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An Intelligent Water Drop Algorithm for Solving
Economic Load Dispatch Problem

S. Rao Rayapudi

Abstract—Economic Load Dispatch (ELD) is a method of deter-
mining the most efficient, low-cost and reliable operation of a power
system by dispatching available electricity generation resources to
supply load on the system. The primary objective of economic
dispatch is to minimize total cost of generation while honoring
operational constraints of available generation resources. In this paper
an intelligent water drop (IWD) algorithm has been proposed to
solve ELD problem with an objective of minimizing the total cost of
generation. Intelligent water drop algorithm is a swarm-based nature-
inspired optimization algorithm, which has been inspired from natural
rivers. A natural river often finds good paths among lots of possible
paths in its ways from source to destination and finally find almost
optimal path to their destination. These ideas are embedded into
the proposed algorithm for solving economic load dispatch problem.
The main advantage of the proposed technique is easy is implement
and capable of finding feasible near global optimal solution with
less computational effort. In order to illustrate the effectiveness of
the proposed method, it has been tested on 6-unit and 20-unit test
systems with incremental fuel cost functions taking into account the
valve point-point loading effects. Numerical results shows that the
proposed method has good convergence property and better in quality
of solution than other algorithms reported in recent literature.

Keywords—Economic load dispatch, Transmission loss, Optimiza-
tion, Valve point loading, Intelligent Water Drop Algorithm.

I. INTRODUCTION

THE operating cost of a power plant mainly depends on
the fuel cost of generators and is minimized via economic

load dispatch. Economic load dispatch problem can be defined
as determining the least cost power generation schedule from a
set of on line generating units to meet the total power demand
at a given point of time [1]. The main objective of ELD
problem is to decrease fuel cost of generators, while satisfying
equality and inequality constraints. In this problem, fuel cost of
generation is represented as cost curves and overall calculation
minimizes the operating cost by finding a point where total
output of generators equals total power that must be delivered
plus losses.

In conventional economic load dispatch, cost function for
each generator has been approximately represented by a
single quadratic function and is solved using lambda itera-
tion method, gradient-based method, etc. [2]. These methods
require incremental fuel cost curves which are piecewise
linear and monotonically increasing to find the global optimal
solution. For generating units, which actually having non-
monotonically incremental cost curves, conventional methods
ignores or flattens out portions of incremental cost curve that
are not continuous or monotonically increasing. Unfortunately,
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input-output characteristics of modern units are inherently
highly non-linear because of valve point loadings, ramp rate
limits, prohibiting operating zones etc., resulting in multiple
local minimum points in the cost function. So, their char-
acteristics have to be approximated to meet requirements of
classical dispatch algorithms. However, such approximations
may lead to huge loss of revenue over the time. Consideration
of highly nonlinear characteristics of units demand for solution
techniques having no restrictions on shape of fuel cost curves
[3]- [4].

Classical methods like Newton-based and gradient methods
cannot perform very well for problems having highly nonlinear
characteristics with large number of constraints and many
local optimum solutions. Dynamic programming is one of
the approache to solve non-linear and discontinuous ELD
problem, but it suffers from problem of curse of dimen-
sionality or local optimality [5]. Methods based on artificial
intelligence techniques, such as artificial neural networks, are
presented [6]- [9]. However, neural network-based approaches
may suffer from excessive numerical iterations, resulting
in huge calculations. Heuristic search techniques, such as
particle swarm optimization [10], genetic algorithms [11]-
[13], differential evolution [14] and tabu search [15] have
also been successfully applied to ELD problems. Recently,
biogeography-based optimization [16] is proposed to solve the
ELD problem.

In this paper, a new approach is proposed to solve non-
smooth ELD problem with valve-point effect using intel-
ligent water drop (IWD) algorithm [17]. intelligent water
drop algorithm imitate some of the processes that happen in
nature between the water drops of a river and the soil of the
river bed. The performance, effectiveness, and robustness of
the proposed method are assessed via intensive testing and
comparison of results with other methods reported in recent
literature.

The rest of this paper is organized as follows. Next section
of the paper presents formulation of ELD problem as a con-
strained optimization problem. Section III describes intelligent
water drop algorithm. IV reports test results. The paper ends
in Section V with a brief discussion on results.

II. FORMULATION OF OPTIMIZATION PROBLEM

The objective of economic load dispatch problem is to find
optimal combination of power generations that minimizes total
cost generation while satisfying different equality and inequal-
ity constraints. Thus, the optimization problem is formulated
as follows.
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Consider a power plant having N generating units, each
loaded to Pi MW. The units should be loaded in such a
way that total fuel cost CT of generators should be minimum
while satisfying the operating constraints. Therefore, objective
function of classical ELD problem is written as:

Minimize CT = Min.

N∑
i=1

Ci(Pi) (1)

where Ci is the fuel inputpower output cost function of ith

generator. Usually, fuel cost of the generating thermal unit is
expressed as a second order approximate function of its output
Pi.

Ci(Pi) = ai + biPi + ciP
2
i (2)

where ai, bi and ci are fuel cost coefficients of unit i. To take
care of valve-point effects, a sinusoidal function are added to
the fuel cost function and is represented as:

C̃i(Pi) = ai + biPi + ciP
2
i + |ei sin(fi(P

min
i − Pi))| (3)

where ei and fi are the coefficients of generator i reflecting
the valve-point effects.

By including power balance, generation limits, and prohib-
ited operating zone constraints, overall objective function is
written as

Min. C̃T =

N∑
i=1

C̃i(Pi)

+λ1

N∑
i=1

{Pi − PD − PLoss}+ λ2

N∑
j=1

V k
j

(4)

where λ1 and λ2 are positive constants (penalty factors) asso-
ciated with the power balance and prohibited zones constraints,
respectively. For ELD problem without transmission loss and
prohibited zone constraints, the setting λ1 = λ2 = 0 is
most rational. However, for ELD problems with transmission
loss and prohibited zone constraints these factors are tuned
empirically and their values were set as λ1 = 1 and λ2 = 5×N

in all cases. V k
j reckons the violation of prohibited zone

constraints for the individual j, can be defined as

V k
j =

{
1, if Pj voilates prohibited zone

0, otherwise
(5)

The expressions for power balance, generation limits, and
prohibited operating zones constraints are given as follows.

1) Power balance constraint:
N∑
i=1

Pi = PD + PLoss (6)

where PD is total load demand and PLoss is total transmission
loss, which depends on physical geographical network and Pi

is generated power level from each unit. Calculation of PLoss

using B-matrix loss coefficients is expressed as

PLoss =

N∑
i=1

N∑
j=1

PiBijPj +

N∑
i=1

Bi0Pi +B00 (7)

where Bij is ijth element of loss coefficient symmetric matrix
B, Bi0 is ith element of loss coefficient vector and B00 is loss
coefficient constant.

2) Generation limits: The generating capacity constraint is
given by

Pmin
i ≤ Pi ≤ Pmax

i (8)

where Pmin
i and Pmax

i are minimum and maximum power
outputs of ith unit. This constraint prohibits a cheap unit to
generate power more than its maximum limit as well as an
expensive unit to generate power less than its minimum limit.

3) Prohibited operating zones constraint: In practical op-
erations, generated output Pi of unit i must avoid operations
in prohibited zones. The feasible operating zones of unit i can
be described as

Pi ∈

⎧⎨
⎩

Pmin
i ≤ Pi ≤ P l

i,1

Pu
i,k−1 ≤ Pi ≤ P l

i,k (k = 2, 3, .....Xi)
Pu
i,Xi

≤ Pi ≤ Pmax
i

(9)

where P l
i,k and Pu

i,k are lower and upper bounds of the kth

prohibited zone of unit i, and Xi is number of prohibited zones
of unit i.

III. INTELLIGENT WATER DROPS ALGORITHM

A. Overview of Intelligent Water Drops Algorithm

Intelligent Water Drops algorithm (IWD) [18] is a swarm-
based nature-inspired optimization algorithm, which has been
inspired from natural rivers and how they find almost optimal
path to their destination. A natural river often finds good paths
among lots of possible paths in its ways from the source to
destination. These near optimal or optimal paths follow from
actions and reactions occurring among the water drops and the
water drops with their riverbeds. In the IWD algorithm, several
artificial water drops cooperate to change their environment
in such a way that the optimal path is revealed as the one
with the lowest soil on its links. The solutions are incremen-
tally constructed by the IWD algorithm. Consequently, the
IWD algorithm is generally a constructive population-based
optimization algorithm. The Intelligent Water Drop, IWD for
short, flows in its environment has two important properties:

1. The amount of the soil it carries now, Soil (IWD).
2. The velocity that it is moving now, Velocity (IWD).

This environment depends on the problem at hand. In an
environment, there are usually lots of paths from a given
source to a desired destination, which the position of the
destination may be known or unknown. If we know the
position of the destination, the goal is to find the best (often the
shortest) path from the source to the destination. In some cases,
in which the destination is unknown, the goal is to find the
optimum destination in terms of cost or any suitable measure
for the problem.

We consider an IWD moving in discrete finite-length steps.
From its current location to its next location, the IWD velocity
is increased by the amount nonlinearly proportional to the
inverse of the soil between the two locations. Moreover, the
IWDs soil is increased by removing some soil of the path
joining the two locations. The amount of soil added to the
IWD is inversely (and nonlinearly) proportional to the time
needed for the IWD to pass from its current location to the
next location. This duration of time is calculated by the simple
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laws of physics for linear motion. Thus, the time taken is pro-
portional to the velocity of the IWD and inversely proportional
to the distance between the two locations. Another mechanism
that exists in the behavior of an IWD is that it prefers the paths
with low soils on its beds to the paths with higher soils on its
beds. To implement this behavior of path choosing, we use a
uniform random distribution among the soils of the available
paths such that the probability of the next path to choose is
inversely proportional to the soils of the available paths. The
lower the soil of the path, the more chance it has for being
selected by the IWD.

B. Intelligent Water Drops Algorithm

The IWD algorithm gets a representation of the problem in
the form of a graph (N , E) with the node set N and edge set
E. Then, each IWD begins constructing its solution gradually
by traveling on the nodes of the graph along the edges of
the graph until the IWD finally completes its solution. One
iteration of the algorithm is complete when all IWDs have
completed their solutions. After each iteration, the iteration-
best solution T IB is found and it is used to update the total-
best solution T TB. The amount of soil on the edges of the
iteration-best solution T IB is reduced based on the goodness
(quality) of the solution. Then, the algorithm begins another
iteration with new IWDs but with the same soils on the paths
of the graph and the whole process is repeated. The algorithm
stops when it reaches the maximum number of iterations
itermax or the total-best solution T TB reaches the expected
quality. The IWD algorithm has two kinds of parameters. One
kind is those that remain constant during the lifetime of the
algorithm and they are called ‘static parameters’. The other
kind is those parameters of the algorithm, which are dynamic
and they are reinitialized after each iteration of the algorithm.

The algorithm of IWD is specified in the following steps:

1. The graph (N , E) of the problem is given to the
algorithm. The quality of the total-best solution T TB

is initially set to the worst value: q(T TB) = ∞. The
maximum number of iterations itermax is specified
by the user. The iteration count itercount is set
to zero. The number of water drops NIWD is set
to a positive integer value, which is usually set to
the number of nodes Nc of the graph. For velocity
updating, the parameters are av =1, bv =0.01 and cv
= 1. For soil updating, as =1, bs =0.01 and cs = 1.
The local soil updating parameter ρn=0.9, which is a
small positive number less than one. The global soil
updating parameter ρIWD=0.9, which is chosen from
[0, 1]. Moreover, the initial soil on each path (edge)
is denoted by the constant InitSoil such that the soil
of the path between every two nodes i and j is set
by soil(i, j) = InitSoil. The initial velocity of each
IWD is set to InitV el. Both parameters InitSoil

and InitV el are user selected and they should be
tuned experimentally for the application.

2. Every IWD has a visited node list Vc(IWD), which
is initially empty: Vc(IWD)= . Each IWDs velocity

is set to InitV el. All IWDs are set to have zero
amount of soil.

3. Spread the IWDs randomly on the nodes of the graph
as their first visited nodes.

4. Update the visited node list of each IWD to include
the nodes just visited.

5. Repeat Steps 5.1 to 5.4 for those IWDs with partial
solutions.

5.1 For the IWD residing in node i, choose the next node
j, which does not violate any constraints of the prob-
lem and is not in the visited node list Vc(IWD) of
the IWD, using the following probability pIWD

i (j):

pIWD
i (j) =

f(soil(i, j))∑
k/∈Vc(IWD)

f(soil(i, k))
(10)

such that

f(soil(i, j)) =
1

εs + g(soil(i, j))

and

g(soil(i, j)) =

⎧⎨
⎩

soil(i, j) if min
l/∈Vc(IWD)

(soil(i, l)) ≥ 0

soil(i, j)− min
l/∈Vc(IWD)

(soil(i, l)) else

Then, add the newly visited node j to the list
Vc(IWD).

5.2 For each IWD moving from node i to node j, update
its velocity velIWD(t) by

velIWD(t+ 1) = velIWD(t) +
av

bv + cv.soil2(i, j)
(11)

where velIWD(t+ 1) is the updated velocity of the
IWD.

5.3 For the IWD moving on the path from node i to
node j, compute the soil Δsoil(i, j) that the IWD
loads from the path by

Δsoil(i, j) =
as

bs + cs.time2(i, j; velIWD(t+ 1))
(12)

such that

time(i, j; velIWD(t+ 1)) =
HUD(j)

velIWD(t+ 1)

where the heuristic undesirability HUD(j) is de-
fined appropriately for the given problem.

5.4 Update the soil soil(i, j) of the path from node i to
node j traversed by that IWD and also update the
soil that the IWD carries soilIWD by

soil(i, j) = (1− ρn).soil(i, j)− ρn.Δsoil(i, j)

soilIWD = soilIWD +Δsoil(i, j) (13)

6. Find the iteration-best solution T IB from all the
solutions T IWD found by the IWDs using

T IB = arg max
∀T IWD

q(T IWD) (14)
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where function q(.) gives the quality of the solution.
7. Update the soils on the paths that form the current

iteration-best solution T IB by

soil(i, j) = (1+ρIWD).soil(i, j)

−ρIWD.
1

(NIB − 1)
.soilIWD

IB ∀(i, j) ∈ T IB

(15)
where NIB is the number of nodes in the solution
T IB.

8. Update the total best solution T TB by the current
iteration-best solution T IB using

T TB =

{
T TB q(T TB) ≥ q(T IB)

T IB otherwise
(16)

9. Increment the iteration number by Itercount =
Itercount + 1. Then, go to Step 2 if Itercount <

Itermax.
10. The algorithm stops here with the total-best solution

T TB .

The application of IWD algorithm to ELD problem is shown
in Fig. 1.

Fig. 1. Flowchart of the proposed IWD algorithm

C. Constraints handling

A key factor in the application of IWD approaches to the
optimization of an EDP is how the this algorithm handles
the constraints relating to the problem. The search space in
constrained optimization problems consists of two kinds of
points: feasible and unfeasible. Feasible points satisfy all the
constraints, while unfeasible points violate at least one of
them. Therefore, the solution or set of solutions obtained as
the final result of an optimization method must necessarily be
feasible, i.e., they must satisfy all constraints. The methods
based on the use of penalty functions are usually employed
to treat constrained optimization problems. A constrained
problem can be transformed into an unconstrained one by
penalizing the constraints and building a single objective
function, which in turn is minimized using an unconstrained
optimization algorithm. When optimization algorithms are
used for constrained optimization problems, it is common to
handle constraints [19] using concepts of penalty functions
(which penalize unfeasible solutions), i.e., one attempt to
solve an unconstrained problem in the search space S using a
modified fitness function f (minimizing the fitness function in
this paper) such as

Min.CT =

{
Ci(Pi) ifPi ∈ F

Ci(Pi) + λ(Pi) otherwise
(17)

where λ(Pi) is zero and no constraint is violated; otherwise
it is positive. The penalty function is usually based on a
distance measured to the nearest solution in the feasible region
F or to the effort to repair the solution. In this work, the
methodology used to constraint handling is divided into two
steps. The first step involves finding solutions for the decision
variables that lie within user-defined upper and bounds, that
is, x ∈ [lower, upper]. Whenever a lower bound or an upper
bound restriction fails to be satisfied, a repair rule is applied
according to (18) and (19), respectively:

P
j
i (t+ 1) = P

j
i (t) + β.randi[0, 1]{upper(P

j
i (t))

−lower(P j
i (t))}

(18)

P
j
i (t+ 1) = P

j
i (t)− β.randi[0, 1]{upper(P

j
i (t))

−lower(P j
i (t))}

(19)

IV. SIMULATION RESULTS

In order to assess effectiveness the proposed IWD algorithm
is programmed in MATLAB environment and executed on
a 3.2 GHz Pentium IV processor with 2 GB RAM. Two
networks having 6 and 20 generators are simulated and test
results are compared with popular methods reported in recent
literature.

A. Six-unit system

This is a small test system consisting of six thermal
units [20] and it has 26 buses and 46 transmission lines.
The prohibited operating zones limits and generation limit
constraints are considered in simulation. The required data of
test system is given in Table I and Table II. The parameters
of algorithm used for simulation are: Number of water drops
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NIWD = 6; Velocity updating parameters are av =1, bv =0.01
and cv = 1; Soil updating parameters as as =1, bs =0.01 and
cs = 1. Local soil updating parameter, ρn = 0.9; Global soil
updating parameter, ρIWD = 0.9; InitSoil = 10000; InitV el

= 200; Itermax=100.

TABLE I
CAPACITY AND COST COEFFICIENT DATA OF SIX UNIT THERMAL SYSTEM

Unit Pmin

i
Pmin

i
ai bi ci

(MW) (MW) $/MW 2 $/MW $
1 500 100 0.0070 7 240
2 200 50 0.0095 10 200
3 300 80 0.0090 8.5 220
4 150 50 0.0090 11 200
5 200 50 0.0080 10.5 220
6 120 50 0.0075 12 120

TABLE II
PROHIBITED ZONE LIMITS OF SIX UNIT SYSTEM

Unit Prohibited Zones
Zone 1 Zone 2

1 [210-240] [350-380]
2 [ 90-110] [140-160]
3 [150-170] [210-240]
4 [ 80- 90] [110-120]
5 [ 90-110] [140-150]
6 [ 75- 85] [100-105]

This system supplies a total load of PD = 1263 MW. The
B-matrix for transmission network is given as

Bij = 10−3.

⎡
⎢⎢⎢⎢⎢⎢⎣

1.7 1.2 0.7 −0.1 −0.5 −0.2
1.2 1.4 0.9 0.1 −0.6 −0.1
0.7 0.9 3.1 0.0 −1.0 −0.6
−0.1 0.1 0.0 2.4 −0.6 −0.8
−0.5 −0.6 −1.0 −0.6 12.9 −0.2
−0.2 −0.1 −0.6 −0.8 −0.2 15.0

⎤
⎥⎥⎥⎥⎥⎥⎦

Bi0 = 10−3.
[
−0.39 −0.13 0.71 0.06 0.22 0.66

]
B00 =

[
0.0056

]
Results obtained using the proposed method and results of

PSO [20], GA [20], and BBO [16] are presented in Table III.
To verify the performance of the proposed algorithm, this test
case was repeatedly solved 100 times. The minimum, average,
and maximum values of objective function are presented in
Table III. The minimum value of cost function obtained for
this test case using IWD is 15439 $/h which is compara-
tively lower than other methods reported. The mean cost and
standard deviation (STD) of objective function for 100 runs
also provided in Table III. The mean value and STD of the
proposed method are less than GA, PSO, and BBO algorithms.
Further, a smaller value of standard deviation implies that most
of the best solutions are close to the average value. The best
solutions for these 100 runs are compared with best objective
function values obtained by using PSO [20], GA [20], and
BBO [16]. The results reported using PSO [20], GA [20], and
BBO [16] got premature convergence so that their standard
deviation is larger than that of IWD algorithm.

In order to assess speed of the algorithm, the proposed,
PSO [20], GA [20], and BBO [16] algorithms are programmed
and implemented on same platform. The CPU time of all
algorithms are also presented in Table III. The CPU time

TABLE III
COMPARISON OF BEST OUTPUTS OF 6-UNIT SYSTEM USING

DIFFERENT METHODS

item GA PSO BBO Proposed
[20] [20] [16] IWD Method

P1 (MW) 474.81 447.50 447.4 450.13
P2 (MW) 178.64 173.32 173.24 173.62
P3 (MW) 262.21 263.47 263.32 260.61
P4 (MW) 134.28 139.06 138 139.49
P5 (MW) 151.9 165.48 165.41 159.70
P6 (MW) 74.18 87.13 87.08 90.51

Total Power (MW) 1276.02 1275.96 1274.44 1274.05
PLoss (MW) 13.02 12.96 12.44 12.05

Min. cost($/h) 15459 15450 15443 15439
Avg. cost($/h) 15469 15454 15449 15445
Max. cost($/h) 15524 15492 15485 15461

STD 5.47 2.88 2.72 1.87
CPU Time(s) 41.58 14.86 3.25 2.54

required to obtained the minimum solution using 100 iterations
by the proposed method is 2.54 sec, which is almost same as
that of BBO but less by sixteen and six times that of GA
and PSO. Therefore, the proposed method is able to find the
near optimal solution with less computational time compare to
GA, PSO, and BBO algorithms. A convergence characteristic
of the proposed IWD algorithm for 6 unit thermal system is
shown in Fig. 2. From the characteristic it is seen that solution
is converged to near optimal solution after 48th iteration.

Fig. 2. Convergence characteristics of 6 unit thermal system

B. Twenty-unit system

This test system consists of twenty thermal units and
supplies a total load of PD = 2500 MW. The data of the system
and B-matrix is available in [21]. All parameters of algorithm
is same as test case 1 except Itermax=200. The simulation
results of the proposed method and PSO [20], BBO [16], Hop
field model [21] approaches are summarized in Table IV.

Results obtained using the proposed method and results of
PSO [20], BBO [16], and Hop field model [21] are presented
in Table IV. To verify performance of the proposed algorithm,
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this test case was repeatedly solved 200 times. Optimum
generation values each generator using the proposed method
and other methods are given in Table IV. The minimum,
average and maximum total costs obtained using the proposed
method and other methods mentioned above are also reported
in Table IV. The minimum value of cost function obtained for
this test case using IWD is 59799 $/h which is comparatively
lower than other methods reported. From results, it is seen
that total cost of generation of the proposed method is less
than all other methods. The mean cost and standard deviation
(STD) of objective function for 200 runs also provided in
Table IV. A smaller standard deviation implies that most the
best solutions are close to the average. Therefore, from results
presented, it is seen that the proposed method is fastest among
all methods mentioned. Similar to test case 1, all algorithms
are programmed and implemented on same platform and CPU
times of all algorithms are also presented in Table IV. The
CPU time of the proposed method to get the best solution is
less by 2 and 5 times compared to BBO and PSO.

TABLE IV
COMPARISON OF BEST OUTPUTS OF 20-UNIT SYSTEM USING

DIFFERENT METHODS

item PSO BBO Hopfield Proposed
[20] [16] [21] IWD Method

P1 (MW) 563.32 513.09 512.78 563.32
P2 (MW) 106.56 173.35 169.1 106.56
P3 (MW) 98.71 126.92 126.89 98.71
P4 (MW) 117.32 103.33 102.87 117.32
P5 (MW) 67.08 113.77 113.68 67.08
P6 (MW) 51.47 73.07 73.57 51.47
P7 (MW) 47.73 114.98 115.29 47.73
P8 (MW) 82.43 116.42 116.4 82.43
P9 (MW) 52.09 100.69 100.41 52.09
P10 (MW) 106.51 100 106.03 106.51
P11 (MW) 197.94 148.98 150.24 197.94
P12 (MW) 488.33 294.02 292.76 488.33
P13 (MW) 99.95 119.58 119.12 99.95
P14 (MW) 79.89 30.55 30.83 79.89
P15 (MW) 101.53 116.45 115.81 101.53
P16 (MW) 25.84 36.23 36.25 25.84
P17 (MW) 70.02 66.86 66.86 70.02
P18 (MW) 53.95 88.55 87.97 53.95
P19 (MW) 65.43 100.98 100.8 65.43
P20 (MW) 36.26 54.27 54.31 36.26

Total Power (MW) 2512.34 2592.11 2591.97 2512.34
PLoss (MW) 92.33 92.11 91.97 92.33

Min. cost($/h) 59804 62456.79 62456.63 59799
Avg. cost($/h) 61171 62456.79 62493.05 61151
Max. cost($/h) 63184 62456.79 62517.84 63176

STD 532.44 – – 529.16
CPU Time(s) 15.3 6.93 – 3.9

A convergence characteristic of IWD algorithm for 20 unit
thermal system is shown in Fig. 3. From the characteristic it is
seen that solution is converged to near optimal solution after
90th iteration.

V. CONCLUSION

In this paper a novel approach based on Intelligent Water
Drops (IWD) algorithm to solve economic load dispatch
problem, considering various generator constraints, has been
sucessfully applied. The feasibility of the proposed algorithm

Fig. 3. Convergence characteristics of 20 unit thermal system

for solving ELD problem is demonstrated using 6-unit and 20-
unit thermal systems. Moreover, in order to handle constraints
effectively, a constraint treatment mechanism inspired in [19]
is devised in the calculation of cost function used. Numerical
results reveal that the proposed algorithm converged to good
solutions in comparison with results obtained using GA, PSO,
BBO, Hopfiled approaches with less computational effort.
Further, the standard deviation of the proposed method is less
than other approaches. This shows all the good solutions are
closed to average values and hence the algorithm is robust and
has fast convergence compared to methods mentioned.

Although the proposed algorithm had been successfully
applied to ELD with valve-point loading effect and included a
few constraints, the practical ELD problems should consider
multiple fuels as well as spinning reserve and ramp rate
constraints. This remains a challenge for future work.
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