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Exponentially Weighted Simultaneous
Estimation of Several Quantiles
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Abstract—In this paper we propose new method for
simultaneous generating multiple quantiles corresponding to given
probability levels from data streams and massive data sets. This
method provides a basis for development of single-pass low-storage
quantile estimation algorithms, which differ in complexity, storage
requirement and accuracy. We demonstrate that such algorithms may
perform well even for heavy-tailed data.
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I. INTRODUCTION

UANTILE estimation in data streams or massive data sets
Qarises for an increasing number of applications. Examples
of such applications include knowledge discovery and data
mining, query optimization for large databases, network
routing and traffic analysis, fraud detection, stock market
analysis and digital surveys in astronomy.

Large number of low-storage methods has been developed
for arbitrary quantile estimation from massive static data sets.
Survey of low-storage quantile estimations see in [1] and [2].
We only make mention of several methods closely related to
the subject of our paper. Quantile estimate proposed in [3] is
based on stochastic approximation and utilizes incremental
update of the density at the last estimate of the quantile. The P?
algorithm [4] approximates the empirical quantile function
using parabolic interpolation. It was extended for simultaneous
estimation of several quantiles in [5] and [6]. Recently
proposed sequential scoring algorithm provides a very
accurate quantile estimate even at the tail region [7]. It uses
simple linear approximation of ECDF apart from its tails,
which are approximated using exponential curves.

A data stream is a real-time, continuous, ordered by arrival
time or by timestamp, sequence of items [8]. Applications that
monitor a non-stationary data stream in real-time must react
quickly to unusual data values. While quantile estimation for
massive static data sets can be computed accurately, for data
streams the quantile in effect at a given time cannot be known
precisely. In this case estimators that adapts to changing data,
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like exponentially weighted moving average, would be
preferable.

Exponential weighted stochastic approximation (EWSA)
proposed in [9] is a modification of stochastic approximation
[3] for the quantile estimation in streaming data, which is
collected in batches. As with stochastic approximation, EWSA
has problems when estimating values near the tail of a density.
The poor tail performance may even take the EWSA estimate
below the smallest possible observation or above the largest
possible observation. While it can be used with batches
including one observation, its performance decreases for
smaller batch sizes.

In this paper we propose exponentially weighted quantile
estimators for streaming data, which are inspired by the P?
concept [4]. We use linear and parabolic approximations of the
empirical quantile function, but for better performance the tails
are approximated by exponential curves.

I1. QUANTILE ESTIMATION
Let X1,X5,...., X, be a sample of random variables, and
X1y <X@)<...<X(, be the ordered sequence of the
observations. The estimate of a g-quantile can be obtained
from the ordered sequence of the observations as X (nql)>
where [ng] is the smallest integer greater than or equal to nq,

for 0<g<1. However, as the number of observations becomes
large, limitations on sorting time and storage size make these
methods unrealistic.

The estimate of a g-quantile can also be found from the
empirical cumulative distribution function (ECDF), which can
be expressed in the following way

— 1<

F,(t)=— I(X; <t

n ngl(, )
where
1 ile'Sl,
0 if X; >z

This implies the recursive version of ECDF given by

I(X; sr)z{

F,(t)= (1 —ljﬁn_l(t) +11(Xi <1).
n n

Exponentially weighted moving average of an estimate can be
easily obtained from its recursive version [12]. Replacing 1/n
on the right hand side with a fixed constant «, 0 <u <1, gives
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an exponentially weighted moving average of ECDF defined
by

Fy(0) = (1=u)Fpy g (1) +ul (X; <1) . (1)
We use this estimator in our method for the exponentially
weighted quantile estimation in large data sets and streaming
data, which is inspired by the recursive version of the P?
algorithm [4].

Proposed method comprises the initialization phase and then
alternating the estimation phase with the interpolation phase.
Suppose that m probability levels 0< p; < py <...<p,, <1
are given. During the estimation phase ECDF is sequentially
estimated at m+2 grid points sy <k <...<h, <h,.| as
shown in Figure 1. The estimation at internal grid points
h,hy,....h, uses formula (1), while the estimation at

boundary grid points /g and 4,,,1 uses different procedure

described later in this section. The method tries to keep the
internal grid points close to the p;-quantile, p, -quantile,

..., Dm -quantile. On this account the estimation phase ends
when the value pj- of ECDF at an internal grid point 4 ;s
sufficiently far of the probability level p ;. Then the position
of the internal grid point # j is adjusted during the
interpolation phase. First p - quantile is estimated by
interpolation of the empirical quantile function using its values
ho,hy,...,hy, 1 at points pg,pr,...,p:nﬂ as shown in Figure
2. After interpolation the current estimate of p; - quantile
becomes the grid point /.

Total number m of the probability levels employed in the

method and its values depend of the number of estimated
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Fig. 1 The empirical cumulative distribution function
and grid points

quantiles and can be selected in the same way as in the original
P? algorithm [4]. For single g-quantile estimation, the P?
algorithm uses one main probability level ¢ and either two or

four supplementary probability levels ¢/2,(1+¢)/2 or
ql/4,q/2,(1+q)/2, 3+q)/4 respectively.
estimation of several

For simultaneous quantiles

q1<qy <...<qj , one may use either m =4k +2 probability
levels q1/2, q1, q2, ... qr, (+qp)/2 or m=k+4

ql/4’q1/27q1’q25"'5qk ’(1+qk)/2’
(3+4gy)/4 . Raatikainen recommends in [5] and [6] to use P’

probability  levels

algorithm with m=2k+1

(91+92)/2,92 5> (qk—1+9k)/ 2 qf > (1+ q) /2. In short,
the more probability levels we use, the better the performance
is, but time required for the calculations increases.

After selection of the probability levels, the quantile
estimation begins by sorting the first m + 2 observations. The
internal grid points and corresponding values of ECDF then

probability levels ¢1/2,q,

initialize to A& i =X(j+1) and pj- =pj respectively

forj=1,...,m.

A. Internal Grid Points

The value of ECDF at each internal grid point is updated
after every observation. As a new observation X comes in,
the value of ECDF at the internal grid points is adjusted as

o |U-w)p)ru i X <hy,

pj: . )
1fX>hj.

(-w)p;

Ideally, each internal grid point 4; should be equal to the
estimated p; -quantile. If the value of ECDF at an internal grid
point A j is sufficiently far of the probability level p j then the

grid point is adjusted.
Adjustment of the internal grid points is controlled by

small  non-negative  parameters 9| ,9,...,0,, and

51+ ,5; ,...,5,; satisfying the following inequalities:

— + .
6, <pj=pPj-1-6; <pjt1—Pj,1<j<m,
where pg=0 and p,,.1 =1. If the value of ECDF at an
internal grid point /4 j is below the probability level p j by
more than 5] or it is above the probability level p j by more

than 5}, then the grid point is adjusted using appropriate

interpolation.
With the linear interpolation new value for the grid point
h j is given by

%

pi-rj . *
hi=hi+(hjg—h)——— if p; > p}, 3)

Pj+1=P;

*

pPj—Pj . *
hi=hj+(h—hj_)——L.if p; <p;. (4)

Pj—Pj1
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More accurate results can be obtained using the parabolic
interpolation as shown in Figure 2. With parabolic
interpolation new value for the grid point 4 j is given by

%
pj—Pj
h] Z=hj+—* . (5)
Pj+1 —Pj-1
* h'+1—h‘ * h'—h',l
(=P )%+ (pj— ) ——5—
Pj+1—Pj Pj—Pj-1

All grid points must always be in a non-decreasing order.
Therefore, if the parabolic interpolation predicts a value,
which will make grid point % Ji less than 4 j—1 Or greater than

h 1 then the parabolic prediction is ignored and a linear
interpolation is used.

A

hj+1
hj

adjusted grid

point A b

hig |

»
¥ »

y * *
Pj-1  Pj Pj+5] p; Pj+l

Fig. 2 Parabolic interpolation of the empirical quantile function

For simplicity, instead of 2m controlling parameters

81405 s8> O) 2650y, we can use a single

parameter by setting all 5} and é'}r equal to a nonnegative

parameter O, such that < min (p j+1—P j)- Another
0<j<m

possible approach is to select o, 0 <o <1, and use 5} and

57 defined by

§;=0(pj—pj-1), 6 =o(pja—-pj), 1<j<m.
With zero value of § or o all internal grid points will be
updated after every new observation.

B. Boundary Grid Points

For the described interpolation to perform we need to
specify the boundary grid points Ay and £, 1, and the values

of the empirical distributed function p; and p;l 41, which are

used for the adjustment of the leftmost and the rightmost
internal grid points.

In simplest approach boundary grid points amount the
minimum and the maximum of the observations so far, and
corresponding values of the empirical distributed function are

set to p:; =0 and p:n 41 =1. During the initialization phase
the boundary grid points are set to /iy =X, 1) and
M+l = X(m+2) - If a new observation is less than the current

minimum /g , then the observation becomes the minimum, and
if an observation is greater than the current maximum 7, |,

then the observation becomes the maximum. With this
approach the position of the left boundary grid point may only
decrease while the position of the right boundary grid point
may only increase. This is not suitable for non-stationary data
streams and does not work well for heavy-tailed data.

(a) A
hpp1 =hp+yp [~ 777777

>
Ll
*

* * *
Pm—1 Pm Pm+l =l—&+epy
(b) A

ho=h-yL

v

* * * *
Po =1 P1 P2
Fig. 3 Approximation of the right (a) and left (b) tails
of the empirical quantile function, £=1/e = 0.36788

Instead of the placement of boundary grid points at the
current minimum and maximum we propose another approach.
In proposed method the left or right boundary grid points and
corresponding values of the empirical distributed
function are calculated only when there is a need in adjustment
of the Ileftmost or the rightmost internal grid points
respectively. The left boundary grid point hy=h -y
estimates the conditional expected observation below the
threshold 7%, and the right boundary grid point

estimates the conditional expected

Pl =hy + 7R
observation over the threshold #,,. The values of the

empirical distributed function at the boundary grid points are

* * * *
po=¢p, andp,. . =l-g+¢ep,, where

g=1/e~0.36788 as shown in Figure 3. These settings are

given by
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based on Breiman’s approximation of ECDF by the
exponential curves [13] given by

P(XSt)zprexp(t_hlJ, t<hy, 6)
rL
{2
P(X <t)=1-(1- py,)exp) , t>hy, . 7
YR

C. Parameters yy and yp

Parameter yp estimates the conditional expectation of the
excess X —hy,, given that X > h,, . It can be calculated using
exponentially weighted moving average. But this estimator is
unstable for heavy-tailed data and we propose its modification,
which is based on the idea presented in [11]. It requires the
knowledge of the right tail index, whose estimate we denote as
{'g - Calculation of the estimators yp and ¢{p is controlled
by parameters v,w, 0<v<l, 0<w<l1,and k>1.

Let a new observation X be greater then the rightmost
internal grid point /#,, and Yp and Zp be defined by

YR =X—hm, ZR ZY—R.
KYR
For small value of Yp, when Zp <1, the parameter yp is
adjusted using exponentially weighted moving average given
by
yR={1=wW)yr+wlg. ®)
For large Yp, when Zp >1, the adjustment of ¥ p consists
of two steps. First we calculate the value of
xR =1—-v){r +vIn(Zp) . If it is smaller then one, we update
the estimate {p of the right tail index using the following
version of Hill’s estimator [10]:
Cr=(0-v)Cg +vIn(Zpg). (€))
Finally we adjust the parameter yp as
v =(—w)yg +w—IR_ (10)
1-Cg
Parameter y; estimates the conditional expectation of the

shortfall sy —X given that X < /. When a new observation
X smaller then the leftmost internal grid point /; comes in,

we calculate ¥; and Zj as

YLZhl—X,ZL:Y—L.
K7L
If Z; <1, the new value for y; is given by
v =10=-wyp +wYy. (11)

Otherwise, we first calculate the value of (1-v)&; +vIn(Zy),
and if it is smaller then one, we update the estimate ¢; of the
left tail index as

S =0-v){ +vIn(Zy). (12)
Then we adjust parameter y; as

Ky
yr == wyp +w—"l (13)
1-¢p
In our experiments, during the initialization phase the
estimators ¢ and {p are set to zero, and the estimators yj,

and yp are set to X(Z)_X(l) and X(m+2)_X(m+l)

respectively.

III. SIMULATION RESULTS

In this section we present the results of our simulation study
of two algorithms. The first algorithm (EWLF) utilizes linear
interpolation of the empirical quantile function, while the
second algorithm (EWPF) uses parabolic approximation.

We use generated samples with 10,000,000 observations
for the standard normal, the chi-square with 1 degree of
freedom, and two heavy-tailed distributions: the standard
Cauchy and the Pareto distribution with tail index o =1.2. We
simultaneously estimate m =15 quantiles corresponding to
eleven main probability levels 0.001, 0.01, 0.05, 0.10, 0.25,
0.50, 0.75, 0.90, 0.95, 0.99, 0.999 and four supplementary
probability levels 0.00025, 0.0005, 0.9995 and 0.99975. We
also consider performance of the EWLF algorithm with
m=25  probability levels, when additionally 10
supplementary probability levels are inserted between each
two adjacent main probability levels. For each quantile being
estimated we calculate the quantile estimate averaged over 100
runs and the mean square error with regards to the true
quantile value (MSE). Results presented in tables below are
obtained with the following values of control
parameters: 0 =u = w=0.00001, v=0.0001, and x =10.

TABLE |
QUANTILE COMPARISON
EWLF, m=15 EWLF, m=25  EWPF, m=15

Avg. est. Avg. est. Avg. est.

s True MSE MSE MSE

Normal

-3.1544 3.1218 -3.0092
0.001 -3.0902 6.75¢-02 3.77e-02 8.39¢-02
-2.5086 -2.4140 -2.3045
0.01  -2.3264 0.182 8.80e-02 2.42¢-02
-1.7967 -1.7173 -1.6453
e -1.6449 0.152 7.27e-02 6.55¢-03
-1.4079 -1.3478 -1.2878
0.10 -1.2816 0.126 6.63e-02 7.16e-03
-0.7613 -0.7243 -0.6815

025 das 8.69¢-02 5.00e-02 6.67¢-03
0.50 0 -0.00048 -0.00064 -0.00083
i 2.88e-03 2.80e-03 3.06e-03
0.7611 0.72374 0.6801

0.75 0.6745 8.67¢-02 4.93¢-02 6.67¢-03
1.4097 1.3490 1.2880

. 1.2816 0.128 6.74e-02 7.58e-03
1.7997 1.7202 1.6478

0.95 1.6449 0.155 7.54e-02 6.11e-03
2.5145 2.4201 2.3103
0.99 23264 0.188 9.42¢-02 1.94¢-02
3.1548 3.1240 3.0203
0999 3.0902 6.67¢-02 3.71e-02 7.20e-02

Chi-square
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The EWLF algorithm provides satisfactory results for the
normal and the chi-square distributions, but it does not
perform well for heavy-tailed distributions. The EWPF
algorithm accurately estimates arbitrary quantiles from all
considered distributions. The performance of the algorithms
can be further improved by increasing the number of
probability levels. On the other hand, increasing control
parameters u,v,w and & we may achieve faster convergence

at the price of the accuracy worsening.

IV. CONCLUSION

In this paper we propose new method for simultaneous
estimation of several quantiles in massive data sets and
streaming data. By selecting particular interpolation method
for the empirical quantile function one can obtain different
algorithms for quantile estimation. We demonstrate that the
usage of the parabolic interpolation can provide acceptable
accuracy of the quantile estimation in large stationary data
sets. In our further experiments we plan to apply proposed
method for the quantile estimation in non-stationary data sets
and during these experiments find optimal values of the
control parameters.
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