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The ratios between the spectral norm, the numerical
radius and the spectral radius

Kui Du

Abstract—Recently, Uhlig [Numer. Algorithms, 52(3):335-353,
2009] proposed open questions about the ratios between the spectral
norm, the numerical radius and the spectral radius of a square matrix.
In this note, we provide some observations to answer these questions.
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I. INTRODUCTION

THE numerical radius w(A) of an n× n matrix A is the
real number

w(A) = max
z∈F (A)

|z|,

where F (A) denotes the field of values (or numerical range)
of A, defined by

F (A) = {x∗Ax : x ∈ C
n, ‖x‖2 = 1}.

The spectral radius ρ(A) of A is the real number

ρ(A) = max
z∈σ(A)

|z|,

where σ(A) denotes the spectrum of A. The spectral norm of
A is defined by

‖A‖2 = max
‖x‖2=1

‖Ax‖2.
In this note, we consider the ratios

s(A) = ‖A‖2/w(A)
and

τ(A) = w(A)/ρ(A).

It is well known that

0 ≤ ρ(A) ≤ w(A) ≤ ‖A‖2 ≤ 2w(A).

Thus,
1 ≤ s(A) ≤ 2

and
1 ≤ τ(A) ≤ ∞.

Here we employ the convention that τ(A) = ∞ for ρ(A) = 0.
Obviously, s(zA) = s(A) and τ(zA) = τ(A) for all z �= 0. It
follows from ρ(Am) = [ρ(A)]m and w(Am) ≤ [w(A)]m that
τ(Am) ≤ [τ(A)]m.

Recently, Uhlig [13] proposed the questions: What do the
ratios s(A) and τ(A) indicate about the matrix A? What can
one conclude about A when these ratios are large or very
different, or when they are nearly equal? In this note, we
provide some observations to answer these questions.
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II. THE RATIOS BETWEEN THE SPECTRAL NORM, THE

NUMERICAL RADIUS AND THE SPECTRAL RADIUS

A. The extreme cases τ(A) = 1, s(A) = 1 and s(A) = 2

In this subsection, we review the existing results for the
extreme cases τ(A) = 1, s(A) = 1 and s(A) = 2, respectively.
We focus on the relation between s(A) and τ(A).

A matrix A is said to be spectral if w(A) = ρ(A), i.e.,
τ(A) = 1. The spectral matrices have been investigated by
several researchers. We have the following results (see [5] and
[9, p.60]).

Proposition 1. Let A ∈ C
n×n such that τ(A) = 1.

• If n ≤ 2, then s(A) = 1, and A is a normal matrix.
• If n > 2, then A is unitarily similar to a triangle matrix

of the form [
Λk 0
0 B

]
, (1)

where 1 ≤ k ≤ n,

Λk =

⎡
⎢⎣
λ1

. . .
λk

⎤
⎥⎦ ,

B =

⎡
⎢⎣
λk+1 ∗ ∗

. . . ∗
λn

⎤
⎥⎦ ,

and
ρ(B) < ρ(A) = |λ1| = · · · = |λk|,

w(B) ≤ ρ(A).

Furthermore, if ρ(A) < ‖B‖2,

1 < s(A) ≤ 2;

otherwise, s(A) = 1.

A matrix A is said to be radial if w(A) = ‖A‖2, i.e.,
s(A) = 1. We have the following results (see [9, p.45]).

Proposition 2. Let A ∈ C
n×n such that s(A) = 1. Then

τ(A) = 1.

• If n ≤ 2, then A is a normal matrix.
• If n > 2, then A is unitarily similar to a block diagonal

matrix of the form (1) such that ρ(B) < ρ(A) and
‖B‖2 ≤ ρ(A).

Remark 3. Note that s(A) ≈ 1 does not imply that τ(A) ≈ 1.
See Example 4.
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Example 4 (A scaled Jordan block). Let

Jα
n (λ) =

⎡
⎢⎢⎢⎢⎣

λ α

λ
. . .
. . . α

λ

⎤
⎥⎥⎥⎥⎦
n×n

= λI +N (2)

be a matrix of order n > 1. Then F (Jα
n (λ)) is a disk centered

at λ with radius |α| cos π
n+1 (see [10, Theorem 2.1]). We have

ρ(Jα
n (λ)) = |λ|, w(N) = |α| cos π

n+1 , w(Jα
n (λ)) = |λ| +

|α| cos π
n+1 and ‖Jα

n (λ)‖2 ≤ |λ|+ |α|. Then

τ(Jα
n (λ)) = 1 +

|α|
|λ| cos

π

n+ 1
,

s(Jα
n (λ)) ≤

1 + |α/λ|
1 + |α/λ| cos π

n+1

≤ 1

cos π
n+1

.

Thus, when n → ∞ and |α|/|λ| → ∞, s(Jα
n (λ)) → 1.

However, τ(Jα
n (λ)) → ∞.

Propositions 1 and 2 give the answers of the questions
((1)(2)) of [13, p.352]. When s(A) = 2, we have the following
result (see [8, p.18-7]).

Proposition 5. Let A ∈ C
n×n such that s(A) = 2. Then A is

unitarily similar to a block diagonal matrix of the form[ ‖A‖2J2(0)
B

]
,

where J2(0) =

[
0 1
0 0

]
and w(B) ≤ ‖A‖2

2
.

By Proposition 5, it is easy to show that in the case s(A) =
2, 1 ≤ τ(A) ≤ ∞.

B. Upper bounds for s(A) and τ(A)

Let

A = UΣV ∗, Σ = diag(σ1, σ2, . . . , σn) (3)

be a singular value decomposition of A, where U and V are
unitary and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Denote the 2-norm
condition number of a nonsingular matrix A by

κ(A) := ‖A‖2‖A−1‖2 = σ1/σn.

Proposition 6. Let A ∈ C
n×n be as in (3) such that σn >

0. Then s(A) ≤ κ(A) and τ(A) ≤ κ(A). In particular, the
following statements are equivalent:

(i) s(A) = κ(A).
(ii) τ(A) = κ(A).

(iii) κ(A) = 1.
(iv) A is a nonzero multiple of a unitary matrix.

Proposition 7. Let A ∈ C
n×n be as in (3) such that σn > 0

and s(A) = τ(A). Then s(A) = τ(A) ≤ √
κ(A) and the

equality holds if and only if κ(A) = 1.

Note that σn ≤ ρ(A) ≤ w(A) ≤ ‖A‖2 = σ1 and if ρ(A) =
σn > 0 then σ1 = · · · = σn. The proofs of Propositions 6 and
7 are trivial.

By Proposition 6, a large τ(A) implies that A is ill con-
ditioned and if A is well conditioned, i.e., κ(A) ≈ 1, then
s(A) ≈ 1 and τ(A) ≈ 1. For a diagonalizable (singular
or nonsingular) nonzero matrix A = XΛX−1, we have
s(A), τ(A) ≤ ‖A‖2/‖Λ‖2 ≤ κ(X). Thus, a large τ(A)
implies that any eigenvector basis of the diagonalizable matrix
A is ill conditioned.

Remark 8. Let A ∈ C
n×n be singular. The generalized 2-

norm condition number is defined by κ†(A) = σ1/σr, where
r = rank(A) is the rank of A. In general, we do not have
s(A) ≤ κ†(A) and τ(A) ≤ κ†(A). For example, let

A =

⎡
⎣ ε 1 0

0 ε 1
0 0 0

⎤
⎦ .

We have s(A) → √
2, τ(A) → ∞ and κ†(A) → 1 as ε→ 0.

Let
A = U(Λ +N)U∗ (4)

be a Schur decomposition of A, where U is a unitary matrix,
Λ is a diagonal matrix whose diagonal elements are the
eigenvalues of A and N is a strictly upper triangular matrix.

Proposition 9. Let A ∈ C
n×n be as in (4). Then

w(A) ≤ ρ(A) + w(N),

and if ρ(A) �= 0,

τ(A) ≤ 1 + w(N)/ρ(A).

Proof: Since U is unitary F (A) = F (Λ +N) [9, p.11].
Then

w(A) = max
‖x‖2=1

|x∗(Λ +N)x|
≤ max

‖x‖2=1
|x∗Λx|+ max

‖x‖2=1
|x∗Nx|

= ρ(A) + w(N).

The proof of the second inequality is trivial.
The bound in Proposition 9 is attainable. For example, let

Jα
n (λ) be as in (2). Assume λ �= 0. We have

τ(Jα
n (λ)) = 1 +

w(N)

ρ(Jα
n (λ))

.

Another obvious bound for τ(A) is τ(A) ≤ ‖A‖2/ρ(A).
When τ(A) = ‖A‖2/ρ(A), i.e., s(A) = 1, we have τ(A) = 1
(see Proposition 2).

III. A SUFFICIENT CONDITION FOR 0 ∈ F (A)

For the matrix Jα
n (λ) in Example 4 with λ �= 0, if |α| is

sufficiently small, then 0 /∈ F (Jα
n (λ)). And when τ(Jα

n (λ)) ≥
2, 0 ∈ F (Jα

n (λ)). So a natural question is: Does there exist a
constant c > 1 s.t., if τ(A) ≥ c, then 0 ∈ F (A)? The answer
to this question is positive. It was proved in [2, Lemma 2.6]
that for any A ∈ C

n×n if 0 is not an interior point of F (A),
then τ(A) ≤ n. Here we give a slightly different version. For
completeness we include its proof, which is similar to that of
Lemma 2.6 of [2].
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Theorem 10. Let A ∈ C
n×n such that τ(A) ≥ n. Then 0 ∈

F (A).

Proof: It is sufficient to prove if 0 /∈ F (A) then
τ(A) < n. It is well known that if 0 /∈ F (A) then
there exists a real number θ such that the Hermitian matrix
H(eiθA) = (eiθA + e−iθA∗)/2 is positive definite; see, e.g.,
[9, p.21]. By rotating A, we assume that the Hermitian part
H(A) = (A+A∗)/2 of A is positive definite. Since F (A) is
unitary similarity invariant [9, p.11], we also assume A is in
upper triangular form⎡

⎢⎢⎢⎢⎣

a11 a12 · · · a1n
. . .

. . .
...

. . . an−1,n

ann

⎤
⎥⎥⎥⎥⎦ .

The positive definiteness of H(A) implies that for all i, j =
1, · · · , n,

1

2

[
2Re(aii) aij
aij 2Re(ajj)

]

are positive definite. Then

|aij | < 2
√
Re(aii)Re(ajj) ≤ 2ρ(A).

Let |A| = (|aij |). By Gershgorin circle theorem, ρ(|A| +
|A|T ) < 2nρ(A). Then τ(A) < n follows from w(A) ≤
w(|A|) = ρ(|A|+ |A|T )/2 (see [9, p.44]).

Remark 11 (A geometric interpretation of the 2 × 2 case).
If A ∈ C

2×2 has eigenvalues λ1 and λ2, then F (A) is
an (possibly degenerate) elliptical disk with foci λ1 and λ2.
Since any elliptical disk can be covered by two circular disks
centered at λ1 and λ2 with radius a, where a is the length of
the semi-major axis of the elliptical disk (see Figure 1), we
have w(A) ≤ ρ(A) + a. Thus, τ(A) ≥ 2 means ρ(A) ≤ a.
We have |λ1|+ |λ2| ≤ 2ρ(A) ≤ 2a. Therefore, 0 ∈ F (A).

� ��
�� �

� ��	

Fig. 1. Any elliptical disk can be covered by two circular disks
centered at foci with radius a, where a is the length of the semi-
major axis of the elliptical disk.

By Remark 11, if the numerical range of an n× n matrix
A is an elliptical disk with foci c1, c2 ∈ σ(A), the condition
in Theorem 10 can be reduced to τ(A) ≥ 2.

Corollary 12. Let A ∈ C
n×n such that τ(A) ≥ n. Then

the Hermitian matrix H(eiθA) is neither positive nor negative
definite. Furthermore, if τ(A) > n then H(eiθA) is indefinite.

Note that w(A) = w(eiθA) and ρ(A) = ρ(eiθA). The proof
of Corollary 12 is easy. The following example shows that
H(A) may be semi-definite when τ(A) = n.

Example 13 (An upper triangular Toeplitz matrix Zn satisfy-
ing τ(Zn) = n). Let

Zn =

⎡
⎢⎢⎢⎢⎣

1 2 · · · 2

1
. . .

...
. . . 2

1

⎤
⎥⎥⎥⎥⎦
n×n

.

The matrix Zn is given in [2] to show that the bound in
Lemma 2.6 of [2] is sharp. We have w(Zn) = ρ(H(Zn)) = n,
ρ(Zn) = 1 and τ(Zn) = n. The origin is on the boundary of
F (Zn). Obviously, H(Zn) is the matrix with all the entries
being 1 and is positive semidefinite.

Let Pk denote the set of (complex) polynomials of degree
at most k. The polynomial numerical hull of A of degree k,

Vk(A) := {z ∈ C : |p(z)| ≤ ‖p(A)‖2, ∀p ∈ Pk}
is introduced by Nevanlinna [11, p.41]. We have (see [11],
[7])

V1(A) = F (A). (5)

By (5), we have

F (A) = ∩
z∈C

{λ ∈ C : |λ− z| ≤ ‖A− zI‖2}.

Then 0 ∈ F (A) implies |z| ≤ ‖A − zI‖2 for all z ∈ C. We
have the following corollary.

Corollary 14. Let A ∈ C
n×n such that τ(A) ≥ n. Then

min
z∈C

‖I − zA‖2 = 1.

Proof: Since τ(A) ≥ n, we have |z| ≤ ‖A − zI‖2 for
all z ∈ C. Then ‖I − A/z‖2 ≥ 1 for all z �= 0. Note that
‖I − zA‖2 = 1 when z = 0. The proof is completed.

IV. CONCLUDING REMARKS

In this note, we discuss the existing results for the ratios
s(A) and τ(A). We also provide several upper bounds for
them. If no further known conditions for A are given, there
is no obvious relation between s(A) and τ(A) except that
s(A) = 1 implies τ(A) = 1. If τ(A) � 1, the matrix A is
extremely ill conditioned and highly non-normal.

We complete this note by discussing the convergence of
GMRES [12] for the linear system

Ax = b, A ∈ C
n×n, b ∈ C

n. (6)

Given an initial guess x0 for the solution of (6), at the iteration
step m(≥ 1), GMRES yields the approximate solution xm in
the affine subspace x0 +Km(A, r0) such that

‖rm‖2 := ‖b−Axm‖2 = min
y∈x0+Km(A,r0)

‖b−Ay‖2,

where

Km(A, r0) := span{r0, Ar0, · · · , Am−1r0}
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is the mth Krylov subspace generated by the matrix A and
the initial residual vector r0 := b−Ax0. For a diagonalizable
matrix A = XΛX−1, one has the estimate (see, e.g., [6, p.54])

‖rm‖2
‖r0‖2 ≤ κ(X) min

φm∈Pm
φm(0)=1

max
1≤i≤n

|φm(λi)|. (7)

Obviously, this bound (7) does not always yield satisfactory
results when τ(A) � 1 due to κ(X) ≥ τ(A). For a general
matrix, one has the estimate (see [3, Corollary 6.2])

‖rm‖2
‖r0‖2 ≤ [1− ν(A)ν(A−1)]m/2, (8)

where ν(A) = min{|z| : z ∈ F (A)} is the distance from the
origin to F (A). Thus, this bound (8) is useless when τ(A) ≥
n. The same conclusion also applies to the bound (3.3) in [4]
and the bound (2.1) in [1].
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