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Abstract – This paper introduces a new method called ARPDC 

(Advanced Robust Parallel Distributed Compensation) for automatic 

control of nonlinear systems. This method improves a quality of 

robust control by interpolating of robust and optimal controller. The 

weight of each controller is determined by an original criteria 

function for model validity and disturbance appreciation.

ARPDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy 

systems and Parallel Distributed Compensation (PDC) control 

scheme. The relaxed stability conditions of ARPDC control of 

nominal system have been derived. The advantages of presented 

method are demonstrated on the inverse pendulum benchmark 

problem. From comparison between three different controllers 

(robust, optimal and ARPDC) follows, that ARPDC control is almost 

optimal with the robustness close to the robust controller. The results 

indicate that ARPDC algorithm can be a good alternative not only for 

a robust control, but in some cases also to an adaptive control of 

nonlinear systems. 

Keywords – Robust control, optimal control, Takagi–Sugeno 

(TS) fuzzy models, linear matrix inequality (LMI), observer, 

Advanced Robust Parallel Distributed Compensation (ARPDC) 

I. INTRODUCTION

IFFERENT design techniques were developed for 

modelling and control of nonlinear uncertain systems. 

Very interesting approach was done in the fuzzy modelling 

and control, especially with Takagi-Sugeno (T-S) fuzzy 

modelling [6] and related Parallel Distributed Compensation 

(PDC) control algorithm [5]. Decision fuzzy variables are 

designed to divide the state space of the system into areas, 

where the linear local models describe the nonlinear system. 

In the over-lapped parts of these areas, local models and 

associated controllers are interpolated according to fuzzy 

membership functions. T-S model based PDC control of 

nonlinear systems is quite popular now for its simple and 

effective design based usually on Linear Matrix Inequalities 

(LMIs).  

The robustness of the controller is very important property 

if model parameters are uncertain or change in time. Some 

robust control techniques for systems described by Takagi-

Sugeno fuzzy model were published. A drawback of robust 

controller is that it is usually slower than the controller that is 

optimally designed for an exact model of the system and work 

on it. Presented method eliminates this drawback and 

increases the quality of robust control by interpolating of a 

robust and an optimal controller according to some fuzzy 

rules. Stability conditions of an overall system are based on 

Lyapunov theory and can be proven by prescribed LMIs.  

The criteria function for model validity and disturbance 

appreciation is also presented here. By setting of some 

parameters it allows us to lay accent either on the robustness 

or on the quality of control process.  

The inverted pendulum control system is adopted to show 

the performance and robustness of the new method and 

compare it with optimal and robust controller. Very promising 

results have been acquired, especially in the case of input 

disturbance, where the control is almost optimal and noise 

attenuation is same as with robust controller. 

II. TAKAGI-SUGENO FUZZY MODELLING AND CONTROL OF 

NONLINEAR SYSTEMS 

A. T-S model 

The standard Takagi-Sugeno fuzzy model consists of the 

set of fuzzy rules with linear consequent, that describe system 

in local areas i. For our purpose we suppose following form: 

Rule i:   

IF )(1 tz is iM1 and )(2 tz  is iM 2 and … and )(tzn is i

nM

THEN )()()()( 21 tttt iii uBwBxAx ,

 )()( tt ixCy                           (1) 

where )(),...,()( 1 tztzt n

T
z  are some premise variables, 

)(),...,()( 1 tytyt l

Ty  is an output vector, 

)(),...,()( 1 txtxt n

T
x  is a state vector, 

)(),...,()( 1 tutut m

Tu  is a control input vector and 

)(),...,()( 1 twtwt p

T
w  is a disturbance vector. 

i = 1,2,…,r denotes the area’s number. r is the number of areas 

and thus also of fuzzy rules. i

jM is a fuzzy set ( ))(( tM i

j z is the 

grade of membership of premise variable zj(t) in the area 

number i). m is the number of inputs and l is the number of 

outputs of T-S fuzzy system. Matrixes nn

i RA , mn

i R1B ,

mn

i R2B , nl

i RC  describe the system in the area number i.
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 The defuzzified output can be then represented as follows: 
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If z(t) is in specified range, then 1))((
1

r

i

i th z

This representation of defuzzified model can be easily 

implemented into Matlab model. 

B. Fuzzy State Observer

Here we can suppose, that the disturbance signal is not 

measured. Fuzzy state observer is then described by similar 

fuzzy rules:  

IF )(1 tz is iM1 and )(2 tz  is iM 2 and … and (t)zn is i

nM

THEN )](ˆ)([)()(ˆ)(ˆ
2 ttttt iii yyGuBxAx ,

),(ˆ)(ˆ tt ixCy       (4) 

where Gi is an observer gain in the area number i.

)(ˆ),...,(ˆ)(ˆ 1 txtxt n

T
x  is estimated state vector and 

)(ˆ),...,(ˆ)(ˆ
1 tytyt l

T
y  is a vector of estimated outputs. 

After defuzzyfication we get the following equations: 
r

i

iiii tttttht
1

2 )](ˆ)([)()(ˆ))(()(ˆ yyGuBxAzx ,

r

i

ii ttht
1

)(ˆ))(()(ˆ xCzy .                  (5) 

C. PDC Fuzzy Control Algorithm 

The control signal of PDC controller is computed as 

)())(()(
1

ttht i

r

i

i xKzu          (6) 

where nm

i RK is a constant feedback gain. 

If some state variables have to be estimated by fuzzy 

observer, then the control output is computed in the following 

way: 

)(ˆ))(()(
1

ttht i

r

i

i xKzu          (7) 

Fig. 1  Closed loop with ARPDC control algorithm
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IV. ADVANCED ROBUST PARALLEL DISTRIBUTED 

COMPENSATION 

The basic idea of this method is to increase quality of 

robust control by interpolation of robust and optimal 

controller. The interpolation algorithm uses the same 

principles, as the PDC control, only it interpolates the whole 

PDC controllers. It is on the figure 1. The robustness is in the 

sense of H  norm, that determine disturbance attenuation of 

the control system. The optimal controller is designed to 

minimize prescribed integral criterion, where we can express 

required ratio between speed and energy consumption. 

Auxiliary controllers are used to maintain monotonic change 

of these properties during interpolation.  

In the following AgiK  denotes the gain of controller 

number g, ,..,1g  in the area i, .,...,1 ri  is a number of 

controllers. Let’s RiiA KK 1  and OiiA KK  be the gain of 

robust and optimal PDC controller respectively. During 

control we will interpolate robust PDC controller RiiA KK 1

with iA2K , that either the optimal or the first auxiliary 

controller. Then iA2K  with iA3K  and so on.  

The overall control output is computed as 

)())(())(()(
11

tththt Agi

r

i

i

g

VAg xKzzu      (8) 

where weighting functions ))(( thi z  are taken from the T-S 

model (2). Weighting functions ))(( th VAg z are derived in the 

criteria function for model validity and disturbance 

appreciation. This computation must guarantee, that  

0))(( th VAg z ,    (9) 

1))((
1g

VAg th z .   (10) 

For better insight denote the weight of robust and optimal 

PDC controller as: 

))(())(( 1 thth VAVR zz  a ))(())(( thth VAVO zz .      (11)

V. CRITERIA FUNCTION FOR MODEL VALIDITY AND 

DISTURBANCE APPRECIATION 

Our aim is to estimate quality of a T-S model and level of 

disturbance signals. For this we will define two signals: 
r

i

iiim tttht
1

2 )()(ˆ))(()( uBxAzf   (12) 

)(ˆ)())(()(
1

tttht i

r

i

i yyGzc   (13) 

Both signals )(tmf  and )(tc  can be easily compared. Signal 

)(tmf  corresponds to estimated time derivative of the state 

variables of T-S model and )(tc  determines absolute value of 

the estimation error multiplied by the observer gain. Signals 

)(),...,()( 1 tctct n

Tc  and )(),...,()( 1 tftft mnm

T

mf  are used for 

computation of decision variable )(tzV .

n

i micimi

ici
V

d

V
ktcktf

tck

n
tz

T
tz

1 )()(

)(1
)(

1
)(   (14)

where kci, ni ,...,1  are positive real coefficients, that allow 

us to lay accent either on the robustness or quality of the 

control process. By the exponent  we can increase sensitivity 

to disturbance, that can speed up setting of the robust  

controller. The constant 10 mk  only ensure, that there 

wont be division by zero, when 0)()( tcktf icimi .

The low pass filter with time constant Td is introduced to 

increase continuity and prevent an algebraic loop.  

Normally the weight of robust controller )())(( tth VVR zz .

VI. STABILITY ANALYSIS

Theorem 1: Equilibrium of a T-S fuzzy system with  

ARPDC control (8) with standard fuzzy partition (SFP) is 

asymptotically stable in large, if there exists a common matrix 

Pk > 0, symmetric matrix kiAgiQ  and matrices T

kjAgikiAgj QQ ,

,..,1g  for each MORG kS , qk ,...,2,1  such that  

kiAgiiAgikk

T

iAgi QFPPF , qkli k ,...,1,       (15) 

T

kiAgjkiAgjjAgiiAgjkk

T

jAgiiAgj QQFFPPFF , klji,   (16) 

0][

0][ 11

IQ

IQ

kArrjkiA

kArrjkiA

,    0kAg              (17) 

where AgjiiiAgj KBAF .

The proof can be found in [3].  

The positive definite matrixes Pk, qk ,...,1 are related to a 

number q of the Most Overlapped Rules Group (MORG) 

areas, that are defined as the areas with the highest number of 

overlapped local areas in Standard Fuzzy Partition (SFP). The 

SFP of two dimensional state space with MORGs S1, S2, S3

and S4 is on the figure 2. The union of all MORG areas is the 

universum of the fuzzy system SS
q

k k1
.

Fig. 2 Standard fuzzy partition of T-S system
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)(xk  is a characteristic function of each MORG Sk. It 

indicates if the working point of the state space belongs to the 

MORG number k. It is defined as  

q

k

k
k

k t
other

S
t

1

1))((
,0

,,1
))(( x

x
x        (18) 

More information and definitions about SFP can be found 

in [5], where is also the basic version of stability conditions. 

Note, that the conditions with PSQ Lyapunov functions cannot 

be directly converted to a controller design method due to 

discontinuity of  )).(( tV x

 From the Separation property from Ma et Sun [4] follows, 

that the control system with observer and PDC controller is 

stable, if both of them are stable separately. Since ARPDC (8) 

behave as a special case of PDC control, then the separation 

property will hold also for ARPDC control system.  

VII. ARPDC DESIGN PROCESS

ARPDC control algorithm solve either for improving of 

existing robust control systems or for a new controller design, 

which is show in this chapter. It consists of optimal and robust 

controller design, observer design, simulation and setting of 

criteria function parameters.  

A. Optimal controller design 

Presented method have been published by Li, Wang, 

Bushnell, Hong and Tanaka in [2]. The optimization control 

objective is to minimize an integral criterion  

0

)()()()(
k

TT ttttJ RuuWyy          (19) 

where W=W
T > 0 determine the weight of output error and 

R=R
T > 0 determine the weight of energy consumptions.  

The method produces a sub-optimal controller, that is close 

to an optimal one in the case of important weight of energy 

consumption R. The proof can be found in [2]. 

Theorem 2: Equilibrium of a T-S fuzzy system with a PDC 

control (6) is asymptotically stable in large, if there exists a 

common positive definite matrix Z > 0 and matrices Mi,

ri ,...,2,1  such that the following LMI conditions hold.  
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where ri ,...,2,1  in (21) and rji1 in (22),  

T

i
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The integral criterion J then will be less than . The sub-

optimal controller gain can be computed as  

1
ZMK ii          (23) 

The objective is to minimize .

B. Robust controller design 

The method have been published by Lee, Jeung and Park in 

[1]. The objective is to minimize H  norm, that determine a 

disturbance attenuation and is frequently used also as a 

robustness measure. The proof can be found in [1]. 

22
)()( tt wy .             (24)

The method minimizes , that is an upper bound of ywT .

It is summarised in Theorem 7.  

Theorem 3: Equilibrium of a T-S fuzzy system with a PDC 

control (6) is asymptotically stable in large with a decay rate 

0  and ywT , if there exists a common positive 

definite matrix Z > 0, > 0, scalar 0  and matrices Mi,

ri ,...,2,1  such that the following LMI conditions hold.

0
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where ZBMMBZAZA 222

T

i

T

jji

T

iiij ,

The gain of the robust controller the will be: 
1ZMK ii    (27) 

The optimization objective is to minimize .

C. Observer design 

An original method for fuzzy observer design is proposed 

here. The motivation for development of a new method is a 

need of fast observer with a minimal estimation error. 

Although the control stability is guaranteed within the 

universe of a fuzzy system [4], the estimation affects the 

integral criteria and H  norm. Then it is important that poles 

of the observer loop are more negative than the poles of the 

controller loop. The design method allows setting of observer 

loop poles into a specified area. 

0,},)(:{ 222

DDDD rqrbqaCjbaD

It also introduces H  norm that determines attenuation of 

the disturbance signal w(t) on the output estimation error 

signal )(ˆ)( tt yy .  The proof can be found in [3]. 
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Theorem 4: State fuzzy observer (5) maintains 

asymptotically stable estimation error 0)(ˆ)()( ttt xxe , H

norm ewT , with poles in the area D and decay rate 

0 , if there exists matrices iJ , T

jiij QQ , common positive 

definite matrix Y and scalars 0e  a 0  that the following 

LMIs hold. 
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where YCCCJYAJCYA 2i

T

ijii

T

i

T

j

T

iij .

VIII. SIMULATION RESULTS

Inverted pendulum have been represented by an exact 

mathematical model and by T-S state space model divided into 

three linear local areas (around angle 0, - /3 and /3). The 

state variables were  x1-angle [rad], x2-angular speed [rad/s], 

x3-cart position [m] and x4-spee of the cart [m/s]. For this 

model were designed optimal and robust controller and 

observer such that the stability conditions of ARPDC control 

are satisfied. H norm and integral criterion J changes 

monotonically during interpolation so that auxiliary 

controllers wasn’t necessary. The values were the following: 

Robust controller: max H norm is 0.091, Jmax = 5193.

Optimal controller: max H  norm is 0.366, Jmax = 3334.

TABLE I
INTEGRAL CRITERION J, ITS ENERGY PART (Ju) AND OUTPUT PART (Jy)

  ARPDC control Optimal control Robust control 

mul J Ju Jy J Ju Jy J Ju Jy 

0,6 Stable Unstable 

0,65 1924 1676 248 3014 2729 285

0,7 1595 1367 228 

Unstable 

2126 1911 215

0,75 1455 1233 222 1420 1157 263 1824 1618 206

0,9 1305 1081 224 1131 895 236 1618 1390 228

1 1258 1003 255 1226 916 310 1630 1385 245

1,05 1319 1040 279 1370 976 394 1646 1393 253

1,15 1449 1126 323 2618 1571 1047 1687 1419 268

1,2 1515 1168 347 Stable 1714 1438 276

1,3 1658 1255 403 1774 1478 296

1,4 1822 1350 472 1846 1524 322

2 4650 2835 1815 2747 2017 730

2,1 3058 2177 881

2,4 
Stable

4769 3053 1716

2,5 

3
Unstable 

Unstable 

Stable

The control quality and robustness analysis of three systems 

(with the robust, optimal and ARPDC controller) was 

performed. The ARPDC algorithm achieved over 30% better 

integral criteria J than the robust controller and almost 40% 

smaller energy consumption during control of the nominal 

system from the initial conditions ]000
3

[)0(ˆ)0( xx . The 

robustness for parametric uncertainties was tested by 

multiplying of the system matrices Ai by a coefficient mul.

Important results in the table I shows that ARPDC control 

quality increased in a wide range of parameter mul compare to 

the robust controller. Parametrical robustness remained at 

almost the same level as with the robust controller.  In the 

ranges )73.0;59.0(mul  and )42.1;03.1(mul  are the results 

of ARPDC better than results of both robust and optimal 

controllers 

Very interesting results were obtained also for systems 

disturbed by an input noise. A white noise of different noise 

power was put on inputs of all three systems. The control 

response with noise power 50 from initial conditions 

]000
3

[)0(ˆ)0( xx is shown at the fig. 3.  

Fig. 3 Control response of all systems in the presence of disturbance 

The results indicate, that ARPDC algorithm connects good 

properties of optimal and robust PDC control and achieve the 

best performance. From the initial conditions it regulates 

almost optimally to the equilibrium but the noise attenuation is 

the same as with the robust controller. The response of integral 

criterion J shows fig.4. For ARPDC it is small after regulation 

and also it increases slowly with the noise. After 8 seconds it 

is the same as with the optimal controller.  

Fig. 4 Integral criterion J response of all systems in the presence of 

strong disturbance 
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Fig. 5 Weighting function or robust controller in the presence of 

small disturbance 

The same behaviour was obtained with a small noise power 

0.1. After 10 minutes is J value for ARPDC again bellow the 

others. The weight of robust controller in this situation shows 

fig.5. 

Table II demonstrates the difference among the integral 

criterions J of all three systems after 10 seconds. The ARPDC 

results are taken as 100%.  

TABLE II 
INTEGRAL CRITERION J AND ITS PARTS UNDER DISTURBANCE IN10 SEC.

  ARPDC control Optimal control Robust control 

noise 

pow. J Ju Jy J Ju Jy J Ju Jy 

0.1 1245 996 249 1217 906 311 1621 1380 241

100% 100% 100% 98% 91% 125% 130% 139% 98%

50 1891 1756 135 1993 1745 248 2536 2411 125

100% 100% 100% 105% 99% 184% 134% 137% 93%

IX. CONCLUSIONS

The ARPDC control algorithm could dramatically increase 

quality and reduce energy consumption of the control process. 

The control is almost optimal with the robustness close to the 

robust controller. By setting of criteria function coefficient we 

can lay accent either on quality or the robustness of the control 

process. Very important is, that all controllers and observer 

can be effectively numerically found by solving LMIs and the 

stability of overall ARPDC control system can be proved. The 

simulations performed above also show, that the ARPDC 

algorithm can be very useful in the presence of input noise of 

different intensity from very disturbed to a negligible noise. It 

performs better not only than the robust, but also than the 

optimal controller.  

Its original idea is simple and natural so that it could 

became popular in many future applications.  
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