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Classification of the Bachet Elliptic Curves
y2 = x3 + a3 in Fp,

where p ≡ 1 (mod 6) is Prime
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Abstract—In this work, we first give in what fields Fp, the cubic
root of unity lies in F∗

p, in Qp and in K∗
p where Qp and K∗

p denote
the sets of quadratic and non-zero cubic residues modulo p. Then we
use these to obtain some results on the classification of the Bachet
elliptic curves y2 ≡ x3 + a3 modulo p, for p ≡ 1 (mod 6) is prime.

Keywords—Elliptic curves over finite fields, quadratic residue,
cubic residue.

I. INTRODUCTION

Let w �=1 be the cubic root of unity. w appears in many
calculations regarding elliptic curves, e.g.[2], [3]. The authors
used it to find rational points on Bachet elliptic curves y2 =
x3 + a3 in Fp, where Fp is a field of characteristic > 3.

In [9], starting with a conjecture from 1952 of Dénes
which is a variant of Fermat-Wiles theorem, Merel illustrates
the way in which Frey elliptic curves have been used by
Taylor, Ribet, Wiles and the others in the proof of Fermat-
Wiles theorem. Serre, in [10], gave a lower bound for the
Galois representations on elliptic curves over the field Q of
rational points. In the case of a Frey curve, the conductor
N of the curve is given by the help of the constants in the
abc conjecture. In [8], Ono recalls a result of Euler, known
as Euler’s concordant forms problem, about the classification
of those pairs of distinct non-zero integers M and N for
which there are integer solutions (x, y, t, z) with xy �= 0 to
x2 + My2 = t2 and x2 + Ny2 = z2. When M = −N , this
becomes the congruent number problem, and when M = 2N ,
by replacing x by x − N in E(2N, N), a special form of
the Frey elliptic curves is obtained as y2 = x3 − N2x.
Using Tunnell’s conditional solution to the congruent number
problem using elliptic curves and modular forms, Ono studied
the elliptic curve y2 = x3 + (M + N)x2 + MNx denoted
by EQ(M,N) over Q. He classified all the cases and hence
reduced Euler’s problem to a question of ranks. In [6], Parshin
obtaines an inequality to give an effective bound for the
height of rational points on a curve. In [7], the problem of
boundedness of torsion for elliptic curves over quadratic fields
is settled.

Nazli Yildiz İkikardes is with the Balikesir University, Department
of Mathematics, Faculty of Science, Balkesir-TURKEY. email: ny-
ildiz@balikesir.edu.tr. Gokhan Soydan, Musa Demirci, Ismail Naci Cangul are
with the Uludag University, Department of Mathematics, Faculty of Science,
Bursa-TURKEY, emails: gsoydan@uludag.edu.tr, mdemirci@uludag.edu.tr,
cangul@uludag.edu.tr. This work was supported by the research fund of
Uludag University project no: F-2004/40.

If F is a field, then an elliptic curve over F has, after a
change of variables, a form

y2 = x3 + Ax + B

where A and B ∈ F with 4A3 + 27B2 �= 0 in F. Here D =
−16

(
4A3 + 27B2

)
is called the discriminant of the curve.

Elliptic curves are studied over finite and infinite fields. Here
we take F to be a finite prime field Fp with characteristic
p > 3. Then A,B ∈ Fp and the set of points (x, y) ∈ Fp×Fp,
together with a point o at infinity is called the set of Fp−
rational points of E on Fp and is denoted by E (Fp) . Np

denotes the number of rational points on this curve. It must
be finite.

In fact one expects to have at most 2p + 1 points (together
with o)(for every x, there exist a maximum of 2 y

′
s). But

not all elements of Fp have square roots. In fact only half of
the elements of Fp have a square root. Therefore the expected
number is about p + 1.

Here we shall deal with Bachet elliptic curves y2 = x3 +a3

modulo p. Some results on these curves have been given in
[2], and [3].

A historical problem leading to Bachet elliptic curves is that
how one can write an integer as a difference of a square and a
cube. In another words, for a given fixed integer c, search for
the solutions of the Diophantine equation y2 − x3 = c. This
equation is widely called as Bachet or Mordell equation. This
is because L. J. Mordell, in twentieth century, made a lot of
advances regarding this and some other similar equations. The
existance of duplication formula makes this curve interesting.
This formula was found in 1621 by Bachet. When (x, y)
is a solution to this equation where x, y ∈ Q, it is easy
to show that

(
x4−8cx

4y2 , −x6−20cx3+8c2

8y3

)
is also a solution for

the same equation. Furthermore, if (x, y) is a solution such
that xy �= 0 and c �= 1, − 432, then this leads to infinitely
many solutions, which could not proven by Bachet. Hence if an
integer can be stated as the difference of a cube and a square,
this could be done in infinitely many ways. For example if
we start by a solution (3, 5) to y2 − x3 = −2, by applying
duplication formula, we get a series of rational solutions
(3, 5),

(
129
102 , −383

103

)
,

(
2340922881

76602 , 113259286337292
76603

)
, ....

Here we give a classification of Bachet elliptic curves for
all values of a between 1 and p− 1. In doing these, we often
need to know when w is a quadratic or cubic residue.

Let Qp and Kp denote the set of quadratic and cubic
residues, respectively.
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II. THE CUBIC ROOT OF UNITY MODULO P ≡ 1
(mod 6) IS PRIME

When a prime p is congruent to 1 modulo 6, we have a lot
of nice number theoretical results concerning cubic root w of
unity. First, we can say when w is an integer modulo p.

Lemma 2.1: The cubic root of unity w = −1+
√−3
2 lies in

F∗
p if and only if p ≡ 1 (mod 6) is prime.

Proof: Let w = −1+
√−3
2 = −1+

√
3i

2 . We want to show
that w ∈ F∗

p = Fp\{0}.
First, we will show that

√−3 ∈ F∗
p. To do this, we will

show the existence of a t ∈ Zp so that −3 ≡ t2(modp). In
other words, we need to show that (−3

p ) = +1, where ( .
. )

denotes the Legendre symbol. Now

(
−3
p

) = (
−1
p

)(
3
p
)

= (−1)
p−1
2 (

p

3
)(−1)

p−1
2 . 3−1

2 byGaussReciprocitylaw,

= (−1)p−1(
p

3
)

and as p ≡ 1 (mod 6), we have (p
3 ) = ( 1

3 ) = +1 and p − 1
even, implying (−3

p ) = +1.
Secondly, (2, p) = 1 and 2 has a multiplicative inverse u

in F∗
p. Then 2.u ≡ 1(modp) and −1+

√−3
2 = u.(−1 +

√−3)
and as

√−3 and hence −1+
√−3 lies in Fp, w ∈ F∗

p. Going
backwards, we obtain the result.

The following result gives us the values of p where w ∈ Qp.
Lemma 2.2: w ∈ Qp ⇔ p ≡ 1 (mod 6) is prime.

Proof:

w ∈ Qp ⇔ ∃t ∈ Up such that t2 ≡ w(modp)
⇔ ∃ t ∈ Up such that t6 ≡ w3 ≡ 1(modp).

Also by Fermat’s little theorem, we have tp−1 ≡ 1(modp) for
t ∈ Up. Then 6|(p − 1) and p ≡ 1(mod6).

For example, w = 4, 9, 11, 5, ... for p = 7, 13, 19, 31, ...,
respectively.

Now we give the following result to determine for what
prime values of p, w is a cubic residue modulo p. If w ≡
0(modp), then −1+

√−3
2 ≡ 0(modp) giving 4 ≡ 0(modp), a

contradiction. So w ∈ K∗
p .

Theorem 2.1: Let w be the cubic root of unity. Then

w ∈ K∗
p ⇐⇒ p ≡ 1(mod18).

Proof: w ∈ K∗
p ⇐⇒ ∃b ∈ Up such that w = b3 �= 1,

where Up denotes the set of units modulo p.

⇐⇒ ∃ b ∈ Up such that w3 = b9 = 1
⇐⇒ ∃ b ∈ Up such thatø(b) = 9.

But as (b, p) = 1, we know by Fermat’s little theorem that
bp−1 ≡ 1(modp). By the definition of order, 9|(p − 1) ⇐⇒
p = 1 + 9k, k ∈ Z. As p is prime, k must be even, and by
letting k = 2t, t ∈ Z, we get p = 1 + 18t ≡ 1(mod18).

In particular,
Corollary 2.2: Let p ≡ 1(mod6) be prime. Then
a) If p ≡ 1(mod18), then all three or none of a, aw and

aw2 lie in K∗
p .

b) If p �= 1(mod18), then only one of a, aw and aw2 lies
in K∗

p .
Proof: a) Let p ≡ 1(mod 18) and let a ∈ K∗

p . Then by
theorem 3, w ∈ Kp. As K∗

p is a multiplicative group, the
result follows.

If a /∈ K∗
p , the result similarly follows.

b) Let p ≡ 1(mod 6) and p �= 1(mod 18). Then by theorem
3, w /∈ Kp.

Firstly, assume that a ∈ K∗
p . Then aw and aw2 do not

belong to K∗
p .

Secondly, let a /∈ K∗
p . Now we first assume that aw ∈ Kp.

That is, there exists a t ∈ Up such that aw ≡ t3(mod p).
Then aw2 ≡ t3.w(mod p). Again by theorem 3, aw2 /∈ K∗

p as
t3 ∈ K∗

p and w /∈ K∗
p . Now we finally assume that aw2 ∈ Kp.

Then similarly aw = aw2.w2 = t3w2 /∈ K∗
p as t3 ∈ Kp and

w2 /∈ K∗
p .

Similarly,
Corollary 2.3: Let p ≡ 1(mod 6) be prime and p �=

1(mod 18). Let a /∈ K∗
p . Then

awk ∈ Kp ⇐⇒ aw3−k /∈ K∗
p

for k = 1, 2.

III. BACHET ELLIPTIC CURVES MODULO PRIME

p ≡ 1(mod 6)

Now we are ready to use the results obtained in part 2 to
give some results regarding Bachet elliptic curves. First

Theorem 3.1: Let p ≡ 1(mod 6) be prime. There are three
values of x, for y = 0, on the elliptic curve y2 ≡ x3 +
a3(mod p), having sum equal to 0 modulo p.

Proof: For y = 0, x3 ≡ −a3(mod p) has solutions x =
−a, −aw and −aw2. The result then follows.

Theorem 3.2: Let p ≡ 1(mod 18) be prime. If a ∈ K∗
p

then three values of x obtained for y = 0 on the elliptic curve
y2 ≡ x3 + a3(mod p) lie in K∗

p .
If a /∈ K∗

p , then none of the three values of x obtained for
y = 0 on the elliptic curve y2 ≡ x3 + a3(mod p) lie in K∗

p .
Proof: For y = 0, x3 ≡ −a3(mod p) has solutions x =

−a, −aw and −aw2. The result then follows.
Also we have,
Theorem 3.3: Let p ≡ 1(mod 6) be prime. For a ∈ F∗

p,
there are p−1

3 elliptic curves y2 ≡ x3 + a3(mod p).
Proof: For a fixed value of a between 1 and p − 1, we

know that we obtain the same value of y for x = a, x = aw
and x = aw2. Therefore the p− 1 values of a can be grouped
into p−1

3 groups each consisting of three values of a.
Theorem 3.4: Let p ≡ 1(mod 18) be prime. If a ∈ K∗

p ,
then there are p−1

9 elliptic curves y2 ≡ x3 + a3(mod p).
Proof: Let p ≡ 1(mod 6) be prime. We know by theorem

8 that there are p−1
3 elliptic curves y2 ≡ x3 + a3(mod p) for

a ∈ F∗
p. If also p ≡ 1(mod 9), (that is p ≡ 1(mod 18) by

the Chinese remainder theorem) then we can group these p−1
3

values of a into groups of three, consisting of {a, aw, aw2}
for a ∈ K∗

p . Therefore when p ≡ 1(mod 18), there are p−1
9

sets of the values of a, for a ∈ K∗
p .

Example 3.1: Let p = 37. Then K∗
37 =

{1, 6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36}. Here w = 26 ∈ F∗
37
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by lemma 1 and w ∈ K∗
37 by theorem 3. Then the 37−1

9 = 4
sets of the values of a can be obtained as follows:

{a = 1, aw = 26, aw2 = 10}
{a = 6, aw = 8, aw2 = 23}
{a = 11, aw = 27, aw2 = 36}
{a = 14, aw = 31, aw2 = 29}
One obtains the same elliptic curve for each of three

elements a, aw, aw2 in one of these sets.

We know by theorem 8 that there are p−1
3 elliptic curves

for a ∈ F∗
p. Now we have

Theorem 3.5: Let p ≡ 1 (mod 18) be prime. For y = 0,
there are three points with x ∈ K∗

p , on the p−1
9 of the p−1

3
curves appearing for each triple of elements a, aw, aw2.

Let p ≡ 1 (mod 6) be prime and p �= 1 (mod 18). Then
each of the p−1

3 curves consisting of a triple a, aw, aw2

contains exactly one element of K∗
p .

Proof: The first part follows from Theorem 9.
For the second part, as p �= 1 (mod 18), we know that w /∈

K∗
p by Theorem 3. By Theorem 8, the values of a between 1

and p − 1 are divided into p−1
3 sets. By Corollary 4b), only

one of a, aw, aw2 belongs to K∗
p .

Theorem 3.6: Let p ≡ 1 (mod 6) be prime. Out of these
p−1
3 curves, exactly p−1

6 contains three points (x, 0) where
x ∈ Qp, and p−1

6 contains three points (x, 0) where x /∈ Qp.
Proof: For y = 0, x3 ≡ −a3(mod p) and as the number

of quadratic and non quadratic residues are equal, we have p−1
6

sets consisting of three values of a ∈ Qp and p−1
6 consisting

of three values of a /∈ Qp, by Lemma 2.
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