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Abstract—Both the minimum energy consumption and 

smoothness, which is quantified as a function of jerk, are generally 
needed in many dynamic systems such as the automobile and the 
pick-and-place robot manipulator that handles fragile equipments.  
Nevertheless, many researchers come up with either solely 
concerning on the minimum energy consumption or minimum jerk 
trajectory. This research paper  considers the indirect minimum Jerk 
method for higher order differential equation in dynamics 
optimization   proposes a simple yet very interesting indirect jerks 
approaches in designing the time-dependent system yielding an 
alternative optimal solution.  Extremal solutions for the cost functions 
of indirect jerks are found using the dynamic optimization methods 
together with the numerical approximation.  This case considers the 
linear equation of a simple system, for instance, mass, spring and 
damping.  The simple system uses two mass connected together by 
springs. The boundary initial is defined the fix end time and end 
point. The higher differential order is solved by Galerkin’s methods 
weight residual. As the result, the 6th higher differential order shows 
the faster solving time. 
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I. INTRODUCTION 

OST of the robots and advanced mobile machines 
nowadays are designed so that they are either optimized 

on their energy consumption or on their greatest smoothness 
of motion, [3].  Consequently, the trajectory planning and 
designs of these robots are done exclusively through many 
approaches such as the minimum energy and minimum jerk, 
[4].  Nevertheless, in some applications, the robot is needed to 
work very smoothly in order to avoid damaging the specimen 
that the robot is handling while consuming least amount of 
energy at the same time.  In other words, we may want to 
minimize the jerk of the movement of the robot as to give it 
the smoothest motion as well as optimize that robot in the 
energy consumption issue.     

The general format of the dynamic problems is consisting 
of the equation of motion, the initial conditions, and the 
boundary conditions.  The area of interest in this paper will 
involve the problems with two-point-boundary-value 
conditions. Each of the problems may contain many possible 
solutions depending on the objective of application.  
Obviously, the robot that aims to run at lowest cost of energy 
will be designed to have the lowest actuator inputs during the 
motion.  This is basically the optimization problem of the 
dynamic systems.  Research shows that many of the 
researchers pay a lot of their attention on the minimization of 

energy while many tend to seek for the smoothness of the 
system.  According to the second law of Newton’s laws, there 
is a relationship between acceleration and summation of all 
forces including the control inputs of any linear dynamic 
system.  By taking derivative with respect to time, there is a 
relationship between derivative of the acceleration called Jerk 
and derivative of all forces including the derivative of the 
control inputs of the dynamic system.  In this paper, the 
derivative of the control inputs with respect to time are called 
indirect jerks. 

Therefore, this research paper aims to search for the 
relationship between the minimum direct jerk and indirect jerk 
by using the optimization method so that this new alternative 
can be put into applications. 

 

II. PROBLEM STATEMENT 

Dynamic systems can be described as the first order 
derivative function of state as 

 
nituuxxfx mnii ,...,1     );,,...,,...,( 11 == ,          (1) 

 
where nRx∈ , mRu∈ and t  are state, control input, and 
time respectively, [5].  The problem of interest is to find the 
states x(t) and control inputs u(t) that make our system 
operates according to the desired objective of minimum 
energy or minimum jerk.  Note that this paper is focusing on 
the system with fixed end time and fixed end points.  
Therefore, states and control inputs that serve the necessary 
condition must also be able to bring the system from initial 
conditions x(t0) at initial time t0 to the end point x(tf) at time tf. 

The optimization problem of minimum energy will take the 
form of  

dtuJ
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where ui is the control input, which can be force or torque 
applied to the system, and mi ,...,1= .  J is the cost function 
of the energy consumed by the system from initial time t0 to 
end time tf.   
 The same kind of concept is used to the minimum jerk 
problem.  It is well known that jerk is the change of input 
force with respect to time.  It is, thus, the third derivative with 
respect to time of x, or first order derivative of control input u.  
Therefore, 

M 
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uxJerk ∝=  .                              (3) 
Defining 
 

uu ~= ,                                      (4) 
 
so that (1) becomes 
 

mnituuxxfx mmnii +== + ,...,1   );,~,...~,,...,( 11 .     (5) 
 
From now on, u~  is treated as a variable and as the control 
input of our dynamic system.  Consequently, (2) can be 
rewritten for the objective function of the minimum indirect 
jerk problem as 
 

dtuJ
ft
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Similarly, (2) also can be rewritten for the objective function 
of the minimum direct jerk problem as 
 

dtxJ
ft

t
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This time, J is the cost function of the jerks. 

 

III. NECESSARY CONDITIONS 

In this paper, we use the calculus of variations in solving for 
the extremal solutions of the dynamic system, [1].  
Representing the control input with u, the principle of calculus 
of variations helps us solve the optimization problem by 
finding the time history of the control input that would 
minimize the cost function of the form 

=J
ftnxxt ),...,,( 1φ + dtuuxxtL

ft

t
mn∫

0

),...,,,...,,( 11 ,    (8) 

where  

ftnxxt ),...,,( 1φ ,                                     (9) 

is the cost based on the final time and the final states of the 
system, and  

dtuuxxtL
f

i

t

t
mn∫ ),...,,,...,,( 11 ,                   (10) 

 

is an integral cost dependent on the time history of the state 
and control variables.  Since the cost of the final states would 
be equal in all feasible time histories of the control input; 
therefore, the first term of (8) is omitted. 
Mathematically,the form of J is 
 

( )dtxxxxxxxxFJ
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and the variation of such a functional is 
 

dth
x
F

dt
d

x
F

dt
d

x
F

dt
d

x
FJ i

t

t

n

i iiii

f

∫∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

=
0

1
3

3

2

2

 

           ft

ti

n

i ii

dth
x
F

dt
d

x
F

0
1
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+  

        ft

ti

n

i i

dth
x
F

0
1
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+                                              (12) 

 
where ( )thi  are the variations ( )txi . Since ( )thi and ( )thi  
must vanish at the two end point , the necessary  conditions for 
optimization become 
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Weighted Residual Methods 
Different forms of weighted residual method have been to 

solve boundary value problems. A summary of these methods 
is available [1]. These methods can be classified as:(a) those 
that satisfy the differential equations approximately over the 
domain but satisfy the boundary conditions exactly such as 
Galerkin's method, method of moments, collocation method, 
and method of sub-regions, (b) weak formulations which 
satisfy the differential equations only partially, and (c) 
boundary element methods which satisfy the differential 
equations exactly over the domain but boundary conditions 
only approximately such as Trefftz method.  

Due to the nature of our optimization problem with fixed 
end point constraints at 0t  and ft , only the methods 
classified in category (a) were considered suitable. The 
underlying fundamental behind this method can be 
summarized using the following simple example. Consider the 
problem . 
 

                                ( ) 0=− pxη                                  (14) 
 
where ( )η  is a differential operator, x  is a function of time, 

and p  is a constant. The solution ( )tx must also satisfy 
stated boundary conditions at the initial and final time. In this 
method, ( )tx  is approximated as  
 

                            ( ) ( )ttx i

n

i
iφα∑

=

=
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                              (15) 

 
where ( )tiα  are undeterm\ned parameters and ( )tiφ are 
linearly independent mode functions selected from a complete 
set of functions. These functions are usually chosen to satisfy 
admissibility conditions relating to the boundary conditions. 
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On substituting (15) in( 14), the following error function 
results 
 
                                   ( ) px −=ηε                               (16) 
 
This error function ( )tε  is forced to be zero, in the average 
sense, by setting weighted integrals of the residual equal to 
zero, i.e., 
 

                                   ∫ =
ft

t
i dt

0

0εψ                                 (17) 

 
where ( )tiψ  are the weighting functions. 

The category (a) methods differ primarily in their selection 
of weighting functions. For example, the method of moments 
uses weighting function as .,..,1, nit i =  Galerkin's method 
uses weighting functions the same as mode functions. In this 
paper, Galerkin's method was selected to obtain the 
approximate solution of the problem because of its generality 
and ubiquitous use in solving problems of mechanics. The 
mode functions in this problem are chosen as polynomials due 
to their simplicity of analytical integration. 
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(18) 

 
Galerkin’s Solution 
The approximate solution of the six-order differential must 

be obtained subjected to the following boundary 
conditions, ( ) ( ) ( ) ff xtxxtxxtx === ,, 0000  and 

( ) ff xtx =  In order to ensure admissibility of the trial 
functions, the approximate solution must have the following 
form [7]: 
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m

i
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where ( )t0Φ  is an n  -dimensional vector of mode functions 
that satisfies the boundary conditions of the vector x at time 

0t  and ft . ( )tiφ  are mode functions, which vanish at the two 
end points and also have zero derivatives at the end points. As 
a result, ( )tx  always satisfies the boundary conditions of the 

problem. mLL ,...,1  are n -dimensional constant vectors that 
are determined by minimizing the residual error. 

On substituting (19) in Eq. (18), the following error vector 
results: 
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In accordance with Galerkin's procedure, the error function 
must be chosen to be orthogonal to the mode functions 
 

( ) ( ) midttt
ft

t
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This leads to mn  scalar equations which can be used to solve 
for the  mn  elements of the vector mLL ,...,1  The equation 
(21) can be written in a matrix form: 
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where plT  is a (n x n) matrix sub-block, and pR  is a (nx1) 
vector defined below: 
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The above equation can be inverted to solve for the vectors 

mLL ,...,1 . 
 

Mode Functions: A Particular Choice 
It is quite evident that any set of ( )t0Φ  and ( )tiφ  that 

satisfies the boundary conditions is a valid set of mode 
functions. In this paper, ( )t0Φ   is chosen as the following 
cubic function of time  
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It can be easily verified that ( ) ( ) ff xtxt =Φ=Φ 0000 ,  

( ) ( ) ff xtxt =Φ=Φ 0000 , The mode functions ( )tiφ  are 
selected as  
 
                    ( ) ( ) .,...,1,23 mitttt i

fi =−= +φ              (26) 
 
These mode functions possess the properties   

( ) ( ) ( ) ( ) 000 ==== fiifii tttt φφφφ  

With these mode functions, the matrix plT   and the right 

hand side vector pR  can be analytically computed, 
respectively. 

 
IV. EXAMPLE PROBLEMS 

 
Fig. 1 Two degree of-freedom of spring mass and damper system 

 
The procedure outlined in this paper for dynamic 

optimization is illustrated with the following example of a two 
degree-of-freedom spring-mass-damper system sketched in 
equation as  
 

BuxA =                                     (27) 
 
The matrices A  and B  for this system is as follows: 
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where the matricesM ,C  and K  are: 
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The equation (27) can also be rewritten in the second order 
differential equation according to the second law of Newton.  
The parameters used in the model in MKS units are: 

2,1,1,2 23121 ===== cccmm 1321 === kkk , 
The boundary conditions are ( )Ttx 0012)( 0 =  and 

)( ftx  ( )T0000= , where 00 =t  and 0.1=ft . 
 

A.  Minimum Direct Jerk Problem 
The cost function of minimum direct jerk is defined as 

 

dtxxJ ∫ +=
1

0

2
2

2
1 .                             (32) 

 
 In order for the cost function in (32) to be minimized, the 
Calculus of Variations as stated in previous section has been 
used. 
 

B.  Minimum Indirect Jerk Problem 
The cost function of minimum indirect jerk is also defined 

as: 
 

dtuuJ ∫ +=
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 Similarly for (33) to be minimized, the Calculus of 
Variations must be applied here. 
 

C.  Numerical Results   
The minimum jerk problem has the exact same format as 

the minimum energy problem in (2).  However, since the time 
derivative of control inputs are considered, the (27) must be 
rewritten as to include the consideration of jerk into the 
system: 
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Therefore, the extra boundary conditions can be applied at 

both ends that are ( )Ttu 00)( 0 =  and )( ftu  ( )T00= .  
These conditions can be applied in the numerical scheme 
through the original dynamic equations as follow: 
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Fig. 2 Compares results of the first state variables of minimum 

indirect jerk between mode function at 0 and 1 
 

 
                                                

Fig. 3 Compares results of the first state variablesof minimum 
indirect jerk between mode function at 1 and 2 

  
 

From the solutions above )(1 tx  and )(2 tx  from both 
minimum indirect jerks have exactly the same solutions which 
can be seen obviously. 

In conclusion, the numerical solution of minimum indirect 
jerk problem becomes much easier and yields to the same 
results as minimum direct jerk problem since the number of 
control inputs in dynamic systems must be less than or equal to 
the number of state variables.  Therefore, the variables used in 
the cost function of the minimum indirect jerk problem will be 
less than the minimum direct jerk problem when considering 
the under actuator dynamic or robotic systems. 

The results in this paper show that the minimum indirect 
jerk can be used instead of minimum direct jerk strongly for 
the linear dynamic systems.  However, the nonlinear dynamic 
problems could be used to compare for the future work which 
very high expectation that both problems will have the same 
results. 
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