
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1436

Practical Issues for Real-Time Video Tracking
Vitaliy Tayanov

Abstract—In this paper we present the algorithm which allows
us to have an object tracking close to real time in Full HD videos.
The frame rate (FR) of a video stream is considered to be between
5 and 30 frames per second. The real time track building will be
achieved if the algorithm can follow 5 or more frames per second. The
principle idea is to use fast algorithms when doing preprocessing to
obtain the key points and track them after. The procedure of matching
points during assignment is hardly dependent on the number of points.
Because of this we have to limit pointed number of points using the
most informative of them.

Keywords—video tracking, real-time, Hungarian algorithm, Full
HD video.

I. INTRODUCTION

Tracking objects on video is one of the important attributes
of the complex problem of object/human behaviour analysis
and interpretation. There exist a lot of algorithms of ob-
ject/human action analysis which have been built mostly as
hierarchical algorithms of analysis of actions starting from
very simple ones to more complicated [1]. The most advanced
of them use probabilistic approaches such as Graphical models
(Bayesian Networks (BN), Dynamical Bayesian Networks
(DBN) and Random Fields(RF) that have an important sub-
class of Markov Random Fields (MRF)). All such approaches
do not use the information about object tracking and often
utilise full information about object which is available on
video frames. As known Graphical models usage could be
very expensive in sense of computing when a number of
random(hidden) variables is large [1], [3]. On the other hand
often to compute a value containing in every random variable
needs use all information from object and in case of Full HD
video with high FR is critical.

Another approach that refers to behaviour analysis is based
on analysis of tracks. In track building there exist several
principle approaches. The most important are based on Kalman
filter and particle filter as generalisation and extension to
Kalman filter [2]. Both of them are of probabilistic character
and can predict the dynamics of an object. The difference
between them consists in limitations of Kalman filter that
needs model be linear and noise needs be of Gauss character.
Particle filter uses sampling of posterior distribution having
observations and to track objects with its application in case
of Full HD video and high FR is problematic.

One more group of tracking algorithms do not use any
probabilistic on doing tracking. The algorithms from these
group generate a number of keypoints every of them to be
assigned to separate path if the assignment is valid. By the
path we understand a sequence of points matched on two
consecutive frames and all these points define a trajectory of

V. Tayanov, Ph.D. is Researcher in Polish-Japanese Institute of Information
Technology (PJIIT), Bytom, 41-902, Poland e-mail:vtayanov@yahoo.com.

an object. Among algorithms producing local feature points
we can mention SURF (Speeded up Robust Feature), SIFT
(Scale-Invariant Feature Transform) [2] and IPAN algorithms
[6]. Because IPAN algorithm generally finds much less points
and each point could be much more informative (in average)
than point generated by SIFT and SURF we use it as feature
generation algorithm for tracking.

IPAN algorithm finds keypoints on the contour of an object
and belongs to geometrical approach to feature generating.
First of all we separate background from image using Gaussian
Mixture Model (GMM) [4] . This allows us to find zones
of motion, i.e. objects that move and which will be used
for further processing. To obtain contours of objects we do
their segmentation before. This guaranties that we are going
to have only external contours of objects and not internal ones
that could be in case of Canny detector application [4], [5].
Canny filter uses gradients and finds all contours of an object.
Keypoints are found in place where curvature of the contour
segment is more than some given value. After finding critical
points we use Hungarian algorithm for corresponding points
assignment. This algorithm refers to the dynamic programming
problem.

In the next sections we show how to use the algorithm which
consists of different stages and some optimization tricks also.
For any computing we use C++ for Windows (MS VS 2010)
as well as for for Linux Ubuntu with libraries Open CV, Open
GL, TBB, QT, BOOST, Open Threads and others.

II. STEPS OF VIDEO PREPROCESSING
By video preprocessing we mean the following operations

on video: background subtraction, object segmentation, con-
tour detection, contour filtering and dominant points detection.
For background subtraction we use three operations. First
operation computes the foreground mask after we compute
background image. Then we subtract this background from
the grayscale image to obtain an image with moving objects
on the black background.

After that we do operations on obtained image using func-
tions from Open CV library to make segmentation of objects
and then we find contours for segmented objects. For initially
found contours we apply circular averaging filter to smooth
contours. This is needed because of possible local sharpness
of contours where the IPAN algorithm could find numerous of
local dominants what are not informative at all. Such a filter
realises the averaging operation both on two coordinates in a
window of a given size. Then for filtered contours we apply
IPAN algorithm. The function that realises such algorithm has
4 parameters. The principle idea of the algorithm consists in a
describing the curvature by some keypoints named dominant
points. Having such dominants we can connect them by lines
of different orders thus having approximate contours. This



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1437

could be useful when we would like to realise the compression
of information presented in contours. The total number of
discrete points in contours is much more than the number of
dominants, so the compression rate could be very high in some
situations. It is very important to fix the parameters of IPAN
algorithm in a way that produce dominants in the appropriate
place. Normally they should be in place with high local curva-
ture and the distance between points should be large enough to
simplify matching. If the distance between any of dominants
(in some feature space) is essentially more than the maximal
shift of some point (for several consecutive frames) in the same
feature space this should satisfy appropriate assignment. We
consider the possible assignments during several consecutive
frames because some dominants could disappear for some time
due to contour changes.

It should be noticed that initial IPAN algorithm is not
invariant to scale, i.e it is not invariant to the size of object
in a video. To have dominants in appropriate place the sides
of a triangle that should be placed in the internal segment
of the contour depend on the size of this segment. Knowing
this dependence we can make the re-scaling of the triangle.
Fig.1 shows how to build the triangle inside the segment of a
contour and all parameters used in the IPAN algorithm.

As we can see every triangle is characterised by coordinates
of vertices p, p+ and p−. As coordinate features of a dominant
point p we use (xp, yp) and two angles α and orientation
angle B between side b and the mean line of the α angle of
the triangle. Finally we have 4 features: two coordinates and
two angles. The Euclidean distance between two dominants pi
from the previous frame and pj from the next frame could be
found as follows

d(pi, pj) =
( N∑

k=1

(fik − fjk)
2

) 1

2

(1)

where fi =
⋃N

k=1
fik and fj =

⋃N
k=1

fjk are sets of features
of pi and pj dominants. Here we have N = 4.

Having d(pi, pj) we build so-called cost matrix that will be
utilised for assignment using Hungarian algorithm. Actually
pi is the last point of each active track (see III).

However the predicting procedure could be improved by
the following way. Let estimated position of the next point is
pej = pi+�vi, where vi = (vi(x), vi(y)) is the previous velocity
vector. So we can decompose pej on pej(x) = pi(x)+vi(x) and
pej(y) = pi(y)+vi(y). It should be noticed that if we have one
point in some track than velocity of this point is equal to zero:
vi = (0, 0). Then we use the following Euclidean distance to
calculate the cost matrix:

d(pj , p
e
j) = ((pj(x)− pej(x))

2 + (pj(y)− pej(y))
2+

+(αi − αj)
2 + (Bi −Bj)

2)
1

2

(2)

Finally we can predict the next speed value as

vj = vi + (pj − pi)γ (3)

where γ ∈ [0, 1]. Prediction (3) could be written for separate
coordinates x and y as well.

Fig. 1. Geometrical visualisation of IPAN algorithm

By doing recursion to compute the next value of the track
velocity we have averaged velocity value of the track at
each moment of time because of recursion. Such averaging
works good if the person goes slightly with the approximately
constant velocity. However if the person changes direction and
the speed very often and fast this could lead us sometimes
to significant errors. But in general situations this velocity
prediction works sufficiently good and allows us to receive
better tracks than standard way of cost matrix building.

III. ASSIGNMENT AND TRACKING
A cost matrix has been built on the basis of two vectors

of dominant points taken from the previous and the current
frame. Dominants from the previous frame we call predicting
points in sense of assignment of points on the current frame.
This is because points from the previous frame have already
been assigned and are the last points of each track (we assume
that assignment has been taken place at previous stage). So if
we have two sets of dominants sprev (from the previous frame)
and snext (from the current frame) we can construct the cost
matrix C of size n×m, where n = |sprev| and m = |snext|:

Ci,j = d(pi, pj), (4)

where pi is the ith point from the previous set of dominants
and pj is the jth point from the current (next relatively to
previous frame) set of dominants. For finding assignments we
use the Hungarian algorithm which works with cost matrix
C. After application of this algorithm we obtain the binary
matrix X composed with zeros and ones. Size of the cost
matrix C should be n×n if n ≥ m or m×m if m ≥ n. The
realisation of Hungarian algorithm in C++ works in situation
when m �= n. This is done by adding columns or rows with
zeros to achieve a cost matrix

{
Cij

}
n×n

or
{
Cij

}
m×m

. A



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1438

binary matrix
{
Xij

}
of the same size that a cost matrix is

filled as follows:

Xij =

{
1 for successful assignment;
0 otherwise. (5)

The properties of this binary matrix are as follows:
N∑
j=1

Xij = 1∀i ∈ 1, ..., N ;

N∑
i=1

Xij = 1∀j ∈ 1, ..., N ;

N∑
i=1

N∑
j=1

CijXij → min

(6)

where N = max(n,m).
The indexes i and j of each one in the binary matrix

correspond to the dominants in the previous and the next sets
that are candidates for assignment. The final decision about
assignment will be made if the following condition is satisfied:

d(pi, pj) < dmax. (7)

Distance dmax should be chosen as the maximal shift of an
object (human) on the video with respect to FR. This could be
done knowing maximal velocity of an object of interest with
respect to the calibration parameters of video camera.

It should be noticed that algorithm that builds the paths
should have the following functionality:

• the assignment should be executed only for active paths.
By active path we understand some path which had no
assignment not more than during several last frames (this
parameter could be optimised during training process).
Otherwise the path becomes inactive.

• The end of the track is the moment when the track is
inactive and the last points of this track will not be
checked for assignment.

• The points which have not been assigned are the begin-
nings of new tracks.

The optimised algorithm builds paths in a way that the
length of such paths is as long as possible and there are not
too many paths for each separate object.

IV. SOME TESTS

We tested our algorithm on a video clip of 50 sec. with
FR=25 taken from the video stream recorded from the Market
Square of our town where a number of different activity
actions can be registered. In Figs. 2-4 the main window with
view of the Market Square from a single video camera is
shown. All tracks have been built in these windows.

In Figs.5-6 tracking results from “Motion Capture” lab at
PJIIT have been presented. Fig. 5 shows the initial scene and
Fig.6 shows results of building of tracks. In Fig.7 we can
see dominants found in the contours of two actors. As could
be seen from Fig. 6 when person runs it is difficult to have
“good” contours. This is because of limited frame rate. The
simplest decision could be made by moving down the value
of threshold of segmentation algorithm to have more clear

Fig. 2. Complete set of tracks plotted on the initial video of the Market
Square

Fig. 3. Filtered set of tracks with the track length threshold equal to 25

contours but it can leads to appearance of shadows on the
floor of the lab. Also this results in having “post-contours”
when doing background separation. This is because of small
movements of person or camera. This effect could be removed
partially by setting the threshold to appropriate value.

In general case tracks and contours of every person should
be rescaled on the basis of intrinsic and extrinsic parameters
of a video camera. As seen from Figs. 2-4 the track building
is sufficiently good. To that end we use filter on the track
length. Such a filtering gives a possibility to see if the length
of a given value is achieved for each person separately. As

Fig. 4. Filtered set of tracks with the track length threshold equal to 50



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1439

Fig. 5. Initial scene (”Motion Capture“ lab)

Fig. 6. Complete set of tracks (”Motion Capture“ lab)

seen even for the threshold of the track length equal to 50 we
can see from one to several local tracks for some persons. For
threshold equal to 25 we can see tracks for all persons. For
threshold equal to 0 we can see all the tracks. The length of
a track as one of the main characteristics of the track builder
depends on the number of parameters. All of them we put on
sliders (trackbars) to have the possibility to control them by
a human. The sliders on the Control Panel (Fig.8) control the
following parameters of the generalised algorithm:

• thresholds for the segmentation algorithm;
• size of a window for circular averaging filter;
• 4 parameters for the IPAN algorithm;

Fig. 7. Dominant points plotted on filtered contours (”Motion Capture“ lab)

Fig. 8. Control panel

• weights on angles characterising dominants from the
IPAN algorithm;

• dmax;
• assignment gap (the number of frames where tracks are

active if there is no assignment).
• window size to calculate average speed on the track end;
• filter for the track length;
• scale for the parameters of IPAN algorithm and dmax

depending on the distance from the video camera.

V. CONCLUSION

We presented a generalised algorithm for video tracking that
allows us to build tracks in a real-time or close to that for
Full HD images. This is because it is based on geometrical
approach for feature generating and fast enough assignment
algorithm. A lot of things for acceleration of the algorithm
could be done by changing of the parameters put on sliders.
These parameters control the number of paths generated and
also the length of such paths. Here improving the quality of
paths (the number of paths reduction with obtaining paths of
a larger length) we can speed up the algorithm.

ACKNOWLEDGEMENT

This paper has been supported by the research project
OR00002111: ”Application of video surveillance systems to
person and behaviour identification and threat detection, using
biometrics and inference of 3D human model from video.”

REFERENCES

[1] Gong, Sh. and Xiang T., Visual Analysis of Behaviour: From Pixels to
Semantics, Springer, London, 2011

[2] Maggio, E. and Cavallaro A., Video Tracking: Theory and Practice,
Wiley, 2011

[3] Marsland, S., Machine Learning: An Algorithmic Perspective, Chap-
manHall/CRC, Boca Raton, Florida, 2009.

[4] Prince, S., Computer Vision : Models, Learning and Inference, Cam-
bridge University Press, 2012

[5] Bradski G. and Kaehler A., Learning OpenCV, O’Reilly, Sebastopol,
CA, 2008

[6] Chetverikov, D. and Szabo, Zs., “A Simple and Efficient Algorithm for
Detection of High Curvature Points in Planar Curves”, Robust Vision
for Industrial Applications 1999, Vol. 128 ,1999, p 175–184.


