
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

546

Abstract— This paper presents a mark-up approach to service

creation in Next Generation Networks. The approach allows
deriving added value from network functions exposed by
Parlay/OSA (Open Service Access) interfaces. With OSA
interfaces service logic scripts might be executed both on call-
related and call-unrelated events. To illustrate the approach XML-
based language constructions for data and method definitions,
flow control, time measuring and supervision and database access
are given and an example of OSA application is considered.

Keywords— Service creation, mark-up approach.

I. INTRODUCTION

N Next Generation Networks (NGN) the services and
applications are the greatest revenue- generating poten-

tial. As a network of services, NGN makes clear separation
between services and underlying transport technology. The
services will be provided through a common, unified and
flexible control environment over multiple types of
transport.

It is difficult to predict which will be the most attractive
application, so the focus is on service development tools
making the process of service creation efficient, easy and
productive one, and thus reducing time-to-market.

Evaluation criteria used for classification and
comparison of different service creation technologies are
shown in [1]. These criteria involve supported network
capabilities, interface abstraction, kind of interface and
description language, suitability for 3rd party development
and industry support. A major prerequisite to rapid service
development is open service access to network capabilities
through standardized application programming interfaces
(APIs). These APIs provide application developers with
programmability of resources such as protocol stacks and
data bases, by defining these resources in terms of objects
and methods, data types and parameters that operate on
those objects. Providing different levels of functional
abstraction the APIs hide network specificity.

Several industry groups developed such open APIs,
including Parlay/OSA (Open service access) and JAIN
(Java applications for intelligent networks).

Manuscript received June 30, 2006. This work was supported in part by
the research project 709 NI-7 Component development in next generation
networks, Funded by TU-Sofia, Bulgaria, (2006).

I. I. Atanasov is with the technical University of Sofia, 8 bld Kl..
Ohridski, 1000 Sofia, BG; e-mail: iia@ tu-sofia.bg), tel+359 2 965 2050

E. N. Pencheva is with the technical University of Sofia, 8 bld Kl..
Ohridski, 1000 Sofia, BG; e-mail:enp@ tu-sofia.bg).

Although intended for UMTS networks, the principles
of Parlay/OSA are applicable in the NGN domain as well.
Parlay/OSA APIs provide a standard, object-oriented
component model that enhances the traditional intelligent
network approach of defining service building blocks with
reusable units of functionality. Many exciting new services
for NGN will derive added value from combining network
functions such as call and data session control, mobility,
user interaction, messaging and charging.

The JAIN initiative developed set of APIs for
programming services in public networks. JAIN APIs do
not support the whole variety of network capabilities like
OSA APIs, and are mainly oriented to call control and user
interaction.

While OSA APIs and JAIN APIs are protocol agnostic,
there exist other service creation technologies based on
Session Initiation Protocol (SIP) such as SIP Servlet and
JAIN-SIP Lite. The network capabilities exposed by JAIN
SIP Lite API and SIP Servlet API are call control,
presence and availability and instant messaging.

While those APIs can be implemented by programming
languages, eXtensible Markup Language (XML)-based
languages possess many attractive features making them
applicable to NGN service creation [2, 3]. XML-based
scripting languages are easy to learn, platform and
programming language independent. XML allows a user to
define his or her own tags and can be easily adapted to
specific application domain. Services scripts can be
downloaded and interpreted during the run time.

Several XML-based languages such as CPL, CCXML,
VoiceXML and SCML for service creation are proposed
[4]. These languages can be used to create applications
combining network functions mainly for call control and
user interaction, but none of them do not support the full
set of network capabilities exposed by Parlay/OSA APIs.

In this paper we present in brief an XML-derived
approach to NGN service creation [5, 6, 7 and 8]. To
illustrate how services might use the palette of network
functionalities exposed by OSA, we define mark-up
constructions within the framework of Service Logic
Processing Language (SLPL). Service scripts can derive
added value from network capabilities using nodes for
invocation of method supported by OSA interfaces. In
SLPL, nodes for flow control give the language expressing
power of programming languages. As in telecom
applications the notion of time is important and the use of
timers is frequent, the markup approach offers means for
time measuring and supervision. Further, NGN services
will be more customized and they become increasingly
data centric, so means for database access are provided

A Mark-Up Approach to Add Value

Ivaylo I. Atanasov, and Evelina N.Pencheva

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

547

also. The next sections of the paper address the overall
structure of SLPL service script, language construction for
data type and method definitions, flow control and also
means for time supervision and database access.

To illustrate the use of the mark-up approach an
example of service logic script described in SLPL is given.
Some aspects of the language translator concerning the
usage of the SLPL are discussed.

II. SERVICE LOGIC SCRIPT STRUCTURE

The structure of a SLPL service script is modular and
encompasses definition part and executive part. The node
‘logic’ is used to denote logic beginning and logic end. In
the definition part enclosed by ‘definition’ node types’
definition, variables’ definition and definition of the
methods supported by the application-side (callback)
interfaces are given. The executive part enclosed by
‘execute’ node is built of invocations of methods supported
by the network-side interfaces, expectations of results and
statements for flow control, assignment statements and
others.

A. Definition of Types, Variables and Methods

The types’ definition involves simple or/and complex
types. The variables’ definition enlists variables where each
variable is defined by name and type.

SLPL supports all simple and complex types defined in
OSA and provides appropriate language constructions For
example, Fig.1 shows the SLPL definition of a tagged
choice of data elements.

<union name=”TpAoCOrder”
switch=”TpCallAoCOrderCategory”>

<on val=”P_CHARGE_ADVICE_INFO”>
<element name=”ChargeAdviceInfo”

type=” TpChargeAdviceInfo”/>
</on>
<on val=”P_CHARGE_PER_TIME”>

<element name=”ChargePerTime”
type=”TpChargePerTime”/>

</on>
<on val=”P_CHARGE_NETW ORK”>

<element name=”NetworkCharge”
type=”string”/>

</on>
</union>

Fig. 1 SLPL description of a tagged choice

The declaration of variables of data types defined
follows the similar approach. For example, Fig.2 presents a
SLPL declaration of a variable of numbered set of data
element type.

The methods’ definition starts with the node ‘methods’
followed by a list of definitions of methods which belong to
the application i.e. callback interfaces in terms of OSA.
Each OSA interface method is defined by its parameters,

<id name=”userAddress” type=”TpAddressSet”>
<sequence>

<item index=”0”>
<structure>

<element name=”plan”
value=”P_ADDRESS_PLAN_IP”/>

<element name=”addrstring”
value = “164.23.7.3”/>

<element name=”name” value = “”/>
<element name=”presentation” value = “1”/>
<element name=”screening” value = “1”/>
<element name=”subaddrstring” value = “”/>

</structure>
</item>
<item index=”1”>

<structure>
<element name=”plan”

value=”P_ADDRESS_PLAN_�164”/>
<element name=”addrstring”

value = “+359888010101”/>
<element name=”name” value = “”/>
<element name=”presentation” value = “2”/>
<element name=”screening” value = “2”/>
<element name=”subaddrstring” value = “”/>

</structure>
</item>

</sequence>
</id>

Fig. 2 SLPL declaration of a variable of numbered set of
data elements type

returned type and exceptions. The method body is used to
get the results returned by network-side interfaces and to
store them in local variables.

B. Flow Control

The executive part denoted by ‘execute’ is built of
statements. There are different types of statements such as:
statements for flow control, assignment statements, method
invocations, statements for catching exceptions, synchroni-
zing constructions and others. Before a method of
network-side interface is invoked, values for the actual
method arguments have to be assigned.

To request a service from network-side interfaces, the
application logic has to invoke its methods (Fig.3). When a
method is invoked its interface is specified and actual
values of its argument are given.

The ‘try-catch’ statement encompasses the method
invocation and enlists exceptions that can arise and the
statements processing them.

When the application has to wait for the result of
method invocation (synchronous communications) the
‘wait’-statement is used. The ‘wait’-statement enlists the
expected events and the maximum time to wait. By
invocation of application-side interface methods, the
network-side interfaces return the result of the requested
service. Flow control statements such as ‘if’-statement,
‘case’- statement and ‘while’-statement are used to process
results returned. ‘If’-statement is used to check a logical

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

548

<invoke>
<interface name=”IpUserLocation”
< method name = “locationReportReq”>

<arguments>
<argument name = “appLocation”

valref = “userLocationReference”/>
<argument name = “users”

valref = “usersAddress”
</arguments>
<returns>

<return type = “TpAssignmentID”/>
</returns>
<raises>

<exceptions>
<exception type =

“TpCommonExceptions”/>
<exception name =

“P_APPLICATION_NOT_ACTIVATED”/>
<exception name =

“P_INFORMATION_NOT_AVAILABLE”/>
<exception name =

“P_INVALID_INTERFACE_TYPE”/>
</exceptions>

</raises>
</method>
</interface>
<set refid=”call_assignment”/>

</invoke>

Fig. 3 SLPL definition of method invocation

condition and with ‘case’-statement decision may be done
based on multiple choices. ‘While’-statement is used when a
set of iterations has to be repeated till a predefined
condition is evaluated to be true.

C. Time Measuring and Supervision

In telecom applications the notion of time is important
and the use of timers is frequent. The normal use of time
and timers is when modeling delays, supervising functions
to be performed and measuring intervals. In SLPL, the
concept of ‘real’ time is adopted. This notion of time exists
and the service logic may obtain time measurements using
time constructions of the language. The notion of the ‘real’
time acquires the value of the current time by two parame-
terless operations, ‘CurrentDate’ and ‘CurrentTime’. On
contrary with OSA in SLPL time related type are based on
simple type Float that provides greater flexibility. Delays
and supervisions are obtained by the use of ‘Timer’, which
also is a predefined type. Methods ‘SetDate’, ‘SetTime’ and
“Reset’ that support timer operation are provided.

D. Database Access

In NGN services and data they require will be
distributed among application servers. Service execution
may be done on an external server and data related to the
service may be stored on remote host in a database.

The SLPL provides service logic with means for data-
base access. The method ‘DB_modify’ is used to update,

insert or delete record(s) in an existing table and the type it
returns corresponds to the number of modified records.
The method ‘DB_retrieve’ is used to retrieve data and the
type it returns consists of database response (for example,
the requested information). The database query is in a form
of SQL statement and in method invocation this query is
an argument of type string. As the method ‘DB_retrieve’
returns a string, this string has to be converted in a
reasonable SQL response. This conversion is done by
another method ‘DB_conversion’ which returns a set of
structures representing records retrieved from the database.
For each SQL statement a different ‘DB_conversion’
method is defined that reflects the structure of logical
records returned in database response.

In order to give an example for usage of SLPL
language construction, in the next section we consider an
application that exploits OSA APIs and illustrates 3rd party
service control aspects of OSA.

III. SERVICE LOGIC EXAMPLE

Let us consider an example of ‘quick toll’ service that
exploits OSA interfaces. A logistic company wants to
speed up the transition of the company’s vehicles through
the toll gates of overloaded highway. The speed-up effect
is achieved by mobile payment of tolls. The ‘subscribers’
of the service are company vehicles which are equipped
with mobile devices. The ‘quick toll’ service registers the
passing through any of the toll gates of the highway and
charges the respective mobile subscriber.

A. Service Logic Implemented by OSA Interfaces

Let us suppose that the site of any of the toll gates is
covered by a cell. When a company vehicle enters the cell
covered by a toll gate the toll is reserved on the
subscriber’s account. When the company vehicle leaves
the cell covering the next site of the toll the subscriber’s
account is charged with the amount due. The service
exploits the following OSA interfaces:
• Mobility: to determine entering in and leaving from the

highway;
• Charging: to charge the subscriber’s account with the

amount due.
Further, to illustrate the usage of SLPL time

constructions let us assume that if a vehicle enters the
highway in the middle of the week on Wednesday and
Thursday or between 10 p.m. and 5 a.m. when the traffic is
low, then the toll is less.

The complete cycle for using OSA service consists of
three phases, authentication, service selection and service
use. Here we consider the third phase only.

To mark entering and leaving the highway the user
location interrogation triggered request is used. To charge
the subscriber we have to define two trigger location
reporting criteria – one for entering the highway and the
other for leaving the highway. Having the assumption of
two areas covering the toll gates and considering the two-
way traffic through the gates we define both criteria

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

549

:(Logical View::

IpAppLogic)

:IpAppTriggered
UserLocation

:IpCharging
Manager

(1) new()

triggeredLocationReportingStartReq()(2)

(3)
(4)

triggeredLocationReport ()
‘forward event’

:IpAppCharging
Session

:IptriggeredUser
Location

:IpCharging
Session

(6)

createChargingSession()

(7)

(8)

directDebitAmountReq()

directDebitAmountRes()

(13) release()

new()

new()

(5)
triggeredLocationReport ()

‘forward notification’ (11)

(9)

(12)

‘forward event’

(10)

Fig. 3 Sequence diagram for ‘Quick toll’ service

triggering a location report are set as entering area in the
beginning. When the subscriber passes through any of the
toll gates, the other data element that defines the criteria
triggering a location report is changed to leaving area.

The sequence diagram based on 3GPP TS 29.198-xx
Technical Specification for ‘quick toll’ service is shown in
Fig.3. Service scenario includes the following steps:
1. When the service is activated the application sets the

criteria triggering a location report and creates a local
object implementing the IpAppTriggeredUserLocation
interface. This object will receive response messages
form IpTriggeredUserLocation object.

2. The application starts triggered location reporting for
the subscribers (the company vehicles).

3. When a subscriber enters the highway a triggered
location report is passed to the corresponding callback
object (the identity of the radio cell might be enough for
the mobile payment).

4. The triggered location report is forwarded to the
application. Having information for entering the
highway, the application sets leaving criteria, checks if
the day is Wednesday or it is Thursday or the time is
between 10 p.m. and 5 a.m. and determines the toll
amount. Then the application waits for a triggered
location report for leaving the highway.

5. When the subscriber enters the area of leaving the
highway, the triggered location report is sent.

6. The triggered location report is forwarded to the
application.

7. The application sets both criteria that specify triggering
a location report as entering the highway and creates a
local object implementing the IpAppChargingSession

interface. This object will receive response messages
from the IpChargingSession object.

8. The application orders the creation of charging session.
9. A new object IpChargingSession is created.
10. Then the application requests to charge the user with the

toll amount.
11. The payment is acknowledged.
12. The acknowledgment id forwarded to the application.

The application releases all the resources associated with
the reservation and session.

Next we present the SLPL service logic script in brief.

B. SLPL Service Logic Script

The framework of the service logic script in SLPL is
shown in Fig. 4.

In the definition part variables and methods are defined.
The variables include the following: variables which will be
used for setting values for actual parameters of methods that
belong to network-side interfaces; variables, in which the
methods that belong to application-side interfaces will
receive results; and local variables for service logic. The
methods’ definition includes definitions of methods that
belong to application-side interfaces such as those depicted
in Fig.4 (‘triggeredLocationReport’ and ‘directDebit-
AmountRes’) and methods like database query handler and
database error handler for interaction with an external
application database storing data for geographical position
of the toll gates (not presented shown in Fig.4).

The executive part consists mainly of method
invocations, pending results and processing of data. The first
method invoked is ‘triggeredLocationReportStartReq’ by
which the application starts triggered location reporting.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

550

Before method invocation the actual method parameters are
set. The first ‘wait’ statement is used to receive a triggered
location report for entering the highway. The criteria
triggering location report for leaving the highway are set.
The second ‘wait’ statement is used to receive a triggered
location report for leaving the highway. The criteria for
entering highway are set. The value of ‘theToll’ is set to 10
Euros (normal tariff). Then the method ‘DayOfWeek’ is
invoked with an argument CurrentDate and the result is
assigned to the variable ‘Today’. If the value of ‘Today’ is
equal to ‘WE’ or ‘TH’, then the toll is 5 Euros. The value of
“theMoment” is set to CurrentTime and if it is between 10
p.m. and 5 a.m., then the toll is 5 Euro. Then the method
‘createChargingSession’ is invoked to create charging
session. The method ‘debitAmountReq’ is invoked to
charge the subscriber account with the toll. The third ‘wait’
statement is used to await the result of the payment. The
method ‘release’ is invoked to free all the resources
associated with the charging session.

IV. SLPL USABILITY ASPECTS

Language usability depends on availability of language
supporting tools – concerning scripting languages this is the
interpreter. To achieve portability SLPL interpreter is
written in Java. Another reason for Java choice as
implementation language is that we use Ericsson Network
Resource Gateway SDK (version R5A02) [9] that simulates
Parlay/OSA interfaces to verify the SLPL capabilities. The
interface method calls of OSA interface simulator are form
of Java code.

Data types and methods definitions in the definition part
of SLPL service logic script is time consuming and tedious
task if done manually. In OSA the structure of data types
used in interfaces is composite and usually nest liked and
there are multiple arguments in interface methods. Data
types and methods in OSA are described in IDL (Interface
Description Language). To reduce time and effort in service
script development, a translator is developed that translates
IDL descriptions in SLPL descriptions. The functionality of
that translator is not restricted to OSA IDL descriptions
only – whatever IDL description is passed as input, the
translator generates the corresponding SLPL description.

As the idea behind the development of SLPL is to be
extensible without reprogramming of the translator
producing SLPL descriptions, a ‘translator generator’ is
developed i.e. a translator that generates translators. This
translator generator is supplied with language grammar
rules described in Backus Naur Form (BNF) and as output a
Java code is generated that ‘understands’ language syntax.
For example, if we pass BNF rules of IDL and BNF rules of
SLPL as input then we have a Java code that makes IDL to
SLPL translation as output. Once generated the IDL
descriptions of OSA interface data types and methods can
be used as interfaces dependant parts in SLPL service logic
scripts and they form the SLPL programming library.
Further this translator generator produces the Java code of
SLPL interpreter also. Thus adding new rules in SLPL

grammar that extend or change language expressive power
there is no need to rewrite the SLPL interpreter and the
translator that translates an IDL description into
corresponding SLPL description.

V. CONCLUSION

A new mark-up approach to NGN service creation is
suggested. The approach is based on OSA interfaces
addressing the full range of network capabilities such as call
and data session control, mobility, user interaction charging
and so on. Language constructions that illustrated approach
implementation are defined. OSA APIs provide medium
level of abstraction and developers need some telecommu-
nication knowledge when linking components that offer
APIs, but as SLPL posses all attractive feature of scripting
languages is enables rapid prototyping and rapid application
development.

Unlike traditional scripting languages the expressive
power of SLPL draws it near to programming languages.
SLPL nodes for flow control provide developers with
flexibility in logic processing. Special keywords are defined
as to describe the time-related types and to facilitate the
manipulation of current moment and current date values.
SLPL constructions for database manipulation and query
enable service logic to consult external database to retrieve
service specific data.

Considering the necessity of provisioning easy-to-use
and cost effective tools for value-added service creation the
SLPL can be regarded as one of ways to NGN intelligence.

REFERENCES

[1] Falcarin, P. Licciardi, C.A. (2003) Analysis of NGN service creation
technologies, IEC Annual Review of Communications, vol. 56.

[2] Bakker, J. Tweedie, D. and Umnehopa, M. (2004) Evolving Service
Creation; New developments in network Intelligence, Teletronikk

[3] Bakker, J. Jain, R. Next Generation Service Creation Using XML
Scripting Languages, www.argreenhouse.com/papers/jlbakker/ bakker-
icc2002.pdf

[4] Bakker, J-L., R. Jain, SCML, Next Generation Service Creation Using
XML Scripting Languages, www.argreenhouse.com/papers/
jlbakker/bakker-icc2002.pdf (accessed November 2004)

[5] Atanasov I., New XML-based Language for OSA User Interaction
Interface Description (2005), TELECOM’2005, Varna, Bulgaria,
Proceedings pp. 195-200.

[6] Pencheva, E. Atanasov, I. (2005) New XML-based Language for OSA
Mobility Interface Description, TELECOM’2005, Varna, Bulgaria,
Proceedings, pp 201-207.

[7] Atanasov, I. Pencheva, E. (2005) Service creation using a new mark-
up language, TELSIKS’2005, Nish, Serbia and Monte Negro,
Proceedings, pp 575-578

[8] Atanasov I., Pencheva, E. (2005) A new service logic processing
language, ELECTRONICS’2005, Sozopol, Bulgaria, Proceedings, pp.
150-155, book 1

[9] Ericsson Network Resource Gateway SDK (version R5A0)
http://www.ericsson.com/mobilityworld/sub/open/technologies/parla

y/tools/parlay_sdk (accessed March 2005)
[10] 3GPP TS 29.198-x, (December 2004) Open Service Access (OAS)

Application Programming Interface (API);.
[11] Lennox, J. Wu, X. (2004) CPL: A Language for User Control of

Internet Telephony Services, RFC 3880, [WWW
document](accessed March 2004)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

551

�������	
			�
���
��	
						��������	
						�����������	
									��
	
�������
���	����������	��		
									��
	
������������
��	�����������	��		
									��
	
�������������	������������	��		
									�� 	!"#$"%&'()''�'�	�*#	�'�+*�(*�	,$���������
-���&������
./	,$�$�0�����
���
����./		
																,$�0�����
�(�����
.	$)�'#�"0'(")�	�+'$#	0"&&%"01(�	
						������������	
						������
��	
									�� 	�*%$&$�2	3$�"����������
-���&������
44��������
&������
#�����3		 �	
									��50+"#6$)6	3$�"��0�����
�(�����
44
����������"��7
�#��3		 �	
						�������
��	
			��
���
��	
			��8��7���	
						�� 	�#"�'9*#1	"-�+')�$0"�$*)	 �		

�� 			:;	('�	<"#"�'�'#(;		
															=;	$)!*1'	��������
&������
#������
�(����#�>	 �	
						�?�����	
						�� 		#'0'$!'	�#$66'#'�	&*0"�$*)	#'<*#�	�*#	')�'#$)6	�+'	+$6+9"2	 �	
						�� 		('�	&'"!$)6	"#'"	0#$�'#$"	 �	
						�?�����	
						�� 		#'0'$!'	�#$66'#'�	&*0"�$*)	#'<*#�	�*#	&'"!$)6	�+'	+$6+9"2 �	
						�� 		('�	')�'#$)6	"#'"	0#$�'#$"	 �	
						����	����
�@�������@	����@:A@��	
						��
��B��	
									������
	
����@���*�9��B@�	
											����7��
���	
											����7��
�	
����@�C
���@�	
														����7��	
																	�07���
�������	
														�����7��	
											�����7��
��	

											�����7��
���	
											����7�
��	����	����
�@��
��@��	�����7�
��	
									�������
�	
					���
��B��
					�����	����
�@��
��@�	
								��
	����@9'@�		
											����	����
�@�������@	����@D@��	
								���
�	
								��
	����@�+@	�		
											����	����
�@�������@	����@D@��	
								���
�	
					�������	
					����	����
�@�������
�@�	
									����7��	
												�07���
�������	
									�����7��	
					������	
					����	
									���

����
	�����@�������
�	%�9	==4AA	")�	D4AA@��	
									����
�	
													����	����
�@�������@	����@D@��	
									�����
�	
					�����	
					�� 	('�	<"#"�'�'#(")�	$)!*1'	,������0�����
�(�����
.	�'�+*�	 �	
					�?�����	� 	#'0'$!')*�$�$0"�$*)	�*#	('(($*)	0#'"�$*)	 �	
					�� 	('�	<"#"�'�'#(")�	$)!*1'	,
����������"��7
�#�>.	�'�+*�	 �	
					�?�����	� 	#'0'$!'	"01)*9&'�6'�')�	�*#	<"2�')� �	
					�� 	('�	<"#"�'�'#(")�	$)!*1'	,�������.	�'�+*�	 �	
					�?�����	
			���8��7���	
��������	

Fig. 4 Simplified service logic script for ‘quick toll’

