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Abstract—In this paper we propose new method for 
simultaneous generating multiple quantiles corresponding to given 
probability levels from data streams and massive data sets. This 
method provides a basis for development of single-pass low-storage 
quantile estimation algorithms, which differ in complexity, storage 
requirement and accuracy. We demonstrate that such algorithms may 
perform well even for heavy-tailed data. 

Keywords—Quantile estimation, data stream, heavy-tailed 
distribution, tail index. 

I. INTRODUCTION

UANTILE estimation in data streams or massive data sets 
arises for an increasing number of applications. Examples 

of such applications include knowledge discovery and data 
mining, query optimization for large databases, network 
routing and traffic analysis, fraud detection, stock market 
analysis and digital surveys in astronomy.  

Large number of low-storage methods has been developed 
for arbitrary quantile estimation from massive static data sets. 
Survey of low-storage quantile estimations see in [1] and [2]. 
We only make mention of several methods closely related to 
the subject of our paper. Quantile estimate proposed in [3] is 
based on stochastic approximation and utilizes incremental 
update of the density at the last estimate of the quantile. The P2

algorithm [4] approximates the empirical quantile function
using parabolic interpolation. It was extended for simultaneous 
estimation of several quantiles in [5] and [6]. Recently 
proposed sequential scoring algorithm provides a very 
accurate quantile estimate even at the tail region [7]. It uses 
simple linear approximation of ECDF apart from its tails, 
which are approximated using exponential curves. 

A data stream is a real-time, continuous, ordered by arrival 
time or by timestamp, sequence of items [8]. Applications that 
monitor a non-stationary data stream in real-time must react 
quickly to unusual data values. While quantile estimation for 
massive static data sets can be computed accurately, for data 
streams the quantile in effect at a given time cannot be known 
precisely. In this case estimators that adapts to changing data, 
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like exponentially weighted moving average, would be 
preferable.  

Exponential weighted stochastic approximation (EWSA) 
proposed in [9] is a modification of stochastic approximation 
[3] for the quantile estimation in streaming data, which is 
collected in batches. As with stochastic approximation, EWSA 
has problems when estimating values near the tail of a density. 
The poor tail performance may even take the EWSA estimate 
below the smallest possible observation or above the largest 
possible observation. While it can be used with batches 
including one observation, its performance decreases for 
smaller batch sizes.  

In this paper we propose exponentially weighted quantile 
estimators for streaming data, which are inspired by the P2

concept [4]. We use linear and parabolic approximations of the 
empirical quantile function, but for better performance the tails 
are approximated by exponential curves.  

II. QUANTILE ESTIMATION

Let nXXX ,,, 21  be a sample of random variables, and 

)()2()1( nXXX  be the ordered sequence of the 

observations. The estimate of a q-quantile can be obtained 
from the ordered sequence of the observations as )( nqX ,

where nq is the smallest integer greater than or equal to nq ,

for 0<q<1. However, as the number of observations becomes 
large, limitations on sorting time and storage size make these 
methods unrealistic. 

The estimate of a q-quantile can also be found from the 
empirical cumulative distribution function (ECDF), which can 
be expressed in the following way 
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This implies the recursive version of ECDF given by  
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Exponentially weighted moving average of an estimate can be 
easily obtained from its recursive version [12]. Replacing n/1
on the right hand side with a fixed constant u , 10 u , gives 
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an exponentially weighted moving average of ECDF defined 
by 

)()(ˆ1)(ˆ
1 tXuItFutF inn . (1) 

We use this estimator in our method for the exponentially 
weighted quantile estimation in large data sets and streaming 
data, which is inspired by the recursive version of the P2

algorithm [4].  
 Proposed method comprises the initialization phase and then 
alternating the estimation phase with the interpolation phase. 
Suppose that m  probability levels  10 21 mppp

are given. During the estimation phase ECDF is sequentially 
estimated at 2m  grid points 110 mm hhhh  as 

shown in Figure 1. The estimation at internal grid points 

mhhh ,,, 21  uses formula (1), while the estimation at 

boundary grid points 0h  and 1mh  uses different procedure 

described later in this section. The method tries to keep the 
internal grid points close to the -1p quantile, -2p quantile, 

…, -mp quantile. On this account the estimation phase ends 

when the value *
jp  of ECDF at an internal grid point jh  is 

sufficiently far of the probability level jp . Then the position 

of the internal grid point jh  is adjusted during the 

interpolation phase. First -jp quantile is estimated by 

interpolation of the empirical quantile function using its values 

110 ,,, mhhh  at points *
1

*
1

*
0 ,,, mppp  as shown in Figure 

2. After interpolation the current estimate of -jp quantile 

becomes the grid point jh .

Total number m  of the probability levels employed in the 
method and its values depend of the number of estimated 

quantiles and can be selected in the same way as in the original 
P2 algorithm [4]. For single q-quantile estimation, the P2

algorithm uses one main probability level q and either two or 

four supplementary probability levels 2/q , 2/)1( q  or 

4/q , 2/q , 2/)1( q , 4/)3( q  respectively.  

For simultaneous estimation of several quantiles 

kqqq 21 , one may use either 2km  probability 

levels 2/1q , ,1q ,2q  …, ,kq 2/)1( kq  or 4km

probability levels 4/1q , 2/1q , kqqq ,,, 21 , 2/)1( kq ,

4/)3( kq . Raatikainen recommends in [5] and [6] to use P2

algorithm with 12km  probability levels 2/1q , 1q ,

2/)( 21 qq , 2q ,…, 2/)( 1 kk qq , kq , 2/)1( kq . In short, 

the more probability levels we use, the better the performance 
is, but time required for the calculations increases.  

After selection of the probability levels, the quantile 
estimation begins by sorting the first 2m  observations. The 
internal grid points and corresponding values of ECDF then 

initialize to )1( jj Xh  and jj pp*  respectively 

for mj ,,1 .

A. Internal Grid Points

The value of ECDF at each internal grid point is updated 
after every observation. As a new observation X  comes in, 
the value of ECDF at the internal grid points is adjusted as 

.if)1(

,if)1(
:

*

*
*

jj
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j

hXpu

hXupu
p (2) 

Ideally, each internal grid point ih  should be equal to the 

estimated ip -quantile. If the value of ECDF at an internal grid 

point jh  is sufficiently far of the probability level jp  then the 

grid point is adjusted.  
Adjustment of the internal grid points is controlled by 

small non-negative parameters m,,, 21  and 

m,,, 21  satisfying the following inequalities: 

1jjj pp , jjj pp 1 , mj1 ,

where 00p  and 11mp . If the value of ECDF at an 

internal grid point jh  is below the probability level jp by 

more than j  or it is above the probability level jp  by more 

than j , then the grid point is adjusted using appropriate 

interpolation.  
With the linear interpolation new value for the grid point 

jh  is given by  

**
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Fig. 1 The empirical cumulative distribution function 
and grid points 
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 More accurate results can be obtained using the parabolic 
interpolation as shown in Figure 2. With parabolic 
interpolation new value for the grid point jh  is given by 

*
1

*
1

*

:

jj

jj
jj

pp

pp
hh  (5) 
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All grid points must always be in a non-decreasing order. 
Therefore, if the parabolic interpolation predicts a value, 
which will make grid point jh  less than 1jh  or greater than 

1jh , then the parabolic prediction is ignored and a linear 

interpolation is used. 

For simplicity, instead of m2  controlling parameters 

m,,, 21 , m,,, 21 ,  we  can use a single 

parameter by setting all j  and j  equal to a nonnegative 

parameter , such that )(min 1
0

jj
mj

pp . Another 

possible approach is to select , 10 , and use j  and 

j  defined by  

)( 1jjj pp , )( 1 jjj pp , mj1 .

With zero value of  or  all internal grid points will be 
updated after every new observation. 

B. Boundary Grid Points

For the described interpolation to perform we need to 
specify the boundary grid points 0h  and 1mh , and the values 

of the empirical distributed function *
0p  and *

1mp , which are 

used for the adjustment of the leftmost and the rightmost 
internal grid points.  

In simplest approach boundary grid points amount the 
minimum and the maximum of the observations so far, and 
corresponding values of the empirical distributed function are 

set to 0*
0p  and 1*

1mp . During the initialization phase 

the boundary grid points are set to )1(0 Xh  and 

)2(1 mm Xh . If a new observation is less than the current 

minimum 0h , then the observation becomes the minimum, and 

if an observation is greater than the current maximum 1mh ,

then the observation becomes the maximum. With this 
approach the position of the left boundary grid point may only 
decrease while the position of the right boundary grid point 
may only increase. This is not suitable for non-stationary data 
streams and does not work well for heavy-tailed data. 

 Instead of the placement of boundary grid points at the 
current minimum and maximum we propose another approach. 
In proposed method the left or right boundary grid points and 
corresponding values of the empirical distributed  
function are calculated only when there is a need in adjustment 
of the leftmost or the rightmost internal grid points 
respectively. The left boundary grid point Lhh 10

estimates the conditional expected observation below the 
threshold 1h , and the right boundary grid point 

Rmm hh 1  estimates the conditional expected 

observation over the threshold mh . The values of the 

empirical distributed function at the boundary grid points are 

given by *
1

*
0 pp  and **

1 1 mm pp , where 

36788.0/1 e  as shown in Figure 3. These settings are 

*
1mp    *

mp **
1 1 mm pp

Rmm hh 1

mh

1mh

(a)

2h

1h

Lhh 10

*
1

*
0 pp *

1p              *
2p

(b) 

Fig. 3 Approximation of the right (a) and left (b) tails  

of the empirical quantile function, =1/e  0.36788 

*
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adjusted grid 

 point jh
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Fig. 2 Parabolic interpolation of the empirical quantile function 
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based on Breiman’s approximation of ECDF by the 
exponential curves [13] given by 

L

ht
ptXP 1*
1 exp)( , 1ht , (6) 

R

m
m

th
ptXP exp)1(1)( * , mht . (7) 

C. Parameters L  and R

Parameter R  estimates the conditional expectation of the 

excess mhX  given that mhX . It can be calculated using 

exponentially weighted moving average. But this estimator is 
unstable for heavy-tailed data and we propose its modification, 
which is based on the idea presented in [11]. It requires the 
knowledge of the right tail index, whose estimate we denote as 

R . Calculation of the estimators R  and R  is controlled 

by parameters wv, , 10 v , 10 w , and 1.

 Let a new observation X  be greater then the rightmost 
internal grid point mh , and RY  and RZ  be defined by 

mR hXY ,
R

R
R

Y
Z .

For small value of RY , when 1RZ , the parameter R  is 

adjusted using exponentially weighted moving average given 
by 

RRR wYw)1(: . (8)

For large RY , when 1RZ , the adjustment of  R  consists 

of two steps. First we calculate the value of 
)ln()1( RRR Zvv . If it is smaller then one, we update 

the estimate R  of the right tail index using the following 

version of Hill’s estimator [10]: 
)ln()1(: RRR Zvv . (9) 

Finally we adjust the parameter R  as 

R

R
RR ww

1
)1(: . (10) 

 Parameter L  estimates the conditional expectation of the 

shortfall Xh1  given that 1hX . When a new observation 

X  smaller then the leftmost internal grid point 1h  comes in, 

we calculate LY  and LZ  as 

XhYL 1 ,
L

L
L

Y
Z .

If 1LZ , the new value for L  is given by 

LLL wYw)1(: . (11)

Otherwise, we first calculate the value of )ln()1( LL Zvv ,

and if it is smaller then one, we update the estimate L  of the 

left tail index as 
)ln()1(: LLL Zvv . (12) 

Then we adjust parameter L  as 

L

L
LL ww

1
)1(: . (13) 

 In our experiments, during the initialization phase the 
estimators L  and R  are set to zero, and the estimators L

and R  are set to )1()2( XX  and )1()2( mm XX

respectively.  

III. SIMULATION RESULTS

In this section we present the results of our simulation study 
of two algorithms. The first algorithm (EWLF) utilizes linear 
interpolation of the empirical quantile function, while the 
second algorithm (EWPF) uses parabolic approximation.  

We use generated samples with 10,000,000 observations 
for the standard normal, the chi-square with 1 degree of 
freedom, and two heavy-tailed distributions: the standard 
Cauchy and the Pareto distribution with tail index 2.1 . We 
simultaneously estimate 15m  quantiles corresponding to 
eleven main probability levels 0.001, 0.01, 0.05, 0.10, 0.25, 
0.50, 0.75, 0.90, 0.95, 0.99, 0.999 and four supplementary 
probability levels 0.00025, 0.0005, 0.9995 and 0.99975. We 
also consider performance of the EWLF algorithm with 

25m  probability levels, when additionally 10 
supplementary probability levels are inserted between each 
two adjacent main probability levels. For each quantile being 
estimated we calculate the quantile estimate averaged over 100 
runs and the mean square error with regards to the true 
quantile value (MSE). Results presented in tables below are 
obtained with the following values of control 
parameters: ,00001.0wu 0001.0v , and 10 .

TABLE  I
QUANTILE COMPARISON

P True 

EWLF,  m=15
Avg. est. 

MSE 

EWLF,  m=25
Avg. est. 

MSE 

EWPF,  m=15
Avg. est. 

MSE 

Normal 

0.001 -3.0902 
-3.1544 
6.75e-02 

-3.1218 
3.77e-02 

-3.0092 
8.39e-02 

0.01 -2.3264 
-2.5086 
0.182 

-2.4140 
8.80e-02 

-2.3045 
2.42e-02 

0.05 -1.6449 
-1.7967 
0 .152 

-1.7173 
7.27e-02 

-1.6453 
6.55e-03 

0.10 -1.2816 
-1.4079 
0.126 

-1.3478 
6.63e-02 

-1.2878 
7.16e-03 

0.25 -0.6745 
-0.7613 
8.69e-02 

-0.7243 
5.00e-02 

-0.6815 
6.67e-03 

0.50 0 
-0.00048 
2.88e-03 

-0.00064 
2.80e-03 

-0.00083 
3.06e-03 

0.75 0.6745 
0.7611

8.67e-02 
0 .72374 
4.93e-02 

0.6801
6.67e-03 

0.90 1.2816 
1.4097
0.128 

1.3490
6.74e-02 

1.2880
7.58e-03 

0.95 1.6449 
1.7997
0.155 

1.7202
7.54e-02 

1.6478
6.11e-03 

0.99 2.3264 
2.5145
0.188 

2.4201
9.42e-02 

2.3103
1.94e-02 

0.999 3.0902 
3.1548

6.67e-02 
3.1240

3.71e-02 
3.0203

7.20e-02 

Chi-square 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

382

0.001 0.000002 
0.000004
2.95e-06 

0.000003
1.72e-06 

0.000002
5.69e-07 

0.01 0.00016 
0.00043 
2.75e-04 

0.00030 
1.35e-04 

0.00016 
6.98e-06 

0.05 0.00393 
0.00747 
3.55e-03 

0.00560 
1.68e-03 

0.00404 
1.44e-04 

0.10 0.01579 
0.02779 
1.20e-02 

0.02177 
5.99e-03 

0.01615 
4.49e-04 

0.25 0.1015 
0.1607

5.92e-02 
0 .1325 
3.10e-02 

0.1037
2.36e-03 

0.50 0.4549 
0.6387
0.184 

0.5523
9.74e-02 

0.4636
9.15e-03 

0.75 1.3233 
1.7207
0.397 

1.5324
0.209 

1.3395
1.75e-02 

0.90 2.7055 
3.2582
0.553 

2.9736
0 .268 

2.7109
1.43e-02 

0.95 3.8415 
4.5396
0.698 

4.1532
0 .312 

3.8169
3.22e-02 

0.99 6.6349 
7.6200
0.986 

7.0791
0 .446 

6.4727
0.17

0.999 10.828 
11.059
0 .255 

10.865
0 .124 

10.173
0.66

Pareto 

0.001 1.000834 
1.000775
8.55e-05 

1.000783
7.97e-05 

1.000830
5.92e-05 

0.01 1.00841 
1.00870 
3.41e-04 

1.00850 
1.98e-04 

1.00841 
1.84e-04 

0.05 1.0437 
1.0471

3.44e-03 
1.0448

1.21e-03 
1.0437

4.67e-04 

0.10 1.0918 
1.1049

1.32e-02 
1.0966

4.88e-03 
1.0918

6.31e-04 

0.25 1.2709 
1.3495

7.86e-02 
1.3031

3.22e-02 
1.2709

1.44e-03 

0.50 1.7818 
2.1596
0.378 

1.9408
0 .159 

1.7819
3.64e-03 

0.75 3.1748 
4.8020

1.63
3.8365
0 .662 

3.1762
1.32e-02 

0.90 6.8129 
12.1895 

5.37
8.7965

1.98
6.8169

4.83e-02 

0.95 12.139 
26.765

14.6
17.210

5.07
12.146
0.151 

0.99 46.416 
136.49

90.3
83.800

37.4
46.618

2.10

0.999 316.23 
600.06

293
525.78

217
317.09

26.9

Cauchy 

0.001 -318.31 
-1857.7

1974 
-1238.4

1279 
-321.88
33.89 

0.01 -31.821 
-448.05

448
-166.43

139
-32.034

1.93

0.05 -6.3138 
-64.959

59.8
-20.799

14.5
-6.3215 

.104

0.10 -3.0777 
-22.051

19.1
-7.7654 

4.69
-3.0804 
2.85e-02 

0.25 -1.0000 
-5.2893 

4.30
-2.1657 

1.17
-1.0008 
7.82e-03 

0.50 0 
-0.00795 
5.25e-02 

-0.00038 
5.50e-03 

-0.00012 
3.83e-03 

0.75 1.0000 
5.2258

4.24
2.1635

1.16
1.0001

7.88e-03 

0.90 3.0777 
21.625

18.5
7.7650

4.69
3.0781

2.54e-02 

0.95 6.3138 
62.798

57.4
20.786

14.5
6.3182
0.112 

0.99 31.821 
414.95

409
165.54

137
32.025

2.00

0.999 318.31 
1601.9
1632 

1184 
1100 

320.50
34.2

The EWLF algorithm provides satisfactory results for the 
normal and the chi-square distributions, but it does not 
perform well for heavy-tailed distributions. The EWPF 
algorithm accurately estimates arbitrary quantiles from all 
considered distributions. The performance of the algorithms 
can be further improved by increasing the number of 
probability levels. On the other hand, increasing control 
parameters wvu ,,  and  we may achieve faster convergence 

at the price of the accuracy worsening. 

IV. CONCLUSION

In this paper we propose new method for simultaneous 
estimation of several quantiles in massive data sets and 
streaming data. By selecting particular interpolation method 
for the empirical quantile function one can obtain different 
algorithms for quantile estimation. We demonstrate that the 
usage of the parabolic interpolation can provide acceptable 
accuracy of the quantile estimation in large stationary data 
sets. In our further experiments we plan to apply proposed 
method for the quantile estimation in non-stationary data sets 
and during these experiments find optimal values of the 
control parameters. 
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