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Advanced Robust PDC Fuzzy Control of Nonlinear
Systems

M. Polansky

Abstract — This paper introduces a new method called ARPDC

(Advanced Robust Parallel Distributed Compensation) for automatic
control of nonlinear systems. This method improves a quality of
robust control by interpolating of robust and optimal controller. The
weight of each controller is determined by an original criteria
function for model validity and disturbance appreciation.
ARPDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy
systems and Parallel Distributed Compensation (PDC) control
scheme. The relaxed stability conditions of ARPDC control of
nominal system have been derived. The advantages of presented
method are demonstrated on the inverse pendulum benchmark
problem. From comparison between three different controllers
(robust, optimal and ARPDC) follows, that ARPDC control is almost
optimal with the robustness close to the robust controller. The results
indicate that ARPDC algorithm can be a good alternative not only for
a robust control, but in some cases also to an adaptive control of
nonlinear systems.

Keywords — Robust control, optimal control, Takagi-Sugeno
(TS) fuzzy models, linear matrix inequality (LMI), observer,
Advanced Robust Parallel Distributed Compensation (ARPDC)

1. INTRODUCTION

IFFERENT design techniques were developed for

modelling and control of nonlinear uncertain systems.
Very interesting approach was done in the fuzzy modelling
and control, especially with Takagi-Sugeno (T-S) fuzzy
modelling [6] and related Parallel Distributed Compensation
(PDC) control algorithm [5]. Decision fuzzy variables are
designed to divide the state space of the system into areas,
where the linear local models describe the nonlinear system.
In the over-lapped parts of these areas, local models and
associated controllers are interpolated according to fuzzy
membership functions. T-S model based PDC control of
nonlinear systems is quite popular now for its simple and
effective design based usually on Linear Matrix Inequalities
(LMIs).

The robustness of the controller is very important property
if model parameters are uncertain or change in time. Some
robust control techniques for systems described by Takagi-
Sugeno fuzzy model were published. A drawback of robust
controller is that it is usually slower than the controller that is
optimally designed for an exact model of the system and work
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on it. Presented method eliminates this drawback and
increases the quality of robust control by interpolating of a
robust and an optimal controller according to some fuzzy
rules. Stability conditions of an overall system are based on
Lyapunov theory and can be proven by prescribed LMIs.

The criteria function for model validity and disturbance
appreciation is also presented here. By setting of some
parameters it allows us to lay accent either on the robustness
or on the quality of control process.

The inverted pendulum control system is adopted to show
the performance and robustness of the new method and
compare it with optimal and robust controller. Very promising
results have been acquired, especially in the case of input
disturbance, where the control is almost optimal and noise
attenuation is same as with robust controller.

II. TAKAGI-SUGENO FUZZY MODELLING AND CONTROL OF
NONLINEAR SYSTEMS

A. T-S model

The standard Takagi-Sugeno fuzzy model consists of the
set of fuzzy rules with linear consequent, that describe system
in local areas i. For our purpose we suppose following form:

Rule i:
IF z,(¢)is M]and z,(t) isMjand ... and z, (¢) is M
THEN x(£)=Ax(¢)+B,w(?)+B,u(?),
y(O)=Cx(®) Q)
where z” (t):[z1 ®),....z, (t)] are some premise variables,
¥ (0)=[y,(®),....y, (t)] is an output vector,
X (0)=[x,(0),....x, (1)] is a state vector,
u’ ()= [u] ()., (t)] is a control input vector and
wT(t)=[w1(t),...,wp (t)] is a disturbance vector.
i=1,2,...,r denotes the area’s number. r is the number of areas
and thus also of fuzzy rules. M ’/ is a fuzzy set (M ’] (z(?)) is the

grade of membership of premise variable z(#) in the area
number 7). m is the number of inputs and / is the number of

outputs of T-S fuzzy system. Matrixes A,eR™, B,,eR"™™",

B,,eR™, C,eR" describe the system in the area number i.
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The defuzzified output can be then represented as follows:
X(0)=3 I (z(t)[AX()+B,W(1)+B,u(n)}
i=1

¥ = h (2()C,x(1)

i=1

2

114,00
where h(z(t)=——""—— 3)

2L IMiG, @

i=l j=1

If z(?) is in specified range, then Zhl. (z(1))=1

i=1
This representation of defuzzified model can be easily
implemented into Matlab model.

B. Fuzzy State Observer

Here we can suppose, that the disturbance signal is not
measured. Fuzzy state observer is then described by similar
fuzzy rules:

where G; is an observer gain in the area number i.
' (t):[fc, (),....%, (t)] is estimated state vector and

()= [)‘/1 ),.... 7, (t)] is a vector of estimated outputs.

After defuzzyfication we get the following equations:

{(0= Y () 50)+BLu()+ G [y ()5 0],
$(0= Y (2(0)CK0). ®)

C. PDC Fuzzy Control Algorithm

The control signal of PDC controller is computed as
u(t)==2 1 (2(1)K x(1) ©)
i=1

where K, e R™" is a constant feedback gain.

If some state variables have to be estimated by fuzzy
observer, then the control output is computed in the following
way:

IF z,(t)is M} and z,(f) is M and ... and z,(0)is M’ u([):_ihi(z(z‘))[(if((t) %)
THEN R()=A&(0)+B,u()+G,[y()-§ ()],
V()=Cx(), C))
>| optimal PDC | u() 5
>| controller K, /X\ ]
) v )
->| Auxiliary PDC |u.() _ u( ¥
‘h(Z(l‘)) > controller K,,, > /x\ >/'|: Plant
—>| Robust PDC | Ui( X
® S controller K,
h(z(f) ()
i i hR(ZV)
Criteria
fm) function for . u(t)> Fuzzy h(z(1))
0) interpolation model and
> of h,(z,) | observer @)
y(z)> controllers y(t), 0
h(z,)

Fig. 1 Closed loop with ARPDC control algorithm
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IV. ADVANCED ROBUST PARALLEL DISTRIBUTED
COMPENSATION

The basic idea of this method is to increase quality of
robust control by interpolation of robust and optimal
controller. The interpolation algorithm wuses the same
principles, as the PDC control, only it interpolates the whole
PDC controllers. It is on the figure 1. The robustness is in the
sense of H,, norm, that determine disturbance attenuation of
the control system. The optimal controller is designed to
minimize prescribed integral criterion, where we can express
required ratio between speed and energy consumption.
Auxiliary controllers are used to maintain monotonic change
of these properties during interpolation.

In the following K, denotes the gain of controller

number g, g=l,..,y in the area i, i=l,...,r. y is anumber of

controllers. Let’s K ,,=K,, and K, =K, be the gain of

Ayi
robust and optimal PDC controller respectively. During
control we will interpolate robust PDC controller K ,;=K,,

with K ,,,, that either the optimal or the first auxiliary
controller. Then K ,,; with K ;;; and so on.
The overall control output is computed as

W=k (5, ODTHEOK X0 ®)

where weighting functions /,(z(¢)) are taken from the T-S
model (2). Weighting functions 7, (2, (7)) are derived in the

criteria  function for model validity and disturbance
appreciation. This computation must guarantee, that

hy (2, (1))>0, )
S (2 ()1 (10)

For better insight denote the weight of robust and optimal
PDC controller as:

hy (2, (D)=hy (2, (1)) & ho(zy (D)=hy, (2, (1) . (1D)

V. CRITERIA FUNCTION FOR MODEL VALIDITY AND
DISTURBANCE APPRECIATION

Our aim is to estimate quality of a T-S model and level of
disturbance signals. For this we will define two signals:

£, ()= A (2 )[A, K1) +Bu(0)] (12)
i=l

()= 3 h(20)G,

Both signals f, (#) and ¢(¢) can be easily compared. Signal

Y(O-3() (13)

f,(#) corresponds to estimated time derivative of the state
variables of T-S model and ¢(#) determines absolute value of
the estimation error multiplied by the observer gain. Signals
(O =[¢,(O)ere, ()] and £1(0)=[F,, (@), [, ()] are used for
computation of decision variable z, (7).

o1 I kel
SO O L ek, ) M

where k., i=1,...,n are positive real coefficients, that allow

us to lay accent either on the robustness or quality of the
control process. By the exponent £ we can increase sensitivity
to disturbance, that can speed up setting of the robust
controller. The constant 0<k, <<1 only ensure, that there

f;ni (t)‘+kcic;8 »=0.

The low pass filter with time constant 7y is introduced to
increase continuity and prevent an algebraic loop.

Normally the weight of robust controller /,(z, (¢))=z, ().

wont be division by zero, when

VI. STABILITY ANALYSIS

Theorem 1: Equilibrium of a T-S fuzzy system with
ARPDC control (8) with standard fuzzy partition (SFP) is
asymptotically stable in large, if there exists a common matrix
P, > 0, symmetric matrix Q,;,,, and matrices ng,-:Q:,-Ag,- s
g=1,..,y for each MORG S, k=1,2,...,q such that

F P, +PF,, <Q,p» i€, k=l..q (15)

iAgi
(Fi/lg/ +F )T P, +P, (Fi/lg/ +F )SQkiAg/ +Q£Ag,' , Ljel, (16)
[kaj]rxr $*5k,111<.0

: : DL 8,0 17
[Quisy )i =610, 1<0

where F,

=A,+BK

Ag *
The proof can be found in [3].

The positive definite matrixes P;, k=1,...,q are related to a
number g of the Most Overlapped Rules Group (MORG)
areas, that are defined as the areas with the highest number of
overlapped local areas in Standard Fuzzy Partition (SFP). The
SFP of two dimensional state space with MORGs S}, S,, S;
and S, is on the figure 2. The union of all MORG areas is the

universum of the fuzzy system UZ=|Sk =S.

'
M; Si31 i sti | Sy
it i B it it -1
IR
SN Tl
M? Siz ! LSy ! Ss
————t————— dm——md————— ===
I I [} . I
s s
B R R et
M, Su | ISy ! Sy X
e D <
Mi(x) ¥ m! M? M3}

Fig. 2 Standard fuzzy partition of T-S system
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A,(x) is a characteristic function of each MORG §;. It

indicates if the working point of the state space belongs to the
MORG number £. It is defined as

I, xe§,,

q
= (x(r)):{o other,  ZAGO=L(8)

More information and definitions about SFP can be found
in [5], where is also the basic version of stability conditions.
Note, that the conditions with PSQ Lyapunov functions cannot
be directly converted to a controller design method due to
discontinuity of ¥ (x(¢)).

From the Separation property from Ma et Sun [4] follows,
that the control system with observer and PDC controller is
stable, if both of them are stable separately. Since ARPDC (8)
behave as a special case of PDC control, then the separation
property will hold also for ARPDC control system.

VII. ARPDC DESIGN PROCESS

ARPDC control algorithm solve either for improving of
existing robust control systems or for a new controller design,
which is show in this chapter. It consists of optimal and robust
controller design, observer design, simulation and setting of
criteria function parameters.

A. Optimal controller design

Presented method have been published by Li, Wang,
Bushnell, Hong and Tanaka in [2]. The optimization control
objective is to minimize an integral criterion

J=i(yr(f)Wy(t)+uT(t)Ru(t)) (19)
k=0

where W=W"' > 0 determine the weight of output error and
R=R"> 0 determine the weight of energy consumptions.

The method produces a sub-optimal controller, that is close
to an optimal one in the case of important weight of energy
consumption R. The proof can be found in [2].

Theorem 2: Equilibrium of a T-S fuzzy system with a PDC
control (6) is asymptotically stable in large, if there exists a
common positive definite matrix Z > 0 and matrices M;,
i=12,...,r such that the following LMI conditions hold.

1 x|
>0, 2
{X(O) z I7° (20)
[-A,Z-ZA"-BM,-M'B! ZC'W'"> M'R"*
W'"C,Z A 0 [>0,2D
I RI’ZM,. 0 A |
B = ZC,.TWVZ ZC?W”Z MiTR]/Z M?Rl/z’
w"Ccz j 0 0 0
w"Cc,z 0 s 0 0 [>0,(22)
R”ZM,. 0 0 }/[ 0
R""M;, 0 0 0 A

where i=12,....r in(21) and 1<i<j<r in (22),
E:—A,.Z—AjZ—ZA,.T —ZAJT. -BM,-B M, —M,.TB§ —MJT.BI.T

The integral criterion J then will be less than y. The sub-
optimal controller gain can be computed as

K,=M,Z" (23)
The objective is to minimize y .

B. Robust controller design

The method have been published by Lee, Jeung and Park in
[1]. The objective is to minimize H,, norm, that determine a
disturbance attenuation and is frequently used also as a
robustness measure. The proof can be found in [1].

vl <2w), - (24)

The method minimizes A, that is an upper bound of

T, |

It is summarised in Theorem 7.

Theorem 3: Equilibrium of a T-S fuzzy system with a PDC
control (6) is asymptotically stable in large with a decay rate

a>0 and |T

<A, if there exists a common positive
-

w

definite matrix Z > 0, A > 0, scalar 6>0 and matrices M;,
i=1,2,...,r such that the following LMI conditions hold.

Aii Bli ZCIT
B, -1 0 |<0,i=12,..r, (25)
czZ 0 -I
A,+A,; B,+B, ZC/+ZC]
B +B], 241 0 <0, 0<i<j<r, (26)
CZ+C,Z 0 -21

where A, =AZ+ZA! +B,M, +MJT.B; +2aZ,
The gain of the robust controller the will be:
K,=MZ" @n
The optimization objective is to minimize A.

C. Observer design

An original method for fuzzy observer design is proposed
here. The motivation for development of a new method is a
need of fast observer with a minimal estimation error.
Although the control stability is guaranteed within the
universe of a fuzzy system [4], the estimation affects the
integral criteria and H,, norm. Then it is important that poles
of the observer loop are more negative than the poles of the
controller loop. The design method allows setting of observer
loop poles into a specified area.

D=<{a+jbeC:(a+qD)2 +b? <rL2,}, qpstp>0
It also introduces H,, norm that determines attenuation of
the disturbance signal w(#) on the output estimation error
signal y(z)—y(¢). The proof can be found in [3].
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Theorem 4: State fuzzy observer (5) maintains
asymptotically stable estimation error e(?)=x(¢)—x(¢)—>0, H,,

norm HTIQW

<4, with poles in the area D and decay rate

a >0, if there exists matrices J,, Qi/‘ :Q;, , common positive
definite matrix Y and scalars 4,>0 a >0 that the following
LMIs hold.

_(Dii _Qu YB, :

oy _,1{1}0 i=12,0r, 28)

r T

Put®imQu=Qy VBB | ot i) (29)

B“Y+B”Y —2261

[Q,],,, <& 1<0 £>0 (30)
Y g Y+ATY+CT] 1)

g, Y+YA,+J C, Y

where @, =A[Y-C"J]+YA,-J,C,+C[C,+2aY .

VIII. SIMULATION RESULTS

Inverted pendulum have been represented by an exact
mathematical model and by T-S state space model divided into
three linear local areas (around angle 0, -/3 and 7/3). The
state variables were x1-angle [rad], x2-angular speed [rad/s],
x3-cart position [m] and x4-spee of the cart [m/s]. For this
model were designed optimal and robust controller and
observer such that the stability conditions of ARPDC control
are satisfied. H,,norm and integral criterion J changes
monotonically during interpolation so that auxiliary
controllers wasn’t necessary. The values were the following:
Robust controller: max H,, norm is 0.091, J,,..= 5193.
Optimal controller: max H,, norm is 0.366, J,,,. = 3334.

TABLE I
INTEGRAL CRITERION J, ITS ENERGY PART (Ju) AND OUTPUT PART (Jy)
ARPDC control Optimal control Robust control
mulJ\Ju\Jy J\Ju\]y J\Ju\Jy
0,6 Stable Unstable
0,65 | 1924 | 1676 | 248 Unstable 3014 | 2729 | 285
0,7 | 1595|1367 | 228 2126 | 1911 | 215
0,75 | 1455 | 1233 | 222 | 1420 | 1157 | 263 | 1824|1618 | 206
0,9 [1305|1081| 224 | 1131 | 895 | 236 1618|1390 | 228
1 | 1258|1003 | 255 |1226| 916 | 310 | 1630 | 1385 | 245
1,05 [ 13191040 | 279 | 1370 | 976 | 394 | 1646 | 1393 | 253
1,15 11449 | 1126 | 323 | 2618 | 1571 | 1047 | 1687 | 1419 | 268
1,2 | 1515|1168 | 347 Stable 1714 | 1438 | 276
1,3 | 1658|1255 | 403 1774 | 1478 | 296
1,4 | 1822|1350 472 1846 | 1524 | 322
2 |4650| 2835|1815 274712017 | 730
2.1 Stable Unstable 3058 | 2177 | 881
2.4 4769 | 3053 | 1716
2;5 Unstable Stable

The control quality and robustness analysis of three systems
(with the robust, optimal and ARPDC controller) was
performed. The ARPDC algorithm achieved over 30% better
integral criteria J than the robust controller and almost 40%
smaller energy consumption during control of the nominal

system from the initial conditions x(0)=f((0)=[§000]. The

robustness for parametric uncertainties was tested by
multiplying of the system matrices A; by a coefficient mul.
Important results in the table I shows that ARPDC control
quality increased in a wide range of parameter mu/ compare to
the robust controller. Parametrical robustness remained at
almost the same level as with the robust controller. In the
ranges mul<(0.59;0.73) and mule(1.03;1.42) are the results

of ARPDC better than results of both robust and optimal
controllers

Very interesting results were obtained also for systems
disturbed by an input noise. A white noise of different noise
power was put on inputs of all three systems. The control
response with noise power 50 from initial conditions

X(0)=fc(0)=[§000] is shown at the fig. 3.

1F T T T T T T =
—— ARPDC
—..~ Optimal
— —- Robust 4
05 n N A .
x() NN
0 \ Y .
-0.5 H
ThY I | I I L | I L I E
0 1 2 3 4 5 6 7 8 9 10

Fig. 3 Control response of all systems in the presence of disturbance

The results indicate, that ARPDC algorithm connects good
properties of optimal and robust PDC control and achieve the
best performance. From the initial conditions it regulates
almost optimally to the equilibrium but the noise attenuation is
the same as with the robust controller. The response of integral
criterion J shows fig.4. For ARPDC it is small after regulation
and also it increases slowly with the noise. After 8 seconds it
is the same as with the optimal controller.

2500 T i T =
2000} PSS, - o
1500 |
Jt) i
¢ — ARPD
1000 Optimal
( - Robus
500 g
0 . . . . . . . . .
0 1 2 3 4 5¢ 6 7 8 9 10

Fig. 4 Integral criterion J response of all systems in the presence of
strong disturbance

3612



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:11, 2007

hi(t)

04

0.2

Fig. 5 Weighting function or robust controller in the presence of
small disturbance

The same behaviour was obtained with a small noise power
0.1. After 10 minutes is J value for ARPDC again bellow the
others. The weight of robust controller in this situation shows
fig.5.

Table II demonstrates the difference among the integral
criterions J of all three systems after 10 seconds. The ARPDC
results are taken as 100%.

TABLE II
INTEGRAL CRITERION J AND ITS PARTS UNDER DISTURBANCE IN10 SEC.

ARPDC control Optimal control Robust control

noise
pow. | J Ju Jy J Ju Jy J Ju | Jy
0.1 | 1245( 996 | 249 [1217] 906 | 311 | 1621 | 1380 | 241
100% | 100% | 100% | 98% | 91% | 125% | 130% | 139% | 98%
50 | 1891 ] 1756 | 135 | 1993 | 1745 | 248 [ 2536|2411 | 125
100% | 100% | 100% | 105% | 99% | 184% | 134% | 137% | 93%

IX. CONCLUSIONS

The ARPDC control algorithm could dramatically increase
quality and reduce energy consumption of the control process.
The control is almost optimal with the robustness close to the
robust controller. By setting of criteria function coefficient we
can lay accent either on quality or the robustness of the control
process. Very important is, that all controllers and observer
can be effectively numerically found by solving LMIs and the
stability of overall ARPDC control system can be proved. The
simulations performed above also show, that the ARPDC
algorithm can be very useful in the presence of input noise of
different intensity from very disturbed to a negligible noise. It
performs better not only than the robust, but also than the
optimal controller.

Its original idea is simple and natural so that it could
became popular in many future applications.
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