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Abstract—Various methods of geofield parameters restoration (by 

algebraic polynoms; filters; rational fractions; interpolation splines; 
geostatistical methods – kriging; search methods of nearest points – 
inverse distance, minimum curvature, local – polynomial 
interpolation; neural networks) have been analyzed and some 
possible mistakes arising during geofield surface modeling have been 
presented.  
 

Keywords— interpolation methods, geofield parameters, neural  
                     networks.  

I.INTRODUCTION 

OR many problems in sciences on Earth (geodesy, 
geology, geophysics, cartography, photogrammetry, etc.) 

the problem of modeling the geofields surface (height, depth, 
pressure, temperature, pollution factor, etc.), that is usually 
displayed on maps by means of isolines, is urgent. If 
represertation  of  geofields  surface  is  possible  as  the  

function  of  two  variables h=f (x, y), which has values iĥ  at 

(xi, yi), (i = n,1 ) peaks, the digital model of this function is 
necessary for computer processing and storage. 

We are going to consider the digital model of geofield 
(DMG) as a set of digital values of continuous objects in 
cartography (e.g. height of a relief) for which their spatial 
coordinates and the mean of structural description are 
specified. It will allow calculating the values of geofield in the 
given area. The important part of any DMG is the method of 
interpolating of its surface. For this, various ways of 
interpolation yield various results which can be estimated only 
from the point of view of practical applications.  [1 - 12]. 

Since observations practically always have discrete 
character, so constructing maps is connected with necessity of 
solving geofield parameters continuous restoration task.  
    At the same time the task of geofield parameters restoration 
is far from being simple. So, if networks of supervision are 
essentially irregular, then it is necessary to obtain optimum 
decision. Therefore there was an expediency of creation of the 
automated databanks of various (geofield restoration) methods 
and their parameters mapping [2]. 

At present, more than ten methods of surface interpolation 
are known. They are the following; algebraic and orthogonal 
polynoms, filters, rational fractions; in some cases they take 
functions satisfying some apriori given conditions (e.g. 
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positivity of f (x, y)) values; multi squardrik function, at 
which approximation is reached by means of square functions 
(squardrik), representing hyperboles; splines; geostatic 
methods (kriging), search methods of nearest points (inverse 
distance, minimum curvature, local – polynomial 
interpolation) etc. However, none of them is completely 
universal [1- 12]. 

II. PROBLEM FORMULATION AND SOLUTION 
 
The use of statistical probability methods, such as the least-

squares method, requires preliminary analysis of the data for 
normality of the sample distribution. A normality check 
assumes that the following four conditions are satisfied. 

 
1. The intervals σσ 2, ±± xx x and σ3±x must 

contain 68, 95, and 100%, respectively, of the sample values 
x  is the mean and о is the standard deviation). 

2. The coefficient of variation V must not exceed 33%. 
3. The kurtosis xE  and the asymmetry coefficient kS  

must be close to zero. 
4. Mx ≈ . where M is the sample median. 
 
The analysis data [5], are used to model (1), showed that 

distribution has contradicted the normality assumption (Table 
1). 

It must be noted that in the early stage modeling of 
geofield, the data are not only limited and uncertain. It is 
therefore necessary to identify the parameters of a 
mathematical model of a multivariate object described by the 
regression equation. 

 

 
We shall determine the fuzzy values of the parameters of 

equation (1) using experimentally statistical data of the 
process, i.e., the input yx ,  and output  H  coordinates of 

the model. Let us consider a solution of this problem using 
neural networks [13, 14]. 

Neural Network: A neural network consists of 
interconnected sets of neurons. When a neural network is used 
to solve equation (1), the input signals of the network are the 
values of the variable ),,( yxB=  and the output is H. The 

values of the parameters are the network parameters.  Neural-
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network training is the principal task in solving the problem of 
identification of the parameters of equation (1). We assume 
the presence of experimentally obtained fuzzy statistical data 
(see Table 1). From the input and output data, we compose 
training pairs for the network ),( TB . To construct a model of 

a process, the input signals B are fed to the neural network 
input (Fig.1); the output signals are compared with standard 
output signalsT . 

 
After comparison, the deviation is calculated: 

∑ −=
=

l

i
ii THE

1

2)(
2
1

 

Training (correction) of the network parameters is 
concluded when the deviations E for all training pairs are less 
than the specified value (Fig.2). Otherwise, it is continued 
until E is minimized. 

 
The network parameters for the left and right parts are 

corrected as follows:  
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Here o
jkc   and n

jkc  are the old and new values of the 

neural network parameters jkc , and γ  is the training rate. 

Numerical Example 
 

    Let us consider the mathematical model is described by the 
regression equation (consider a special case (1) at m=2): 

 
)3(.20211

2
20011000 ycxycxcycxccH +++++=  

 
We shall construct a neural structure for solution of (1) in 

which the network parameters are the coefficients: 

021120011000 ,,,,, cccccc . The structure has four inputs and 

one output (Fig. 3). Using a neural-network structure, we 
employ (2) to train the network parameters. 
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As a result of training (2) and (4), we find network 
parameters that satisfy the knowledge base with the required 
training quality. Statistical data were collected from 
experiments before the computer simulation was performed. 

The network parameters were thus trained using the 
described neural network structure and experimental data. As 
a result, network-parameter values that satisfied the 
experimental statistical data were found: 

 
C00=1.42; C10=2.11; C01= -2.53; C20= -1.10; C11= -0.87; 
C02=1.31                                                                             (5)                       

 

The coefficients were 021120011000 ,,,,, cccccc , the 

regression equation (5) was evaluated by a program written in 
Turbo Pascal on an IBM PC. 

 
Let us compare obtained results (5) with results in [5]: 
 

Ĉ00=1.45; Ĉ10=2.26; Ĉ01= -2.55; Ĉ20= -1.28; Ĉ11= -0.85; 
Ĉ02=1.33                                                                             (6) 

 
Let us also note that application of neural nets in solving 

problems connected with identification of parameters of 
mathematic models of different by their nature geofields has 
active advantages if compared of traditional probability – 
statistical approaches. First of all, it is connected with the fact 
that offered methods can be used irrespective of the kind 
geofield parameters selective distribution. 

 
The application of neural networks to solving problems that 

involve evaluation parameters of mathematical models of 
geofields has advantages over traditional statistical-probability 
approaches. Primary is the fact that the proposed procedure 
can be used regardless of the type of distribution of the 
geofield parameters. The more so, in the early stage of 
modeling, it is difficult to establish the type of parameter 
distribution due to insufficient data. 
 

III.CONCLUSIONS 
 

 Taking into account the existence of various methods of 
geofields surfaces interpolation methods, and also packages of 
applied interpolation programs that allow, not possessing deep 
knowledge in interpolation theory and programming, to make 
necessary calculation for geofield parameters restoration, 
correct choice of the method and its governing parameters is 
one of the main stages in preparation for surfaces modelling 
and geofields parameters mapping. 
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TABLE 1 ANALYSIS OF THE DATA FOR NORMALITY OF THE SAMPLE DISTRIBUTION 
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Fig. 1. Neural identification system. 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 2. System for network-parameter training (with backpropagation). 
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Fig. 3. Structure of neural network for second-order regression equation.
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