Ac of A obtained by replacing the
principle submatrix A[{2, 3, . . . , n}] by C and by choosing
x1j(j = 3, 4, . . . , n) and xi1(i = 3, 4, . . . , n) according to
Theorem 3.3 of [1]. Using Proof of Theorem 3.3 of [1], it
follows that Ac is an N1

0 -matrix.
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