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Abstract—We have developed an analytic model for the radial p-
n-junction in a nanowire (NW) core-shell structure utilizing as a new
building block in different semiconductor devices. The potential
distribution through the p-n-junction is calculated and the analytical
expressions are derived to compute the depletion region widths. We
show that the widths of space charge layers, surrounding the core, are
the functions of core radius, which is the manifestation of so called
classical size effect. The relationship between the depletion layer
width and the built-in potential in the asymptotes of infinitely large
core radius transforms to square-root dependence specific for
conventional planar p-n-junctions. The explicit equation is derived to
compute the capacitance of radial p-n-junction. The current-voltage
behavior is also carefully determined taking into account the “short
base” effects.

Keyword—Snanowire, p-n- junction, barrier capacitance, high
injection.

I. INTRODUCTION

HE semiconductor nanowires have the potential to impact
many different technologies either through the improved

material parameters or by offering a new geometry not
possible with bulk or thin film structures. Modern advances in
nanotechnology allow to incorporate several material layers
with the same or different type of conductivity into a single
nanowire (nanorod). Coaxial core/shell nanowire (NW)
structures with built-in radial p-n-junctions recently have been
reported [1]. This new type of structures represents an
important class of nanoscale building blocks with potential for
exploring new device concepts, e.g., for photovoltaic
applications [2]-[4] or field-effect transistors [5]. The array of
NWs in which each wire has a p-n- junction in the radial
direction may provide an interesting application in the third
generation solar cells technology [6], [7]. The advantage of
such solar cells is that the directions of light absorption and
carrier collection can be orthogonal, which allows to provide
efficient carrier separation in the radial direction for the
optically thick NW arrays, even when the minority carrier
diffusion lengths are shorter than the optical absorption length.

Therefore it is important issue to develop the theoretical
model of the nanowire radial p-n- junctions, hence the good
understanding of the device performance will guide designer
to choose the best components for optimization. The model for
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the NW radial p-n-junction will be constructed by extending
the analyses of the conventional planar p-n-junction geometry
[8] to a cylindrical geometry, taking into account that a
considerable portion of core and (or) shell can be covered by
space charge and the core radius (shell thickness) can be less
or comparable to the diffusion length of minority carriers. The
analytical relationships for the depletion region widths versus
applied voltage, the maximum electric field across the
junction, the capacitance-voltage and the current-voltage
characteristics are presented and analyzed as functions of
material properties and radius of NW.

II. ELECTROSTATIC CHARACTERISTICS OF RADIAL P-N-
JUNCTION

We have focused on NW p-n- coaxial homo-junction,
consisting of a p-type inner “core” with acceptor concentration

and radius , capped by n- type outer “shell” with donor
concentration and thickness ( ). The considered
structure is illustrated in Fig. 1 (a).

Considering relatively thick NWs, with a diameter of
several 100 nm, we neglect the quantum size effects. The p-n-
junction in NW is assumed to be abrupt and the depletion
approximation is assumed to be valid. In Fig. 1 (b) the axis
shows the schematic division of the structure into four regions:
the quasi-neutral part of the p-core ( ), the

depletion part of the p-core (of width pw ), the depletion part

of the n-shell (of width nw ) and the quasi-neutral part of the

n-shell ( ). If the temperature is sufficiently
high and all impurities are ionized, the majority charge
carriers in the core and shell quasi-neutral regions are:

for and for
.

A. Potential Distribution and Depletion Region Width

When p-n-juncion is formed along core/shell interface, a
fraction of the electrons pass from the region into the p
region, while the holes, on the contrary, pass from the p region
into the n region. The space-charge layers are created on both
sides of the core/shell interface and potential energy barrier is
established, (see Fig. 1 (b)). The electric field arises across the
junction and the energy bands bent until the establishment of
equilibrium state and the alignment of Fermi energy levels
(see Fig. 2 (c)). The “built-in” potential energy barrier that
forms along the p-n-junction and has the height defined by
work function difference of the core and shell, can be written
as usual:
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Fig. 1 Cross section of core/shell NW (a), profile o
across the junction (b), energy band diag

,
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potential energy across the junction
the radial component of the elect
outside the space charge region:
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(R + w ) = − ,

It is easy to see that the solution fo

(r) = − r − (R − w )

for R − w ≤ r ≤ R ,

and

(r) = − + r − (R +

w ) ln ,

for R ≤ r ≤ R + w .

In our model we ignore the c
interface states, so the electric field c

n R − (R + w ) = p (

which represents the charge neutral
(6), (7) and demanding the continu
homo-junction interface r = R we g
for w

− 1 − ∙ ln

1 − ln 1 − =

Thus for the given n , p , a
widths in the core (w ) and in the sh
from (7), (8).

ribution across the junction,
n equation in cylindrical

− w ≤ r ≤ R

≤ r ≤ R + w
(3)

gy of electrons, ε is the
r, ε is the electric constant.

at the border of depletion
the boundary conditions at
present the variation of

on and the requirement that
ectric field should be zero

= 0 (4)

= 0. (5)

 for (3)-(5) has the form

− 2(R − w ) ln ,

w ) − 2(R +
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d continuity at r = R gives

(R − w ) − R (7)

rality of the junction. Using
nuity of the potential at the
e get the following equation

− 1 − +

. (8)

and R the depletion layer
shell (w ) can be calculated
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It is worth to note that in the radial p-n-junction the width of
space charge layer is a function of core radius, which is the
manifestation of the classical size effect. This means that for
the NWs with the same doping level but different radius the
depletion layer has different width. For sufficiently large NW
radius, when R ≫ w we compute from (8) the standard
relationship for depletion width, which various with by the
square root law as in conventional p-n-junctions: w =

.

As it follows from (7) the ratio w /w depends not only
from the doping concentrations but also on NW radius:

= (9)

It is evident from (9) that at equal core and shell doping
levels (n = p ) the depletion width in the core is always
larger than in the shell. This is a specific feature of radial p-n-
junctions, whereas in planar geometry at equal donor and
acceptor concentrations the junction is symmetric (w = w ).
In the NW p-n-junctions the widths of depletion layers are
limited by the core radius: w < R and by the shell thickness:
w < R − R .

To find w , w under the external bias (V), we should
replace the built-in energy barrier with ( − eV) in the
right hand side of (7), and (8), where V > 0 means p-core is
positively biased with respect to the n-shell. Let us define the
critical value of reverse bias (V ), when the nanowire core is
totally depleted of holes. By substituting w = R in (8) we
obtain:

| |
=

( )
ln − 1 . (10)

However, even in the absence of external bias for a given
core radius R there is a certain ratio of doping concentrations
n and p and, hence, a certain built-in potential barrier at
which the NW core is totally covered by the space charge.
From (8) we get

=
( )

ln . (11)

Fig. 2 presents the depletion width in the NW core at
different core radiuses as a function of applied voltage. It is
seen that for a given value of applied voltage, the width of
depletion region is smaller for larger radiuses R and for

Fig. 2 The depletion region width in p-region versus the applied
voltage at NWs with different core diameter. Core-shell NW structure

(solid lines), planar p-n-junction (dash line)

sufficiently thick NW it tends to the square root dependence
on applied voltages, which is depicted in Fig. 2 by dashed line.

For sufficiently long NW the junction electric field has only
radial component and its distribution across the space charge
region is different from that in the conventional p-n-junction.
In general, it may be expressed by the sum of linear and
hyperbolic terms as:

(r) =
r − − ≤ ≤

( )
– r ≤ ≤ +

. (12)

The maximum of electric field falls at core/shell interface
(r = R ) and is given as

= 1 + = 1 − . (13)

Thus the maximum value of the electric field depends not
only on the doping concentrations and applied voltage but also
on NW radius.

B. Symmetric Radial p-n-Junction

To form the symmetric p-n-junction, such that = , at
a given radius , the proper ratio of doping concentrations

= = should be chosen. It is evident from (7) that it is

possible to have the symmetric radial p-n junction if > 1,
(i.e. the core should be more heavily doped than the shell).

From (7) and (8) we get the equation for :

+ = ∙ −

( ) , (14)
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Fig. 3 The ratio of doping concentrations computed from (14)

for the symmetric radial p-n-junction versus core radius

where = kT.

From (14) it follows that for asymptotic case ( → ∞)
= 1 as it should be in the case of conventional planar p-n-

junction.
The dependence of y on the core radius at different shell

doping concentrations is illustrated in Fig. 3. It is seen that the
smaller is the NW core radius the higher has to be the doping
concentration in the core to form a symmetric p-n-junction. In
the radial p-n-junction the depletion width in the core
increases with decreasing the core radius. The variable y
approaches to its possible maximum value when the core
radius is so small, that NW core becomes fully depleted.

III. CAPACITANCE OF RADIAL P-N-JUNCTION

The p-n- junction barrier capacitance dominates when the
applied voltage is reverse biased or the forward bias is much
smaller than the built-in potential. For the given applied
voltage the total charge in the depletion layer is easy to
calculate if and are defined from (8) and (9).

The depletion charge in p-region is defined by the following
relationship

= 1 − 1 − ⁄ . (15)

Thus for the junction capacitance we get

= = 2 1 − ⁄ = 4 ∙

1 + 2 − 1 − . (16)

Fig. 4 The dependence of (1⁄ ) on the applied voltage for the NWs
with different core diameter

We verify that the expression for specific capacitance of
radial p-n-junction at → ∞, coincides with that for planar
p-n-junction. When ≪ we calculate from (16):

≈ 0 1 −
⁄ ⁄

⁄
(17)

where ≈ ∙ ⁄ .
The relationship (17) makes evident that the specific

capacitance of radial p-n-junction at doping concentrations
p < n is smaller than that of corresponding planar junction,
and vice versa at p > n . Close to the critical value of
reverse bias, w ≈ R , as following from (16), the barrier
capacitance of the radial p-n-junction tends to zero in analogy
with cylindrical capacitor, when a decrease of the inner plate
radius leads to the logarithmical decrease of capacitance
C = 2εε πL ln (R /R )⁄ .

It is seen from (16) that the capacitance of nanowire radial
p-n-junction per unit length is determined by the fundamental
constant ( / ). Thus for the NW with = 10 m length
the junction capacitance is order of 1 10 fF.

The Fig. 4 presents the dependence of 1/C2 on applied
reverse bias for the NWs with different diameter. It is seen
that this dependence has the nonlinear form and for extremely
large diameters becomes linear as in the case of planar
junctions.

IV. CURRENT-VOLTAGE CHARACTERISTICS

In calculations of current-voltage characteristics of radial p-
n-junction, as a specific case, we assume that the core doping
level is much higher than that of the shell, so we consider

≫ . Most experimentally realized and studied NWs have
diameter of the order of 100 nm, and so for many material
systems the thickness of quasi-neutral region in the shell
( = − ( + )) is much smaller than the minority
carriers diffusion length . Thus the NW radial p-n- junction
will operate in so-called short-base diode conditions [7]. In
such junctions minority carriers injected from the core to the
shell will reach the metallic contact, made on external surface
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of the shell, without significant recombination in the volume.
Consequently, the conditions of the current passage through
the shell/metal interface plays important role in the current
characteristics. In our analyzes we will follow the standard
current transport model of planar short-base diode [7]. We will
consider an ideal (ohmic) metallic contact, wrapping the shell,
such that the built-in potential barrier, possibly formed at the
metal and shell contact, in both accumulation or depletion
modes is not higher than several . Under these conditions
we can write [7]:

( ) − = Δ ( ) = 0, ( ) = , (18)

where ( ) and ( ) are, respectively, the concentrations
of holes and electrons at the surface of the shell, is the
minority carrier concentration in the volume of the n-shell.

If ≪ then (18) means that the holes injected from the
p-n-junction do not accumulated at the semiconductor-metal
interface and freely pass to the metal, recombining there with
electrons. Therefore the hole recombination process in n-
region can be ignored. So the net electron and hole currents
remain constant throughout the n-region:

= 2 ( ) ∙ ( ) −
( )

= (19)

= 2 ( ) ∙ ( ) +
( )

= (20)

where and are the diffusion constants of electrons and
holes respectively, ( ) is the radial component of electric
field.

In this case, when the carrier recombination does not take
place in the shell, the current density passing through the

metal-semiconductor contact is times less than the one

crossing the core/shell interface. From other side, it is known
that for the same value of applied voltage and for not very
large built-in potential barrier, the density of the current
passing through the semiconductor/metal contact is much
higher than that through the p-n-junction. In the radial p-n-
junction, as we mentioned, the density of the current through

the metallic contact is only times less than through the p-n-

junction, thus the main voltage drop occurs along the p-n-
junction:

Δ ( + ) = − 1 (21)

The minority carriers injected into the n-shell will induce
the redistribution of majority carriers, so that they will quickly
compensate the charge of minority carriers resulting in an
increase of electron concentration on the same value: Δ ( ) −

= ( ) − = Δ ( ). Depending on injection level the
concentration of non-equilibrium charge carriers at the
depletion layer edge in the n-region can be comparable to
or even higher, i.e.

Δ ( + ) = + Δ ( + ) (22)
therefore the concentration of injected electrons at the end
of depletion layer in the p-core should be:

Δ − = 1 +
Δ ( )

− 1 (23)

It should be noted that by writing the boundary condition
for the injected holes in the form of (21) we have assumed
that Δ − ≪ , i.e. in the presence of external
voltage the height of junction potential barrier still
remains larger than kT: − ≫ . In such conditions,
when ≫ , the electron current ( ) through the p-n-
junction is very small compared with the hole current ( ).
As the bulk recombination is assumed to be very small, we
can consider ≈ 0, then it is easy to find the radial
component of electric field in the n-region:

( ) ≈ − . (24)

By substituting (24) into (19) and by taking into
account the quasi-neutrality of n-region we can express
the net hole current as:

= −2 2 −
Δ ( )

( )
. (25)

Then multiplying (25) by 1r and by integrating it between
( + ) and , for = we get:

=
( ⁄ )

2 − 1 −

− 1 + − 1
. (26)

Using the boundary conditions (18) and (22) we can find
the potential drop in quasi-neutral part of the shell:

= ∫ = 1 + − 1 . (27)

Thus for the given applied voltage = + , by using
the relationship (27) we can define the voltage drops on p-n
junction and on its base (shell).

At first we consider the case of small applied voltages
corresponding to the weak injection regime of holes, when
Δ ( + ) ≪ . As it follows from (27) the voltage drop
in the shell is very small: ≪ , and ≈ so for the
junction current we have:

=
[ ⁄ ]

− 1 . (28)

It is seen from the last relationship, that at small forward

bias the current increases as . In this case the concentration
of non-equilibrium charge carriers decreases in n-region very
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slowly: logarithmically, and not linearly as in conventional
planar junctions,

Δ ( ) = Δ ( + ) . (29)

Therefore, as it follows from (28) the magnitude of junction

net current is defined by the value of 2 ( + )
Δ

at the

edge of depletion layer, which is:

Δ ( )
= −

Δ ( )

( )
. (30)

The depletion width increases at high reverse biases and
therefore the width of quasi-neutral part of the shell decreases,
then, due to the increase of the hole concentration gradient the
junction current, according to (28), continues to slowly
increase instead to become saturated, which is a specific
feature of devices with planar geometry and thick base.

The situation with current transport is quite different when
high forwarding bias is applied and the minority carrier
injection is enhanced, such that, ( + ) ≫ , or

≫ . Then from (27) it follows that the voltage

drops on the shell volume and on the junction are:

= − = − = −

= − = + .
(31)

Substituting into the (26) for the current we can write

≈
[( ⁄ ]

. (32)

Thus, if an applied voltage is in the range: < <

, the main part of the voltage drop occurs on the

quasi-neutral region of n-shell and the junction current starts

to increase less sharply, proportional to .

Such behavior of the current-voltage characteristics is
illustrated in Fig. 5. The calculations are done by solving (26)
and (27) and the results are shown in linear and logarithmic
scales. It is seen, that the slope of ( / ), where =
2 , decreases almost two times with an increase of
applied voltage, which means that the forward current of the
NW radial p-n-junction starts to increase with significantly
reduced slope at high applied voltages. Such specific feature
of current-voltage characteristics was observed experimentally
for gallium arsenide NW radial p-n- junctions [4].

Fig. 5 The current versus applied forward bias in linear scale (right
axes) and in logarithmic scale (left axes)

It should be noted that even at high injection level the
distribution of non-equilibrium charge carriers stays
logarithmical along the NW’s radius. Indeed, for Δ ( ) ≫
it follows from (25)

≈ −2 2 = , (33)

i.e. the hole ohmic current is exactly equal to the diffusion
current, and their distribution is described by the relationship
(29).

V. CONCLUSION

The theoretical analysis is performed for the radial p-n-
junction. The final sizes of the NW core and shell are
accounted in the model. The analytical expressions are derived
to calculate the widths of depletion layers, the barrier
capacitance and the volt-ampere characteristics. The
developed model is a good base for further studies of built-in
junctions in the core/shell NWs, particularly its photovoltaic
applications.
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