Environmental Impact Assessment of *Gotvand* Hydro-Electric Dam on the *Karoon* River Using ICOLD Technique

A. Sayadi, A. Khodadadi D., and S. Partani

Abstract—Today Environmental Impact Assessment (EIA) is known as one of the most important tools for decision makers in the construction of civil and industrial projects towards sustainable development. In the past, projects were evaluated based on cost and benefit analysis regardless of the physical and biological environmental effects and its socio-economical impacts. According to the Department of Environment (DOE) of Iran's regulations, the construction of hydroelectric dams is an activity that requires an EIA report. In this paper the environmental impact assessment of the Gotvand hydro-electrical dam has been evaluated in the three environment elements, biological, Physical-chemical and cultural units. This dam is one of the largest dams in Iran with a volume of 4500 MCM and is going to be the last dam on the Karoon River in the south of Iran. In this paper the ICOLD (International Commission on Large Dams) technique was employed for the environmental impact assessment of the dam. The research includes all socio economical and environmental effects of the dam during the construction and operation of the hydro electric dam and Environmental management, monitoring and mitigation of negative impacts were analyzed. In this project the results led to using some techniques to protect the destructive impacts on biological aspects beside the effective long time period impacts on the biological aspects. The impacts on physical aspects are temporary and negative commonly that could be restored and rehabilitated in natural process in the long time in operation period.

Keywords—"*Gotvand* Hydro Electric Dam", "EIA", "ICOLD and Leopold matrices".

I. INTRODUCTION

A comprehensive Environmental Impact Assessment (EIA), since 1971 mandatory in a growing number of ICOLD1 member countries, ought to become standard procedure everywhere as part of project conceptualization, that is well before final design and the start of construction [1].

Economic, Social, Physical and Environmental change is

Ahmad Sayadi is with Faculty of Engineering, Tarbiat Modares University, Iran (corresponding author, phone: +98(21)82883546, fax: +98(21)82884324; e-mail: Sayadi@modares.ac.ir).

Ahmad Khodadadi Darban is with Faculty of Engineering, Tarbiat Modares University, Iran (phone: +98(21)82883399, fax: +98(21)82884324; e-mail: AKDarban@modares.ac.ir).

Sadegh Partani is with Modares Environmental Research Center-MERC, Tarbai Modares University, Iran (phone: +98(21)82883995, fax: +98(21)82884324, e-mail: Sadegh_Partani@yahoo.com)

inherent to development. Whilst development aims to bring about positive change it can lead to conflicts. In the past, the promotion of economic growth as the motor for increased well-being was the main development thrust with little sensitivity to adverse social or environmental impacts. The need to avoid adverse impacts and to ensure long term benefits led to the concept of sustainability. This has become accepted as an essential feature of development if the aim of increased well-being and greater equity in fulfilling basic needs is to be met for this and future generations. The imperative for development to remedy these defects may be so great that consequent environmental degradation may be tolerated. With Iran as a water scarce country, with a mean annual rainfall of below 250 mm, the use of water has been critical to the development of the country's industrial base and wider economy and will remain so in future. However, due to past exploitation, and the increasing demand for water, the regulation of our water resources is essential [2]. Literatures indicate that the most negative impacts of large dam construction are loss in the ecological/biodiversity [3]:

- a) Impact on the ecology of the freshwater system,
- b) Loss in water bird habitat.

World Bank's estimate that roughly ten million people are displaced each year due to dam construction, urban development, and transportation and infrastructure programs [4]: This number is shockingly high, but it still fails to account for large numbers of the displaced. Displacement tallies almost always refer only to persons physically ousted from legally acquired land in order to make way for the planned project, ignoring those living in the vicinity of, or downstream from, projects, whose livelihoods and socio-cultural milieu might be adversely affected by the project [5].

It is during the dam operation phase - which can typically span 50 to 100 years - that the most severe impacts on fisheries and aquatic environments take place [3]. Produced comprehensive reviews of dam impacts on fisheries and aquatic ecology at global level, while carried out detailed analysis of the impacts of dams on aquatic environment and fisheries in Africa and South-east Asia. Impacts can be grouped into two categories: 1) impacts which affect fish directly, and 2) impacts which affect the fisheries environments (upstream river, reservoir, downstream river,

estuary, delta, sea) in some manner that leads to a deterioration in fish biodiversity, fish stocks and/or fisheries production. Thus a proper EIA report can predict the all environmental effects and propose the possible techniques for mitigation or reduction of negative effects [3].

There are three principal methods for identifying environmental effects and impacts: Checklists are comprehensive lists of environmental effects and impact indicators designed to stimulate the analyst to think broadly about possible consequences of contemplated actions. This strength can also be a weakness, however, because it may lead the analyst to ignore factors that are not on the lists. Checklists are found in one form or another in nearly all EIA methods. One of the most comprehensive is published in the United States [6]. Matrices typically employ a list of human actions in addition to a list of impact indicators. The two are related in a matrix which can be used to identify (to a limited extent) cause-and-effect relationships and flow diagrams are sometimes used to identify action-effect- impact relationships. The flow diagram permits the analyst to visualize the connection between action and impact. In this research the above three methods were used and the results were compared

The forth and fifth National Development Program (NDP) of Iran call for the uniform protection of all significant water resources, and places emphasis on resource sustainability and integrated water resource management. Department of Environment (DOE) of Iran also required the necessity of EIA report for all hydro-electric projects to assist in their decision-making process. In this paper socio-economical and the environmental impact assessment of the *Gotvand* hydro-electrical dam has been evaluated. This dam is one of the largest dams in Iran with a volume of 4.5 billion m3 and is going to be the last dam on the *Karoon* River in the south of Iran. In this paper all socio economical and environmental effects of the dam during the construction and operation of the hydro electric dam have been discussed.

Of the types of development projects that bring about physical displacement, dams and their related infrastructure, including power stations and irrigation canals, stand out as the largest contributor to displace. All dams and reservoirs as many other human activities, become a part of their environment which they influence and transform to a degree and within a range that vary from project to project. Frequently seeming to be in opposition, but not necessarily irreconcilable, dams and their environment interrelate with a degree of complexity that makes the task of the dam engineer particularly difficult. The solution must be to find the golden mean by striking a balance between divergent and sometimes contradictory goals. We need dams and the many benefits which their reservoirs offer all over the world, by storing water in times of surplus and dispensing it in times of scarcity. Dams prevent or mitigate devastating floods and catastrophic droughts. They adjust natural runoff with its seasonal variations and climatic irregularities to meet the pattern of demand for irrigated agriculture, power generation, domestic and industrial supply and navigation.

II. PROJECT DESCRIPTION

The *Gotvand* Dam which is going to be constructed in the next few years as the last dam on *Karoon* River is located within the *Khozestan* Province South of Iran. This dam will have a surface of 96.5 km² with an approximate water volume of 4445 million m for the purposes of hydroelectric energy with the capacity of 4250 million KW, agricultural and recreational uses.

III. METHODOLOGY

Data Gathering

The research method involved formal and informal interviews with key informants within formal and indigenous institutions. These included key government officials, university professors, environmental consultants, nongovernmental organizations, and traditional leaders. Openended questions designed to identify constraints to EIA practice in the country were posed. These were supplemented with content analysis of secondary data and information from official publications and other related literature. Transcripts of interviews, field notes, and relevant literature were analyzed on the basis of themes and patterns of interrelationships among responses that addressed the research goal [7].

EIA Analyzing Method

The environmental assessment of *Gotvand* dam and its related installations began by analyzing the available environmental resources. In analyzing the environmental resources of watershed basins of region, the available maps together with land works were used. Furthermore, in the environmental impact analysis of the dam and its related installations, the method of ICOLD matrix was used. The aims of the prediction and evaluation stages of the EIA procedure are to identify those activities most likely to occur, and to determine the likely importance of these impacts, be they positive or negative. All the implementing activities in connection with the dam construction was predicted in the method, and after the land visit to the studying areas, a list of impacted environmental factors was made ready [2, 8].

The EIA evaluation was made for the important phases during the construction and after operation. The negative impacts of each activity on the environmental resources was then evaluated, and the results were examined. In this method, the environmental resources, which will be affected by "much" and "very much" negative impacts, have been identified. The activities, resulting in resources destruction, have been then specified (table I). Magnitude is a quantifiable measure of the size of an impact, and it can be defined as the degree of movement away from the baseline state of the specific environmental ICOLD has prepared a large and comprehensive matrix for use in EIA studies for dams. The system of symbols for each box shows: whether the impact is beneficial or detrimental; the scale of the impact; the

probability of occurrence; the time-scale of occurrence; and, whether the design has taken the impact into account, [1]. This comprehensive approach, however, makes the final output rather difficult to use and a maximum of three criteria is recommended per impact to maintain clarity. Ahmad and Sammy suggest that the most important criteria are: magnitude, or degree of change; geographical extent; significance; and, special sensitivity [9]. "Significance" could be further sub-divided to indicate why an impact is significant. For example, it may be because of irreversibility, economic vulnerability; a threat to rare species etc. "Special sensitivity" refers to locally important issues component under consideration. Here the magnitude is expressed on a scale of 1 to 3. Significance is defined as a measure of how important the assessor feels any movement away from the baseline conditions to be. Significance is expressed on a scale ranging from highly detrimental (-5), through negligible (0), to highly beneficial (+5). On the basis of these scores all activities can be ordinal ranked [12].

In order to aid completion of the matrix, domain specific

information is presented to the user simultaneous to completing the matrix. This information is of three types: textual information specific to each environmental component (i.e. the vertical axis of the matrix), rule-based information relating to the primary and higher order impacts of specific activities (the horizontal component of the matrix), and baseline biophysical and socio-economic data relating to the project's location (further details are given below). This information is held within a relational database comprised of tables relating to environmental components, project types, activities, impacts, mitigation measures and their interrelationships. In addition the database contains textual information on each key item, i.e. activities and impacts. In the end, simple and implementable management mechanisms and strategies have been suggested to mitigate the negative impacts resulted from the project implementation. Thus, proper environmental management in the watershed of the region depends on the careful and complete implementation of these proposed mechanisms [10].

TABLE I
THE ACTIVITIES, RESULTING IN RESOURCES DESTRUCTION

	THE TROTT THEO, THE OUT IN	O II TELBOORICEB BESTINGCTIC	
Surface water hydrology	Aquatic habitats	Water supply	Socio-economics
Surface water quality	Aquatic wildlife	Food supply	Infrastructure
Groundwater hydrology	Terrestrial habitats	Fuel supply	Resettlement
Soil erosion	Terrestrial wildlife	Navigation	Indigenous cultures
Soil fertility	Coastal habitats	Recreation	Aesthetics
Geology	Marine life	Flood control	Noise
Sedimentation	Forests	Irrigation/drainage	Public health
Air quality	Protected areas	Agriculture	Nutrition
•	Endangered species	Aquaculture	Archaeology
		Agro-industry	

IV. RESULTS AND DISCUSSION

An assessment of the potential and existing impacts of the extraction of water from the *Gotvand* Dam on the surrounding environment was based on existing information and specialist studies, the existing and potential impacts have been assessed as shown in Table II.

As indicated in Table II, the positive environmental effect received 12 crosses while the negative impact possible get 16 crosses; then it may be concluded that the *Gotvand* dam construction will have negative impact for the environment especially on biological element. however the number of positive impact especially in term of socio-economical impact significantly affect its negative ones.

The environmental effects of the *Gotvand* Dam construction on biological, physical and socioeconomic aspects using ICOLD technique is shown in Table III, IV and V, respectively.

The description of each sign, item and abbreviation of the ICOLD technique in Table III, IV and V is as the following [2].

I, II, III determine the priority of the waster consumption, the sign + and – show the negative or positive impact, no. 1, 2, and 3 indicate low, medium and high impacts respectively, C indicates the Certain impact, P indicates the Probable impact, I

indicates the Improbable impact N shows the Non probable impact, P shows the permanent and T indicates the Temperate impact, L, M and I define Long term, Middle term and Instantaneous effect and finally Y shows the yield impact and N not defined impacts.

Based on above description the ICOLD matrices shown in Tables III, IV and V indicate the impacts of each activity of the *Gotvand* dam on physical, biological and socioeconomical environment.

The table III biological impacts demonstrates that (E501) vegetal destruction has the maximum effect while fun (E 506) and flora ranked less negative impacts.

The table IV physical impacts shows that (A207) vegetal destruction, (A208) raw material supply and (A301) discharging water vegetal area have the high negative impacts.

Water use in agriculture (A 101), tourism (A 403), industrial development (A415), fish industry (A 401) and infrastructure construction for the region (A 405) have the greatest positive impacts.

Vegetal destruction (A 207) has very negative impacts on the physical, biological and socio economical environment.

A change in the type, distribution and coverage of vegetation may occur given a change in the climate; this much is obvious. However, to what extent particular plant life

changes, dies or thrives, depends largely on the model of prediction used. In any given scenario, a mild change in climate may result in increased precipitation and warmth, resulting in improved plant growth and the subsequent sequestration of airborne CO₂. Larger, faster or more radical changes, however, may well result in vegetation stress, rapid plant loss and desertification in certain circumstances [11].

The biological impacts of the *Gotvand* reservoir are felt in the areas of weeds, and environmental health including bilharzia, malaria and onchocerciasis. Weeds different plant species usually proliferate with the execution of water projects. These aquatic weeds have very serious impacts on water supply and other reservoir based economic activitie. This has greatly contributed to the decline of fishing as an occupation in most settlements. Perhaps the most serious aspect of aquatic weed growth is its direct impact on the incidence and spread of water borne diseases such as schistosomiasis, encephalitis and filariasis.

TABLE II
THE POTENTIAL IMPACTS OF DAM ON PHYSICAL, BIOLOGICAL AND SOCIO-ECONOMICAL ENVIRONMENT

	vironmental effect place a in one of the columns	Positive impact very likely	Positive impact possible	No impact	Negative impact possible	Negative impact very likely	No judgment possible at present	Comments
		A	В	C	D	E	F	
	1-1 Low flow regime							
	1-2 Flood regime							
Hydrology	1-3 Operation of dams	×						
	1-4 Fall of water table							
	1-5 Rise of water table				×			
	2-1 Solute dispersion				×			
	2-2 Toxic substances				×			
Pollution	2-3 Organic pollution				×			
	2-4 Anaerobic effects							
	2-5 Gas emissions							
	3-1 Soil salinity							
	3-2 Soil properties							
Soils	3-3 Saline groundwater							
50115	3-4 Saline drainage				×			
	3-5 Saline intrusion				×		 	
	4-1 Local erosion				×		†	
	4-1 Local erosion 4-2 Hinterland effect				^		1	
	4-3 River morphology							
Sediments								
	4-4 Channel regime							
	4-5 Sedimentation							
	4-6 Estuary erosion							
	5-1 Project lands							
	5-2 Water bodies							
	5-3 Surrounding area							
Ecology	5-4 Valleys & shores							
Leology	5-5 Wetlands & plains							
	5-6 Rare species				×			
	5-7 Animal migration							
	5-8 Natural industry	×						
	6-1 Population change	×						
	6-2 Income amenity	×						
	6-3 Human migration					×		
	6-4 Resettlement				×			
Socio-	6-5 Women's role							
economic	6-6 Minority groups	×					×	
	6-7 Sites of value	×						
	6-8 Regional effects	×						
	6-9 User involvement	×						
	6-10 Recreation	^	×					
	7-1 Water & sanitation	×	^					
	7-1 Water & sanitation 7-2 Habitation	×						
	7-3 Health services	×						
**	7-4 Nutrition	×						
Health	7-5 Relocation effect							
	7-6 Disease ecology				×		ļ	
	7-7 Disease hosts				×		ļ	
	7-8 Disease control		×					
	7-9 Other hazards							
	8-1 Pests & weeds				×			
	8-2 Animal diseases				×			
Imbalances	8-3 Aquatic weeds				×			
	8-4 Structural damage				×			
	8-5 Animal imbalances				×			
	Number of crosses	12				1	1	(Total = 32

International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

				_		_	_			_	_	_	_	_		_	_		_		1	V	ol:	:3	,	N	o:	6,	2	20	0	9			_			_									_	_	_	_		_	_	_	_	_		_
		E610	rare and extincting typ				+1PPMY						, in the second	-1CP Y	+ IPPINIT	-1CIIY	-1PTIY			-2CPTY	-1CPTY			+1CPMY			-1PPMY						+1CPMY					+1PPMY	+1PPMY	-1PPMY		-1PPTY	+1PPMY	+1PPMN	-2PPTY	-1PPTY	-1PPI N	1		14 DD MAN	NIM A L +		+1PPMN					+1PPMY
		E609	micro-organisms											.400kk	+ CPIMI		-1CTIIY			-1CTIY					+1CPMY							-1PPTY	+1CPMY					+1PPMY	+1CPMY	-1PPMY	+1CPMY	-1CPTY	-1CPMN	+1CPMN	-2CTIY	-1PTIY				WW GOC.	+ZCPIMIN	-2CPMY	+2CPMY	+1CPMY				+1CPMY
		E608	zoobjanktons	+1CPMY		+1CPMY	-1РРМҮ	-1PPMY			-1CPMN	-1РРМҮ		VANDOC.	+ZPFINIT	-2CIIY	-1CTIIY	-1РПҮ	-1РРТҮ	-1РТІҮ	-2CTIY			+2CPMY	+1CPMY		-1PPMY		+2CPTY	+2CPTY		-1PPTY	+2CPMY					+2PPMY	+3CPMY	-1PPMY	МΥ		+1CPMN		-1PTIY	-2PPMN			Ī	OCDAMI	-ZCPIMIN	-1PPMN	+2CPMY					+2CPMY
		E607	macroinvertebrate	-1PPMY		Ť	+1PPMY				Τ.	1PPMY		1.	TIME		1CTIY			1CTIY	1CTIY				-1PPMY		1PLMY		1	1CPMY			+1PPMY						-2CPMY	Ť	+1PPMY	_	+1CPMN	Ė	Ė	10TI Y			Ī	VANG OC.	Ť							+1CPMY
	Aquatic faur	.606 E	other fishes			П	+1CPMY +	Т			+1PPMY	1PPMY	,	-1CPMY		2CTIY	ZCTIY	-2CTIY		1PPTY -	2CTTY -			+3CPMY	-1PPMY +		-1PPLY -		1CPTY +	+2CPMY -		_	+2CPMY					-2CPMY	+3CPMY +	Ť	+2CPMY +		+1CPMN +	Ė	۲	2PTIV	2PPMN	ZFFIVIIV	Ť	VANG OC.	Ť						Ī	+1CPMY
	errestrial and Aquatic fauna	:605 E	economical fish	-1CPMY		Т	Л	-1PPMY -			+2CPMY +	7	1	+3CPMY	Ì	Ť.	Ť	Ì	-1CTIY	-	1CTIY -				+3CPMY -					+2CPLY 4			+2CPMY +					3CPMY +	+2CPMY +	Ť	+2CPMY +		+1CPMN +	_	۲	>	- AMdac	- I IMI I	1	- VANGOC -	7		+2CPMY	+1PPMY			Ì	-1CPMY +
	Terre	604 E	Reptiles	,			7	1PPMY -			+	<u>`, </u>		+ .	T		-1C111Y	`.		1CPTY	CPTY -			_	+1PPMY +								+1PPMY +					+	+1CPMY +	-1PPLY	Ì		+2CPMY +	+1CPMN +	r	Ĺ	NIGHT-	5	T	. 4 DDMAN	1		+	+				+2CPMY -
TABLE III - ENVIRONMENTAL EFFECTS OF THE GOTVAND DAM CONSTRUCTION ON BIOLOGICAL ASPECTS		303 E	stoezni	+1PPMY	-1PPMY		+2PPMY	1				1PPMY		YMA GOOD	_	Ì		-1PTIY		1CTIY -1	,				+1CPMY +:		+1PPLY			Ĺ			-2CPMY +						+2CPMY +:	Ť	_		,	Ė	Ė	Ī.		- ADDMY	F M F	T	- :	.1PPMN						+1CPMY +;
OGICAL ,	-	302 E	sbrid	П	+1PPMY -1	Т	-2PPMY +:	Т			J	PPMY -1	7	FZCPLY +	<u> </u>	Ï	2CTIY -1			2CPTY -1	_			Ţ	+1PPMY +		+1CPLY +		Ė	+1CPMY +			+1CPMY +;	1					Υ	2PPLY	İ		+2CPMY +	Ė	r	ľ	NIdd	Т	+1PPMN +	VANDOC.	Ť	Ť	1PPMN					+2CPMY +
ON BIOL		301 E	siəmmsm	П	+1PPMY +1	7	+1PPMY +2	-			PPIMY +,	ì	1	+1CPLY 4CPLX	-	Ï	-1PTIY -2			ÿ	-1PTIY -1		_	+1PPMY +	-		+1PPLY +1			-1CPIY +			+1PPMY +1					İ	_	-1PPLY -2		Ħ	+1CPMY +2	Ė	Ť	l	``	_	+1PPMN +7	, Approvi	+	-	÷				l	+1CPMY +;
UCTION		E509 E(other plants		+		,+				-	-	Ī	+ 1				-1PTIY		-2CPTY -1	Ţ			+1CPMY +1			+		PPTY	+1PPTY -1			+1CPMY +1	1					>	-1PPLY -1		П		+1PPMY +1	t		t	Т	+1PPMY +7	, 100 N	1		+1PPMN				l	+1PPMY +
CONSTR	-		rare and extincting pla									2PPLY	1		1	1PP1 Y 1-11		-1PPTY -1		Ţ	.2PPTY -2F			+1CPMY +1	PPMY		-1PPLY		÷,	-2PPTY +1			+1CPMY +1	1					→		+1PPMY		+1PPMN +1	+1PPMN +1	Ė	PPTY	NIdo	1.	+2PPMY +1	14 DD N	T	1	+1PPMY +1					+2PPMY +1
/D DAM	-	07 E5	byλţoblangtons	PPMY		+1CPMY	CPMY	-2PPMY			z.	PPLY -2F	1	78,4000	1	ZCTIY -11	Ť		ٍ	PTIY -30	2CTIY -2F			7	+2PPMY +1		-1F			+2CPTY -2F			CPMY +1					PPMY	+2CPMY +2	Ť	¥	Ĥ	CPMN +1	Ė	2CTIY -2F	ľ	PPMN -1P		+1PPMN +2	P. DAMAN	7	1	+2CPMY +1				l	+2CPMY +2
GOTVA	Flora	J6 E5	active plants	-1F		7	+	-2PPMY -2F		+	-1CPMN +10	-	1	1	+ZFFWIT +ZF	7Z5II	Ť	-1CTIY -1C	T	-1PTIY -1F	γ .		_	+ AMd	1PPMY +2F			Н		+2CPTY +20		-1	3PMY +10	1				PMY +11	PMY .	Ť	·M≺	-	1CPMN +10	-2CPMY +10	3CTIY -20	Ţ	PPMN -1E	Τ.	+2CPMY +11	C. INMODIC.	Ť	7	+2CPMY +20			_	l	+2CPMY +20
S OF THE	and Aquatic Flora	35 E506	organic plants	-2CPMY		_	×	_			+		1	× 1000	Ť	-20	Τ.		П	-3CPTY -1F	Ė			-2CPMY +2C	+1				+	CPTY +20	+2PPMY	-1F	+5(1				+11	-2CPMY +2C	Ť	+1PPMY +1F	``	+2CPMY +10	+	۲	Ŀ	NM C		+1CPMY +20	. 1 DDAMN . 2	Ť	Ť	+1CPMY +20					+1CPMY +20
LFFECT	rrestrial	14 E5(agricultural lands	CPMY +20	+1PPMY		+1CPMY +10	-1P						+3CPMY	+	_		-1PPTY -1P	-1P		-1PPTY -2C		-	+3CPMY +20	PMY		+2CPMY		-1CPTY +10	2CPTY +10	Ť	-1PPMY			-1PPLN				_	-1PPLY -1P		-1PPTY	Ė	+1CPMY +10	T	PTY +1P	z	Т.	+2PPMY +10	- -	Ť	7		+2CPMY			+2CPMY	Т
MENTAI	-	3 E504	grass plant growth	+30	+1F			λMς					1	<u> </u>		-1CIIY -1C	1		PTY	,				4λ	Υ		,		·		٨	_	ΡΤΥ		-1P				_	Ť	>		1	_ /		PMY +2F	PMN -1CP	- >	_	DAAN	z.		z	Υ.			+20	>
ENVIRO		2 E50	spuel besunu bns besselei					-1PPM		1	1	1	1	1CP1 Y -1CP1		Ī	Τ		TY -1CPTY					Ħ	-2CPMY -1CPM		+2CPL		1CPTY -1C	,	-1PPM	+1CPT	.1PPMY -1C	1			_		+1CPN	-1PPLY	>	,	+1C	+1CPI		+1PPMY +1P	-1CPMN -1CPMI	Т	+11	YMY YMY	77	-1PPL	+1PPM	+1PPM		_		+1CPM
TE III-	-	E50;	əlgnui		MY							1	1	Ť.	Ť	Ť	T	T		TY -1CPTY				П	Ħ		тУ		Ė	TY -1CPT	MY		-1PF	+						T	Ť	TY -1PPT	→MY	AMc		+1PPMY +1P	Т	5	-	┰	N		NMc	H	H	L	ŀ	λMc
IAB		E50	oriorities		+1IPMY							1	,	-1CP1-	جُ جُ	7 IPPI-	2 5			site -3CPTY			S		stem -3CPTY		eyand-1CF		-2CPTY	-3CF	-1PPMY			1						-1PPLY		-2CPTY	+1CPMY		Г	+1P	<u> </u>	10.14	river	paung.	T		damag +1PPMN				l	s +2CPMY
			water usage priorities		=		=	=			=			am		onstruction	ion		gs at the da	at the dam	tion	lids	to tourbine		iversion sy		water conv			ervoir	reservoir	river	river	S				ement	ental overfl	ent	variations		servoir	aking, plan	ò			odt pailleate	ntrolling the	n against in	or the bas	uc	nting their		ing		nd value	al measure
							>							being of reservoir dam	darn reservoir	diversion system during construction	dam site construction	coffer dam	nanent buildin	bush cutting	borrow area extraction	way for boyance solids	nce channels	ater releaser	permanent d	power lines	channel and	other factors	Imerged Lands	adjacent areas at reservoi	water level variations of reservoir	reservoir-upstream n	reservoir-downstream rive	ation channe.	groundwater	sea coasts	other lands	production manager	afe-environm	Tourism development	controlling of water level variations	Infrastructures	Foresting aroun the reservoir	with terrace ma	dragging	vewlins s'meh	Chech dam	Cilecii da	ervoirs for cui	am equilibrium	conservation	er detoxificatio	ies and preve	rehabitation	other damage refining	taxes	reassessment to the land value	ivilian and rura
			task	irrigation	energy	regulating water	balancing river flov	industrial usages	marine transport	fire station	fishing	ater sports	other consuptions	Deing		diversion sy	dam		emporary and permanent buildings at the dam sit	deforresting and bush cutting at the dam site	borrc	wayt	water conveyance channels to tourbines	W	intact system and permanent diversion system		diversion dam and channel and water conveyand-1CPTY	, ,	<u>-</u>	adjacer	water leve	reser	reservo	ini				fish prod	guarantee for safe-environmental overflow	Tour	controlling	4	Forestin	erosion control with terrace making, planting				ou oritonan	compensative reservoirs for controlling the river	som to serve the dam equilibrium against floating	controlling and conservation of the basin	wat	mprove the industries and preventing their damag		other		reassess	planning for civilian and rural measures
				101 im			A104 ba				A108 fis		1	1020	202	203	204				\208	209	1210	111	:12 ii	1213	A214 di	315	(301	1302	1303	4304	305	306	307	308	309	101	A402	4403	4404	A405	106			4409	110	Ī	Ť	A412 DOI	51.5		A415 mp		A417	ч	2	13
				A	A.	∢	∢	Water Consumes	-	A	Αľ	∢.	¥	₹ \$	₹ ²	₹	₹ .	¥.	Ÿ.	1	physical Factors A2	¥	¥	¥.	Ą	Ą.	Ą.	Ą.	Ä	A.	¥	`	Affected Areas A3	ĕ.	Ř	Ϋ́	Ä	¥	¥	Ă	¥	¥	¥	¥	¥	physical Restoration AA	-	<u>t</u> [≥	₹ ₹	ξ ≷	č .	Ř	Ą	Ą	A4	egal Acts 50	502	503
								Water													physi												Αffec													physics	· _									Leg		

International Journal of Earth, Energy and Environmental Sciences ISSN: 2517-942X

Vol:3, No:6, 2009

ş	a e	1	local variations			>		Ī					<u> ۲</u>					∠		Ī	Ī	>	1	T	.c), ≿	Γ		.0	<u>', '</u>		009	9	Ī	T	Ī	۲۲				ĺ				l			T	T	Π
<u>e</u>	CIIII G	E401		Υ.	+	IddC+	۲	ŀ	<u> </u>			-	42PP				_	, -1PT		+	,	100	177	ł	<u> </u>	IY +2PF	+1PPLY	У		≥	ļ	H		1	-	ł	+1PF	Υ.	٨٧		لخ	-	<u>_</u>					+	+	Н
	0001	E309	ground water lev	-2 PPL		VIO.	102						-1CPLY	5	-1PTIY	-1PTIY		-1CTIY	-1CTIY	1		1477	122	ļ		-2CPMY		-1CPM		-2CPM	(JPPL)			000	+20r		L	+1CPL)	+1CPM		+2CPM	000	+ZCPMY				Ц	1	1	L
	0000	E308	water loss	-2 CPMY	-1CPMY	4 DDMAY	-1CPMY						+2CPMY	-1PITY	-1CTIY			-1CTIY	-1PTIY			VA AG OC.	1 A Z C L M	+2CPMY											1			+1CPLY	+2CPMY		-2PPMY		+1 PPMY	+2CPLY		-2CPMY	Ц		+1PPMY	
	1001	E307	wofi flow		-1PTMY	ACDMV	 						-2CPTY	-2CTIY	-2CTIY	-1CTIY		-1PTIM	-1CTIY		24004	- IPPIMIT	- N-	-1CPTY		-2CPTY	-1CPTY	-2CPMN	-1CPMY					244000	+20FINI 1	+1CPMY		+1CPLY	+1CPMY		+2CPMY	1000	+ZCPMY			+1PPMY	+1PPMY			
rot	ie.	E306	Evaporation	-1 CPMN		AVIGUE	-20FW1						-2CPLY			-1PTIY						A 1000	-201			-2CPMY															+1PPMY									
W acceptable	ECIS OII WE	E305	Tempereture		-2PPMY	V Iddo	-2PPMY						-2PPLY		-1PTIY						> 1000	+ZPPLT	-2117			-2PPLY				-1PPMN				A 00 0 4	+10-141						+1PPMY		+1PPMY			+2CPMY				
#	ū	E304	Turbidity	-1 PPMY		T C DAAY	- - - -			-1 CPLY		-1 PPMN	+2 CPLY	-1 CTIY	-2 CTIY			-2 CTIY	-1 CTIY			> 1000	12 O1L1	+1 CPI Y		+2 CPMY	-1 PPMY	-1 PPMY	-1 PPMY	-1 CPMY				-1 PPMY	1 DPI V		-1 PPMY	+2 CPLY	+2 CPMY	-2 CTLY	-2 CTMY	+2 CPMY			+1 PPMY	+1 PPMY	+1 CPMY		+1 PPMN	
	ſ	=303	Viiniles	1PPLY		> Idd 6	2 1111						-2 PPLY					1 PTIY	1 [TIIY		2	+ - - -	Ī	4 PPI Y		2 PPLY	-1 PPLY		2 PPLY	1 PPLY				2	1 DDI V			-2 CPLY	+2 CPMY		-2 CPMY	+2 CPMY	- PPMY		+1 CPMY	_	+1 CPMY	Ī	+1 PPMN	
SPECTS		302	Physic and cher			> DDWAY	2 CPMY			1 PPLY	1 PPMY	1 PPMN	-2 CPLY		2 CTIY	2 CTIY		2 CTIY	-1 PTIY	Ī	Т.	- PPMI	1	1 CPI Y		2 PPMY	_		1 PPMY	Ì				1 PPLY	1 DDMV	+1 PPMY	-2 CPMY	1 PPLY .	-1 PPLMY	1 CPLY	-1 CPMY			+3 CPMY	,	2 CPMY	+1 CPMY -	1	+1 PPM	П
ICAL A	, 00	301 E	water biology		1	> DDMAN	Ľ	۰		- AMdd I	-	- NMA	-2 PPLY -	Т	Η	ż	I PTIY	- LCTIY	Ï	1	2	- NOO		-1 CPI Y		2 PPLY	- TM		-2 PPMY	PPMY		Ī		CPMY	1 CDMV	7			+1 PPMY +		1 PPMY +	+1 PPMY	_	+1 PPMY +	-		+1 CTMY +	1	+1 PPMN	
ONMENTAL EFFECTS OF THE GOTVAND DAM CONSTRUCTION ON PHYSICAL ASPECTS	0,0	213 E	other cases							ì		`	77 17		ì	`.	,	,			ľ	Ì		,		,,	`		,-	ì				Ì	+ 15	1		ì	+		+	+	+	+		+	+	1		
CTION O		E212 E	Flactuation of Wa	ICTIY	1CTIN	T	T	İ					-3 CPMY							Ì		Ì	T	Ī	l					Ì				Ī	T	T									İ			1	Ť	
NSTRU	1		drainage and lar	· PPLY	Ì	2	NIG					7	+ >DDI \	CTIY	CTIY	CTIY	CTIY	CTIY	CTI≤	l		Ì	l		CPMY	PPMY	CPMY		PPMY	2 00	2			1 CPMY	7	CPMY	2 CPLY	-2 CPMY		2 PPMY		1 CPMY			1 CPLY	1 PTMY			1 CPLY	
AM CC	1	E210 E	ием деошогрћо	CPLY -2	1		3 5						CPIY -1	CTIY -1	-1 CTIY -2	CTIY -1	-1	CTIY -2	CTIY2	1	2000	E I	ΛIdO	5	CPMY -2	CPMY -1	-2	CPTY	CPTY -1		7-	Ħ		CPMY +	- ANG		CPLY +:	CPMY -		H AMA	CPMY	+2 CPMY +:		CPMY	-+ AMdd	+ AML		1	+1 PPLY +1	
VAND I	ſ	E209 E	pooli	-1		N D D W	- - - - - - - - - - - - - - - - - - -						CPMY -2	CTIY	∠	-		CTIY -1	CTIY -2	21.00	1.	+2 UPLT -2	CPMY -1	5	CPMY -2	-		-1	-1					¥ ¥	17.	-1 PPMY -1	3 CPLY +:	+3 CPMY +2	-1 PTLY -1	PTMY +1	_	+2 CPMY +;		Ŧ	Ŧ	+ AML	П	1	+1 PPMN +	
HE GOT	200	08 E2	noiteniles lios	2 PPLY		1	ř	İ					PPLY +3	-	-1			-5	-5	Ť	- -	7	1	1	+2					> 100	, bld	H			-	7	£	Ŷ	1-1	-2		+2		+1 CPLY		+	П	†	1	T
TS OF T	sical IIIpac	07 E2	inductive earthqu	-2		DAMA	Z Z					+	PPMY -1							1	24	- MA	l	l	NMdd					_	-5				t	l		Н						+					t	
EFFEC	GEODILI	06 E2	slope stability	-1 PPMY	1	4 DDMAN	۲_	l			Н	PPMN	-1 CPIY -2	H	-2 CTIY	-1 CTIY	CPIY	CTIY	2 CTIY	2	, MA	?	CPMY	5	-5	-1 PPIY		-1 CPIY	CPMY	1		H		PPMY	- PPIMI	-1 PPMY	CPLY	+2 CPMY	CTLY	CTMY		1		-1 CPMN	+1 PPMY	PPMY		+	+2 CPMY	F
MENTAI	-	35 E2	Sedimentation in	-1		× 100	т			CPLY		7	CPLY -1	П	-5	-	-1	CTIY -2	CTIY -2	١	γ 	Z CPLT	PPI Y	-	CPMY -2	П		-1	-1				4	CPMY -1	-		CPMY +2	CPMY +2	١-	CPMY -1	CPMY			CPMY -1	_	7		-	+1 CPMN +2	
VIRON	Ī	4 E2	River bed load	CPMY		1 CDMM	+	l		-1 CPLY -1 (Н	PPMY -1 F	-20	CTIY	,TIY	ΥIIY		TIY -2 (.πγ 1- (70.00	Ŧ	-1 CPIMIT -2	PPMY -2	+	-	-1				†		Н	7	τ _γ	1 CPMV	-	CPLY +2	+2 CPMY +2		CTMY +1	CPMY +3	-1 PPMN		+2 CPMY +2	!	CPMY	Н	+	+1 PPMN +1	т
IV-EN	ľ	3 E204	pəg pəpuədsns	٠-	1	O P. COMA	Т			-10	Н	7	-1 CPMN	-5	-5	CTIY -1 CTIV		П	TIY -2 CTI	1	Т	- CPIMIT	CPMY -1 F	+	-1 CPMN	PPMY		λlc	λWc				7	CPMY -10	1		CPLY +2 (CPMY +2 (CPLY	-5	_	-1 PPMN -1 F		+2 CPMY +2 (_	Τ.		+	+1 PPMN +1	
TABLE IV- ENVIR	Γ	E20	erosions	PMY -1 CPMY	+	Т.	┰	l	<u> </u>		Н	۲.	<u>, ,</u>	т	-5	-1			TIY -2 CTIY	2	_	_	CPMY -1 C	4	Т	Т	H	П	PMY -1 PPM	+		H	7	Υ . Υ .	- 7	1.	PLY +2 C	+2	-5	-1	\neg	\neg		-1 CPMY +2 C	_	Ŧ	H	+	+1 CPMY +1 P	
	0001	E202		MY -2 CPMY		V V C	Τ					7	MY -1 CPIY		-5	-1 CTIY			1Y -2 CTIY	,	т	IMIT -2 CPIMIT	CPMY -1 CF	4	MY -2 CTIY	П	П		MY -1 CPMY	-		H		1	+	IY -2 CPMY	7. +2 C	PMY +3 CPMY	-2 CTLY	-1 PF	- O	-1 PPMN		-1 C	+1 CPMY	PPMN +1 C		1		_
ŀ	1001	E201	worphology morphology	-1PPMY	+	40 DIV	5	l	<u> </u>				-1CPMY		П				-2 CTIY	1	7	-I CPIMI	- 1	1	-1 CPMY	-1 CP		Н	-1 CPMY	1		H		7 100	4	-1 CPIY	+1 CP	+1 CPMY	ting			1	rive		_	7	H	+	+1 PPLY	т
			priorly of water coresumptio		_					_		SI.	dam	onstruction	tion		igs at the da	at the dam	tion	Spilds	to tourbine	e do do do de	iversion sy	water conv			servoir	reservoir	river	n river	2			jement	eritai overitow	variations		servoir	ıaking, plan				ntrolling the	of the bas	00	preventing their dam		guir	nd value	al measure
							2					other consuptions	being of reservoir dam	diversion system during construction	dam site construction	coffer dam	porary and permanent buildings at the dam	deforresting and bush cutting at the dam site		r boyance sol	water conveyance channels to tourbines	water releaser	nower lines		other factors	merged Lands		water level variations of reservoi	reservoir-upstream ı	reservoir-downstream river	aroundwater	sea coasts	other lands	fish production management	lor sare-environmental	controlling of water level variations	Infrastructures	Foresting aroun the reservoir	erosion control with terrace making, planting	dragging	dam's spillway	Chech dam	ompensative reservoirs for controlling the rive	controlling and conservation of the basin	water detoxification			other damage refining	taxes reassessment to the land value	planning for civilian and rural measures
				uc	- 1	ting water	ndustrial usages	marine transport	tion		sports	othe	peing	version syst	dam s	١	y and perm	esting and	borrov	way to	er conveyar	W one	ystelli ai tu	n dam and	Ö	Ë	adjacent	water level	reservo	reservoir	200	u **	J	fish produ	guarantee 101 sa	ontrolling of	=	Foresting	n control w		da	_	sative rese	rolling and	wate	prove the industries and		other	reassessm	ning for civ
			Task	irrigation	energy	regulatir	indistri	marina	fire station	fishing	waters		+	į	H		mporary	deform	1	1	war	io to oto;	III III II	iversion			L	Ĺ		\downarrow		H			gnari	8	L	Ц	erosio	Ц			Somper	cont		prove t	Ц	+	+	plan
				A101	A102	A103	A105	92	A107	A108	A109	A110	A207	A203	A204	A205	A206	`	۸.	A209	A210	MZ	A213	A214	A215	A301	A302	A303	A304		A307	A308	A309	A401	A402	A404	A405	A406	A407	A408	tion A409	A410	A411	A413	A414	A415	A416	Ť	502	503
								Water Consume											physical Factor											Affected Areas											physical Restorat							A lead	Legal Acts	

Ī	16	stockal bne eliqoog leoou no stockila yesineS							-1CPMY		y Iddo	-1PTIN	2CTIY		2PTIY				-2PPLY)TIY	-2CPMY		T		1PPLY										Ī	+2CPMY		+2CPLY		+1PPMY	CPMY	Ī	T	+1CDMV
	15 E1	Natural Disaster Proter			+3CPMY				-1(V IQ 76.	ť	Ė	-1CTTY -20		Ϊ,	-ZCTTY	=		-1PPMY -2F		V 1000	1	1	+2CPMY -20		10 DA4	- - -	-11					+2CPMY	-1PPLN	2	-2CPLY	Z V	+1CPMY	+1CFMY +2	+	+2	П	+1CPLN +1	+	+	\dagger	TODWY T
	114 E	reduction and growth o	2CPLY	3CPLY	+2CPMY +3	П		+1CPMY	+1CPMY	TODWY TO	+	T	-1CPIY -1			Z- 1-			-1		V 1001	Т	1CTIY +2	-1CTIY +2		_				\	17.77	2CPLY	Ħ	+1CPLY -1		+		+ -	+ HCPMY	<u> </u>		П	-2CPLY +1	2CPMY	+	× 100c+	T
	E113 E1	Land Purchase and investment	1CPLY +:	+	+1CPMY +	н		+1CPMY +	H	1	+ +		-								-	-	Ė	-1CPIY -1		V 100 V	ב	-1PPLY		AVADOCT	+	<u>+</u>		+1CPMY +			ACDANY	+1CPMY	4CPI Y	<u>-</u>		П	Ŧ	1CPMY +		_	+ZCPIMIT +
	E112 E	water supply	+		Ī			+	7														ľ					İ		-	TCPMY +	Т	7	+		Ī		Ī	Ť	T			+	+	Ì		
V- ENVIRONMENTAL EFFECTS OF THE GOTVAND DAM CONSTRUCTION ON SOCIOECONOMIC ASPECTS	E111	Aesthetics									+2CPMY	-1CTIY	-2CTIY	-1CTIY	-1PTIY	-7C-IY	2		+1CPMY					+2CPMY		4CDMV	2				ľ					l			+2CPMY	5				+1CPMY		1	Ī
ONOMIC	110	Heritages and Cultural Indexes						+1CPLY	+1CPLY	-1 DDIM	-1CPIV		-1CPIY		-1CPIY						+1PPMN			-2CPIY							+2CPMY	+2CPMY		+1CPLY	14 10 0 7	+1PPLN								+2CPLY			
SOCIOEC	E108 E109 E	recreation		+3CPMY	+1PPMY			+2CPMY	+2CPMY		+2CPI Y	П	-1PTIN		MEG	-1011			+1CPLY	+2CPLY			-1CPIY	-1CPIY		4001 V	1					+2CPMY		+1PPMN	1474007	+1PPMN	1400AM	+1CPMN	+1CPMY	5	+1CPLN			+1PPMN			±1CDMV
TION ON	Economical E108	approvement and acceptance of local people	+2CPMY	+1CPMY	+2CPMY	+2CPMY		+1CPMY	+1CPMY	VMOOCT	+1CPMY	-1CTIY	-1CTIY		-1CTIY	-20 II Y			+1CPLN	+1CPLN	4CDMV	- - -	-1CPIY	-1CPIY				-1PPLN		VMOOCT	+2CPMY	+2CPLY	+1CPLN	+2CPLY	141007	+1CPMN	VACOANV	+1CPMY	+2CPMY				+2CPLY	+2CPLY		VMD OC.	+ZCPINIT
NSTRUC	SUCIAI, E107	increase in land value	+1CPMY	+1CPMY	+1CPMY	+1CPMY		+1CPMY	+1CPMY	\	+2CPL 7										V 1974	- - - -	-1CPIY	-2CPIY						+4CDMV	+1CPMY	+1CPLY	+1CPLY	+2CPLY			74 C DAAY	+1CPMY	+1PPMN		+1CPLN		+2CPLY	+2CPLY			\downarrow
DAM CO	E106		+2CPMY	+2CPMY	+1CPLY	+2CPLY		+1CPMY	+1CPMY	ANGUCT	+1CPMY			+1PTIN	+1CPIN	-ZCIIIY			+1PPLN		- 4C DMAX	_ 		-1CTIY						ANGUCT	+1CPI Y	+2CPLY	+1CPLN	+1CPLN	0	+1PPLN	1400	+1PPLN	+1CPI N	<u>.</u>			+1CPLY	+2CPLY		· 2C DMAY	+ZCPINIT
TVAND	E105									4CTIV	-		-1CTIY		N. HO.	-1011Y					+1CPMN			-1CPIY								+1CPLN		+2CPLY									+1CPLN	+1CPLN			1
F THE GO	E104	agriculture and	+3CPMY	+1PPMY	+3CPMY					43C DWAY	+3CPMY		-1CTIY		NIE O	-10-1-	2		+2CPMY		V 1976.	+20rL1	-1CITIY	-1CTIY				-1PPLY		AMOUCT	+1CPMY		+1CPMY	+2CPMY	2	+1CPLN		100	+ ICPLI V					+2CPLY		YMD JC.	+ZCPINIT
FECTS 01	E103	meinuot	+1PPLY	+2CPMY	+1PPLY			+2CPMY	+3CPLY	\ QQC+	+2FFL1 +1PPLY		-1CTIY		XIII.	-10-1-	2		+1CPLY		, 100 V	1	-1PTIN	-1PTIN							+2CPI Y	+2CPLY	+1PPLN	+2CPLY	+2CPLY	+1CPLN	1 001	+1PPLN	+1CPI N	2			+1CPLN	+1CPLN			VMQ ⊃C+
NTAL EF	E102	employment	+2CPMY	+3CPMY	+2CPMY	+1CPLY		+1CPMY	+1CPMY	VIQUE.	+3CPL Y				+2PTIN	AWLUCT	IN OZE		+1PPLM		AVIOUC	+ZOTIVI		-1CITTY		4 DDI N		-1PPLN		\ QJC [†]	+1CPI Y	+2CPLY	+1PPLN	+2CPLY	+1PPLN	+1PPLN	7 1001	+1CPLY	+1PPLN +1PPLN	í			+2CPLY	+2CPLY			MIGDIN
IRONME	E101	industrial,trade preblems of dam construction	+2CPMY	+2CPMY	+1PPLN	+2CPMY			+1PPLN		+2CPI Y			+1PTIN	+1PTIN	AWLUCT	N 102+				-1С∏√			-1CTIY		4 0 0 1		-1PPLN		\ a_Jc+	+1CPMY	+2CPLY		+2CPLY	+1CPLN	4	-1PPMN	+1CPMY	+1PPMN				+1CPLY	-2CTIY			N Id DI N
ſΞÌ		water useage priorities	-	=	=	Ξ		=		a.		nstruction	on			it the dam site	Sign	to tourbines		version systerr	or or or or or or or or or or or or or o	water correga		ervoir	eservoir	iver	liver			taom			ariations	- 1	an i	king, planting			trolling the rive	against floatin			nting their dam		ng	order	
TABL	1	Task	irrigation	energy	regulating water balancing river flow	industrial usages	marine transport	fishing	water sports	other consuptions	dam reservoir	diversion system during construction	dam site constructio	coffer dam	mporary and permanent buildings	derorresting and bush cutting at	way for boyance sol	water conveyance channels to	water releaser	intact system and permanent div	power lines	other factors	Imerged Surfaces	adjacent areas at rese	water level variations of re-	reservoir-upstream riv	irrigation channels	groundwater	sea coasts	other lands	diarantee for safe-environmen	Tourism developme	controlling of water level va	Infrastructures	Foresting aroun the rese	erosion control with terrace ma	dragging	dam's spillway	Chech dam compensative reservoirs for cont	om to serve the dam equilibrium	controlling and conservation o	water detoxification	hprove the industries and preven	rehabitation	other damage refinin	taxes	reassessment to the land
		ā,	A101	A102	A103	4		A10/ A108	A109	A110	A202	A203	A204	A205	A206		A209	A210	A211	A212	A213	A215	A301	A302	A303	A304	A306	A307	A308	A309	A402	A403	A404	A405	A406	A407	A408	n A409	A4 10 A411	A412	A413	A414	A415	A416	A417	507	202
						Water Consumes	water Consumes									physical Factors	priyatear ractors									Afford Arong	Alleged Aleas										reiterotaed legiswide	physical Restoration								ato A long -	Legal Acts

V. CONCLUSION AND RECOMMENDATIONS

There are three main groups that require the water resource from the *Gotvand* Dam: Hydro-electric power generation, Agriculture, Industry and Tourism. In analyzing the environmental impact of *Gotvand* dam, the available maps together with land works were used. Furthermore, in the environmental impact analysis of the dam and its related installations, the combining method of Leopold and ICOLD matrix was used. All the implementing activities in connection with the dam construction, was predicted in the method, and after the land visit to the studying areas, a list of impacted environmental factors was made ready.

The discussions highlight specific avenues to improving the EIA procedure in Iran and much of the developing world. A contentious issue is the need to include local people and their experiential knowledge in the EIA process. Indigenous experiential knowledge not only has the potential to complement Western scientific knowledge in ways that would improve assessment studies; it could also encourage local participation and bottom-up approaches to environmental and planning decisions. The involvement of local people may also help the assessment team to understand local resource-use and nuances, and use local value sets to interpret, evaluate, and monitor project impacts on local communities. If indigenous knowledge is to be preserved and passed from generation to generation, it will have to be recognized by institutions of power and influence. Policy makers would have to learn that indigenous knowledge is not just a relic of the past, but is something that is important now and will be worth having in the future. To achieve this, education must be geared toward the transmission from one generation to the next of the accumulated wisdom and knowledge of society, and the preparation of the young for effective participation in society's maintenance and development. In this sense, EIA could become part of the solution to the continued loss of indigenous knowledge by enhancing the participation of indigenous people in assessment studies.

The negative impacts of each activity on the environmental resources were then evaluated, and the results were examined. In this method, the environmental resources, which will be affected by "much" and "very much" negative impacts, have been identified. The activities, resulting in resources destruction, have been then specified.

In the end, simple and implement able management mechanisms and strategies have been suggested to mitigate the negative impacts resulted from the project implementation. Thus, proper environmental management depends on the careful and complete implementation of these proposed mechanisms.

ACKNOWLEDGMENT

We thank the Modares Environmental Research Center (MERC), Tehran, Iran, which funded this study and guaranteed this project and field study.

REFERENCES

- ICOLD. 1980. Dams and the environment. ICOLD Bulletin 35. Paris, France
- [2] Canter, L. W. (1977) Environmental Impact Assessment. McGraw-Hill: New York. 331 pp.
- [3] Bernacsek Garry M. et all. (2001), "Environmental Issues, Capacity and Information Base for Management of Fisheries Affected by Dams", Dams, fish and fisheries: Opportunities, challenges and conflict resolution, ISBN 92-5-104694-8
- [4] World Bank Environment Department (WBED), Resettlement and Development: The Bank wide Review of Projects Involving Involuntary Resettlement, 1986-1993. Environment Department Paper No. 032, Resettlement Series. Washington, D.C.: World Bank, 1996.
- [5] Scudder, T. 1996. 'Development-Induced Impoverishment, Resistance and River-Basin Development', in Christopher McDowell (ed.), Understanding Impoverishment, Providence, Oxford: Berghahn Books.
- [6] AEC (1973) General environmental sitting guides for nuclear power plants, Draft for discussion, U.S. Atom Energy Comm., Washington, D.C. 130 pp.
- [7] Brown, A L, and R Thérivel (2000), "Principles to guide the development of strategic environmental assessment methodology", Impact Assessment and Project Appraisal, 18(3), September, pages 183– 189
- [8] Bishop, A. B. (1973) Public participation in environmental impact assessment, Paper presented at Eng. Foundation Conf. on Preparation of Env. Impact Statements, New England College, Henniker, New Hampshire, U.S.A., July 29-Aug.3.
- [9] Ahmad, Y. J. and Sammy, G. K. (1985), Guidelines to Environmental Impact Assessment in Developing Countries, London, Hodder and Stoughton.
- [10] Yardley, J. 2005. Squabbling continues over building of large dam in China: pro-development advocates vs. environmentalists.
- [11] Soemarwoto, O. (1974) Population and environment. In: Third Seminar on Biology (Indonesia). In Indonesian with English summary.
- [12] Dooley, J. E. (1978) A framework for environmental impact identification. Unpublished manuscript. 8 pp.