Classification of the Bachet Elliptic Curves $y^{2}=x^{3}+a^{3}$ in \mathbf{F}_{p}, where $p \equiv 1(\bmod 6)$ is Prime

Nazli Yildiz İkikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul

Abstract

In this work, we first give in what fields \mathbf{F}_{p}, the cubic root of unity lies in \mathbf{F}_{p}^{*}, in Q_{p} and in K_{p}^{*} where Q_{p} and K_{p}^{*} denote the sets of quadratic and non-zero cubic residues modulo p . Then we use these to obtain some results on the classification of the Bachet elliptic curves $y^{2} \equiv x^{3}+a^{3}$ modulo p, for $p \equiv 1(\bmod 6)$ is prime.

Keywords-Elliptic curves over finite fields, quadratic residue, cubic residue.

I. Introduction

Let $w \neq 1$ be the cubic root of unity. w appears in many calculations regarding elliptic curves, e.g.[2], [3]. The authors used it to find rational points on Bachet elliptic curves $y^{2}=$ $x^{3}+a^{3}$ in \mathbf{F}_{p}, where \mathbf{F}_{p} is a field of characteristic >3.

In [9], starting with a conjecture from 1952 of Dénes which is a variant of Fermat-Wiles theorem, Merel illustrates the way in which Frey elliptic curves have been used by Taylor, Ribet, Wiles and the others in the proof of FermatWiles theorem. Serre, in [10], gave a lower bound for the Galois representations on elliptic curves over the field Q of rational points. In the case of a Frey curve, the conductor N of the curve is given by the help of the constants in the $a b c$ conjecture. In [8], Ono recalls a result of Euler, known as Euler's concordant forms problem, about the classification of those pairs of distinct non-zero integers M and N for which there are integer solutions (x, y, t, z) with $x y \neq 0$ to $x^{2}+M y^{2}=t^{2}$ and $x^{2}+N y^{2}=z^{2}$. When $M=-N$, this becomes the congruent number problem, and when $M=2 N$, by replacing x by $x-N$ in $E(2 N, N)$, a special form of the Frey elliptic curves is obtained as $y^{2}=x^{3}-N^{2} x$. Using Tunnell's conditional solution to the congruent number problem using elliptic curves and modular forms, Ono studied the elliptic curve $y^{2}=x^{3}+(M+N) x^{2}+M N x$ denoted by $E_{Q}(M, N)$ over Q. He classified all the cases and hence reduced Euler's problem to a question of ranks. In [6], Parshin obtaines an inequality to give an effective bound for the height of rational points on a curve. In [7], the problem of boundedness of torsion for elliptic curves over quadratic fields is settled.

Nazli Yildiz İkikardes is with the Balikesir University, Department of Mathematics, Faculty of Science, Balkesir-TURKEY. email: nyildiz@ balikesir.edu.tr. Gokhan Soydan, Musa Demirci, Ismail Naci Cangul are with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, emails: gsoydan@uludag.edu.tr, mdemirci@uludag.edu.tr, cangul@uludag.edu.tr. This work was supported by the research fund of Uludag University project no: F-2004/40.

If F is a field, then an elliptic curve over F has, after a change of variables, a form

$$
y^{2}=x^{3}+A x+B
$$

where A and $B \in F$ with $4 A^{3}+27 B^{2} \neq 0$ in F. Here $D=$ $-16\left(4 A^{3}+27 B^{2}\right)$ is called the discriminant of the curve. Elliptic curves are studied over finite and infinite fields. Here we take F to be a finite prime field F_{p} with characteristic $p>3$. Then $A, B \in F_{p}$ and the set of points $(x, y) \in F_{p} \times F_{p}$, together with a point o at infinity is called the set of $F_{p}-$ rational points of E on F_{p} and is denoted by $E\left(F_{p}\right) . N_{p}$ denotes the number of rational points on this curve. It must be finite.
In fact one expects to have at most $2 p+1$ points (together with o)(for every x, there exist a maximum of $2 y \mathrm{~s}$). But not all elements of F_{p} have square roots. In fact only half of the elements of F_{p} have a square root. Therefore the expected number is about $p+1$.

Here we shall deal with Bachet elliptic curves $y^{2}=x^{3}+a^{3}$ modulo p. Some results on these curves have been given in [2], and [3].

A historical problem leading to Bachet elliptic curves is that how one can write an integer as a difference of a square and a cube. In another words, for a given fixed integer c, search for the solutions of the Diophantine equation $y^{2}-x^{3}=c$. This equation is widely called as Bachet or Mordell equation. This is because L. J. Mordell, in twentieth century, made a lot of advances regarding this and some other similar equations. The existance of duplication formula makes this curve interesting. This formula was found in 1621 by Bachet. When (x, y) is a solution to this equation where $x, y \in Q$, it is easy to show that $\left(\frac{x^{4}-8 c x}{4 y^{2}}, \frac{-x^{6}-20 c x^{3}+8 c^{2}}{8 y^{3}}\right)$ is also a solution for the same equation. Furthermore, if (x, y) is a solution such that $x y \neq 0$ and $c \neq 1,-432$, then this leads to infinitely many solutions, which could not proven by Bachet. Hence if an integer can be stated as the difference of a cube and a square, this could be done in infinitely many ways. For example if we start by a solution $(3,5)$ to $y^{2}-x^{3}=-2$, by applying duplication formula, we get a series of rational solutions $(3,5),\left(\frac{129}{10^{2}}, \frac{-383}{10^{3}}\right),\left(\frac{2340922881}{7660^{2}}, \frac{113259286337292}{7660^{3}}\right), \ldots$.

Here we give a classification of Bachet elliptic curves for all values of a between 1 and $p-1$. In doing these, we often need to know when w is a quadratic or cubic residue.

Let Q_{p} and K_{p} denote the set of quadratic and cubic residues, respectively.

II. The Cubic Root of Unity Modulo $\mathrm{P} \equiv 1$ (mod 6) IS PRIME

When a prime p is congruent to 1 modulo 6 , we have a lot of nice number theoretical results concerning cubic root w of unity. First, we can say when w is an integer modulo p.

Lemma 2.1: The cubic root of unity $w=\frac{-1+\sqrt{-3}}{2}$ lies in \mathbf{F}_{p}^{*} if and only if $p \equiv 1(\bmod 6)$ is prime.

Proof: Let $w=\frac{-1+\sqrt{-3}}{2}=\frac{-1+\sqrt{3} i}{2}$. We want to show that $w \in \mathbf{F}_{p}^{*}=\mathbf{F}_{p} \backslash\{0\}$.

First, we will show that $\sqrt{-3} \in \mathbf{F}_{p}^{*}$. To do this, we will show the existence of a $t \in \mathbf{Z}_{p}$ so that $-3 \equiv t^{2}(\bmod p)$. In other words, we need to show that $\left(\frac{-3}{p}\right)=+1$, where ($(:)$ denotes the Legendre symbol. Now

$$
\begin{array}{rlr}
\left(\frac{-3}{p}\right) & =\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right) & \mathrm{T} \\
& =(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right)(-1)^{\frac{p-1}{2} \cdot \frac{3-1}{2}} & \text { byGaussReciprocitylaw }, \\
& =(-1)^{p-1}\left(\frac{p}{3}\right) & 1
\end{array}
$$

and as $p \equiv 1(\bmod 6)$, we have $\left(\frac{p}{3}\right)=\left(\frac{1}{3}\right)=+1$ and $p-1$ even, implying $\left(\frac{-3}{p}\right)=+1$.

Secondly, $(2, p)=1$ and 2 has a multiplicative inverse u in \mathbf{F}_{p}^{*}. Then $2 . u \equiv 1(\bmod p)$ and $\frac{-1+\sqrt{-3}}{2}=u \cdot(-1+\sqrt{-3})$ and as $\sqrt{-3}$ and hence $-1+\sqrt{-3}$ lies in $\mathbf{F}_{p}, w \in \mathbf{F}_{p}^{*}$. Going backwards, we obtain the result.

The following result gives us the values of p where $w \in \mathbf{Q}_{p}$.
Lemma 2.2: $w \in Q_{p} \Leftrightarrow p \equiv 1(\bmod 6)$ is prime.
Proof:

$$
\begin{aligned}
w & \in Q_{p} \Leftrightarrow \exists t \in U_{p} \text { such that } t^{2} \equiv w(\bmod p) \\
& \Leftrightarrow \exists t \in U_{p} \text { such that } t^{6} \equiv w^{3} \equiv 1(\bmod p) .
\end{aligned}
$$

Also by Fermat's little theorem, we have $t^{p-1} \equiv 1(\bmod p)$ for $t \in U_{p}$. Then $6 \mid(p-1)$ and $p \equiv 1(\bmod 6)$.

For example, $w=4,9,11,5, \ldots$ for $p=7,13,19,31, \ldots$, respectively.

Now we give the following result to determine for what prime values of p, w is a cubic residue modulo p. If $w \equiv$ $0(\bmod p)$, then $\frac{-1+\sqrt{-3}}{2} \equiv 0(\bmod p)$ giving $4 \equiv 0(\bmod p)$, a contradiction. So $w \in K_{p}^{*}$.
Theorem 2.1: Let w be the cubic root of unity. Then

$$
w \in K_{p}^{*} \Longleftrightarrow p \equiv 1(\bmod 18)
$$

Proof: $w \in K_{p}^{*} \Longleftrightarrow \exists b \in U_{p}$ such that $w=b^{3} \neq 1$, where U_{p} denotes the set of units modulo p.

$$
\begin{aligned}
& \Longleftrightarrow \exists b \in U_{p} \text { such that } w^{3}=b^{9}=1 \\
& \Longleftrightarrow \exists b \in U_{p} \text { such thatø }(b)=9 .
\end{aligned}
$$

But as $(b, p)=1$, we know by Fermat's little theorem that $b^{p-1} \equiv 1(\bmod p)$. By the definition of order, $9 \mid(p-1) \Longleftrightarrow$ $p=1+9 k, k \in \mathbf{Z}$. As p is prime, k must be even, and by letting $k=2 t, t \in \mathbf{Z}$, we get $p=1+18 t \equiv 1(\bmod 18)$.

In particular,
Corollary 2.2: Let $p \equiv 1(\bmod 6)$ be prime. Then
a) If $p \equiv 1(\bmod 18)$, then all three or none of $a, a w$ and $a w^{2}$ lie in K_{p}^{*}.
b) If $p \neq 1(\bmod 18)$, then only one of $a, a w$ and $a w^{2}$ lies in K_{p}^{*}.

Proof: a) Let $p \equiv 1(\bmod 18)$ and let $a \in K_{p}^{*}$. Then by theorem 3, $w \in K_{p}$. As K_{p}^{*} is a multiplicative group, the result follows.

If $a \notin K_{p}^{*}$, the result similarly follows.
b) Let $p \equiv 1(\bmod 6)$ and $p \neq 1(\bmod 18)$. Then by theorem 3, $w \notin K_{p}$.

Firstly, assume that $a \in K_{p}^{*}$. Then $a w$ and $a w^{2}$ do not belong to K_{p}^{*}.

Secondly, let $a \notin K_{p}^{*}$. Now we first assume that $a w \in K_{p}$. That is, there exists a $t \in U_{p}$ such that $a w \equiv t^{3}(\bmod p)$. Then $a w^{2} \equiv t^{3} \cdot w(\bmod p)$. Again by theorem 3, $a w^{2} \notin K_{p}^{*}$ as $t^{3} \in K_{p}^{*}$ and $w \notin K_{p}^{*}$. Now we finally assume that $a w^{2} \in K_{p}$. Then similarly $a w=a w^{2} \cdot w^{2}=t^{3} w^{2} \notin K_{p}^{*}$ as $t^{3} \in K_{p}$ and $w^{2} \notin K_{p}^{*}$.

Similarly,
Corollary 2.3: Let $p \equiv 1(\bmod 6)$ be prime and $p \neq$ $1(\bmod 18)$. Let $a \notin K_{p}^{*}$. Then

$$
a w^{k} \in K_{p} \Longleftrightarrow a w^{3-k} \notin K_{p}^{*}
$$

for $k=1,2$.

III. Bachet Elliptic Curves Modulo Prime $p \equiv 1(\bmod 6)$

Now we are ready to use the results obtained in part 2 to give some results regarding Bachet elliptic curves. First
Theorem 3.1: Let $p \equiv 1(\bmod 6)$ be prime. There are three values of x, for $y=0$, on the elliptic curve $y^{2} \equiv x^{3}+$ $a^{3}(\bmod p)$, having sum equal to 0 modulo p.

Proof: For $y=0, x^{3} \equiv-a^{3}(\bmod p)$ has solutions $x=$ $-a,-a w$ and $-a w^{2}$. The result then follows.

Theorem 3.2: Let $p \equiv 1(\bmod 18)$ be prime. If $a \in K_{p}^{*}$ then three values of x obtained for $y=0$ on the elliptic curve $y^{2} \equiv x^{3}+a^{3}(\bmod p)$ lie in K_{p}^{*}.

If $a \notin K_{p}^{*}$, then none of the three values of x obtained for $y=0$ on the elliptic curve $y^{2} \equiv x^{3}+a^{3}(\bmod p)$ lie in K_{p}^{*}.

Proof: For $y=0, x^{3} \equiv-a^{3}(\bmod p)$ has solutions $x=$ $-a,-a w$ and $-a w^{2}$. The result then follows.

Also we have,
Theorem 3.3: Let $p \equiv 1(\bmod 6)$ be prime. For $a \in \mathbf{F}_{p}^{*}$, there are $\frac{p-1}{3}$ elliptic curves $y^{2} \equiv x^{3}+a^{3}(\bmod p)$.

Proof: For a fixed value of a between 1 and $p-1$, we know that we obtain the same value of y for $x=a, x=a w$ and $x=a w^{2}$. Therefore the $p-1$ values of a can be grouped into $\frac{p-1}{3}$ groups each consisting of three values of a.

Theorem 3.4: Let $p \equiv 1(\bmod 18)$ be prime. If $a \in K_{p}^{*}$, then there are $\frac{p-1}{9}$ elliptic curves $y^{2} \equiv x^{3}+a^{3}(\bmod p)$.

Proof: Let $p \equiv 1(\bmod 6)$ be prime. We know by theorem 8 that there are $\frac{p-1}{3}$ elliptic curves $y^{2} \equiv x^{3}+a^{3}(\bmod p)$ for $a \in \mathbf{F}_{p}^{*}$. If also $p \equiv 1(\bmod 9)$, (that is $p \equiv 1(\bmod 18)$ by the Chinese remainder theorem) then we can group these $\frac{p-1}{3}$ values of a into groups of three, consisting of $\left\{a, a w, a w^{2}\right\}$ for $a \in K_{p}^{*}$. Therefore when $p \equiv 1(\bmod 18)$, there are $\frac{p-1}{9}$ sets of the values of a, for $a \in K_{p}^{*}$.

Example 3.1: Let $p={ }^{p}$. Then $K_{37}^{*}=$ $\{1,6,8,10,11,14,23,26,27,29,31,36\}$. Here $w=26 \in \mathbf{F}_{37}^{*}$
by lemma 1 and $w \in K_{37}^{*}$ by theorem 3 . Then the $\frac{37-1}{9}=4$ sets of the values of a can be obtained as follows:

$$
\begin{aligned}
& \left\{a=1, a w=26, a w^{2}=10\right\} \\
& \left\{a=6, a w=8, a w^{2}=23\right\}
\end{aligned}\left\{\begin{array}{l}
\left\{a=11, a w=27, a w^{2}=36\right\} \\
\left\{a=14, a w=31, a w^{2}=29\right\}
\end{array}\right.
$$

One obtains the same elliptic curve for each of three elements $a, a w, a w^{2}$ in one of these sets.

We know by theorem 8 that there are $\frac{p-1}{3}$ elliptic curves for $a \in \mathbf{F}_{p}^{*}$. Now we have

Theorem 3.5: Let $p \equiv 1(\bmod 18)$ be prime. For $y=0$, there are three points with $x \in K_{p}^{*}$, on the $\frac{p-1}{9}$ of the $\frac{p-1}{3}$ curves appearing for each triple of elements $a, a w, a w^{2}$.

Let $p \equiv 1(\bmod 6)$ be prime and $p \neq 1(\bmod 18)$. Then each of the $\frac{p-1}{3}$ curves consisting of a triple $a, a w, a w^{2}$ contains exactly one element of K_{p}^{*}.

Proof: The first part follows from Theorem 9.
For the second part, as $p \neq 1(\bmod 18)$, we know that $w \notin$ K_{p}^{*} by Theorem 3. By Theorem 8, the values of a between 1 and $p-1$ are divided into $\frac{p-1}{3}$ sets. By Corollary 4b), only one of $a, a w, a w^{2}$ belongs to K_{p}^{*}.
Theorem 3.6: Let $p \equiv 1(\bmod 6)$ be prime. Out of these $\frac{p-1}{3}$ curves, exactly $\frac{p-1}{6}$ contains three points $(x, 0)$ where $x \in Q_{p}$, and $\frac{p-1}{6}$ contains three points $(x, 0)$ where $x \notin Q_{p}$.

Proof: For $y=0, x^{3} \equiv-a^{3}(\bmod p)$ and as the number of quadratic and non quadratic residues are equal, we have $\frac{p-1}{6}$ sets consisting of three values of $a \in Q_{p}$ and $\frac{p-1}{6}$ consisting of three values of $a \notin Q_{p}$, by Lemma 2 .

References

[1] Naml1, D., Cubic Residues, PhD Thesis, Balikesir University, (2001)
[2] Demirci, M. \& Soydan, G. \& Cangül, I. N., Rational points on the elliptic curves $y^{2}=x^{3}+a^{3}(\bmod p)$ in F_{p} where $p \equiv 1(\bmod 6)$ is prime, Rocky J. of Maths, (to be printed).
[3] Soydan, G. \& Demirci, M. \& Ikikardeş, N. Y. \& Cangül, I. N., Rational points on the elliptic curves $y^{2}=x^{3}+a^{3}(\bmod p)$ in F_{p} where $p \equiv 5$ ($\bmod 6)$ is prime, (submitted).
[4] Silverman, J. H., The Arithmetic of Elliptic Curves, Springer-Verlag, (1986), ISBN 0-387-96203-4.
[5] Silverman, J. H.,Tate, J., Rational Points on Elliptic Curves, SpringerVerlag, (1992), ISBN 0-387-97825-9.
[6] Parshin, A. N., The Bogomolov-Miyaoka-Yau inequality for the arithmetical surfaces and its applications, Seminaire de Theorie des Nombres, Paris, 1986-87, 299-312, Progr. Math., 75, Birkhauser Boston, MA, 1998.
[7] Kamienny, S., Some remarks on torsion in elliptic curves, Comm. Alg. 23 (1995), no. 6, 2167-2169.
[8] Ono, K., Euler's concordant forms, Acta Arith. 78 (1996), no. 2, 101123.
[9] Merel, L., Arithmetic of elliptic curves and Diophantine equations, Les XXemes Journees Arithmetiques (Limoges, 1997), J. Theor. Nombres Bordeaux 11 (1999), no. 1, 173-200.
[10] Serre, J.-P., Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.

