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Abstract—In this paper, the two-dimensional reversed stagnation-
point flow is solved by means of an anlytic approach. There are
similarity solutions in case the similarity equation and the boundary
condition are modified. Finite analytic method are applied to obtain
the similarity velocity function.
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I. INTRODUCTION

The full Navier-Stokes equations are difficult or impossible
to obtain an exact solution in almost every real situation
because of the analytic difficulties associated with the nonlin-
earity due to convective acceleration. The existence of exact
solutions are fundamental not only in their own right as
solutions of particular flows, but also are agreeable in accuracy
checks for numerical solutions.

In some simplified cases, such as two-dimensional stagna-
tion point flows, by introducing coordinate variable transfor-
mation, the number of independent variables is reduced by
one or more. The governing equations can be simplified to
the non-linear ordinary differential equations and are analytic
solvable. The classic problems of two-dimensional stagnation-
point flows can be analyzed exactly by Hiemenz [1], one
of Prandtl’s first students. These are exact solutions for flow
directed perpendicular to an infinite flat plate. Howarth [2]
extended the two-dimensional and axisymmetric flows to three
dimensions, which is based on boundary layer approximation
in the direction normal to the plane. Reversed stagnation-point
flow against an impermeable flat wall does not exist in two
dimensions, but Davey [3] showed that certain reverse flows
in three in three dimension are possible.

The aim of this study is to investigate the steady viscous
reversed stagnation-point flow, which is started impulsively in
motion with a constant velocity away form near the stagnation
point. A similarity solution of full Navier-Stokes equations is
solved by applying numerical method. Studies of the reversed
stagnation-point flow have been considered during the last
few years, as this flow can be applied in different important
applications that occur in oil recovery industry.

II. ANALYTICAL ANALYSIS

A. Governing equation

The viscous fluid flows in a rectangular Catesian coordinates
(x, y, z), Fig. 2, which illustrates the motion of external flow

V. K. Sin is with the Department of Electromechanical Engineering,
University of Macau, Macao SAR, China, E-mail: (vksin@umac.mo).

Manuscript received August 19, 2010; revised October 11, 2010.

Fig. 1. Oil recovery industry

directly moves perpendicular out of an infinite flat plane wall.
The origin is the so-called stagnation point and z is the normal
to the plane.

Fig. 2. Coordinate system of reversed stagnation-point flow

By conservation of mass principle with constant physical
properties , the equation of continuity is:

∂u

∂x
+
∂v

∂y
= 0 (1)

We consider the two-dimensional reversed stagnation-point
flow in unsteady state and the flow is bounded by an infinite
plane y = 0, the fluid remains at rest when time t < 0. At
t = 0, it starts impulsively in motion which is determined by
the stream function

ψ = −αxy (2)

At large distances far above the planar boundary, the ex-
istence of the potential flow implies an inviscid boundary
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condition. It is given by

u = −αx (3a)
v = V0 (3b)

where u and v are the components of flow velocity, A is a
constant proportional to V0/L, V0 is the external flow velocity
removing from the plane and L is the characteristic length.
We have u = 0 at x = 0 and v = 0 at y = 0, but the no-slip
boundary at wall (y = 0) cannot be satisfied.

For a viscid fluid the stream function, since the flow motion
is determined by only two factors, the kinematic viscosity ν
and α, we consider the following modified stream function

ψ = −
√
Aνxf(η, τ) (4a)

η =

√
A

ν
y (4b)

τ = At (4c)

where η is the non-dimensional distance from wall and τ
is the non-dimensional time. Noting that the stream function
automatically satisfies equation of continuity (1) . The Navier-
Stokes equations [4] governing the unsteady flow with constant
physical properties are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
) (5a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
) (5b)

where u and v are the velocity components along x and y
axes, and ρ is the density.

Substituting u and v into the governing equations results a
simplified partial differential equation. From the definition of
stream function, we have

u =
∂ψ

∂y
= −Axfη (6a)

v = −∂ψ
∂x

=
√
Aνf (6b)

The governing equations can be simplified by a similarity
transformation when several independent variables appear in
specific combinations, in flow geometries involving infinite or
semi-infinite surfaces. This leads to rescaling, or the introduc-
tion of dimensionless variables, converting the original partial
differential equations into a partial differential equation.

−A2xfητ +A2x(fη)
2 −A2xffηη = −1

ρ

∂p

∂x
−A2xfηηη

(7a)

A
√
Aνfτ +A

√
Aνffη = −1

ρ

∂p

∂y
+A
√
Aνfηη (7b)

The pressure gradient in Eq. (7a) can be again reduced by a
further differentiation Eq. (7b) with respect to x. That is

∂2p

∂x∂y
= 0 (8)

and Eq. (7a) reduces to

[fητ − (fη)
2 + ffηη − fηηη]η = 0. (9)

The initial and boundary conditions are

f(η, 0) ≡ η (η �= 0) (10a)
f(0, τ) = fη(0, τ) = 0 (t �= 0) (10b)

f(∞, τ) ∼ η (10c)

The last condition reduces the above differential equation (9)
to the form

fητ − (fη)
2 + ffηη − fηηη + 1 = 0, (11)

with the boundary conditions

f(0, τ) = fη(0, τ) = 0 (12a)
fη(∞, τ) = 1. (12b)

Equation (11) is the similarity equation of the full Navier-
Stokes equations at two-dimension reversed stagnation point.
The coordinates x and y are vanished, leaving only a
dimensionless variable η. Under the boundary conditions
fη(∞, τ) = 1, when the flow is in steady state such that
fητ ≡ 0, the differential equation has no solution.

B. Insolubility

When fητ ≡ 0, the ODE reduces to

f ′′′ − ff ′′ + (f ′)2 − 1 = 0 (13a)
f(0) = f ′(0) = 0 (13b)
f ′(∞) = 1 (13c)

It is proven that all of the solutions, however, do not satisfy
the boundary conditions.

Lemma 1: No solution f ′(η) exists which has stationary
value of 1 for finite η.
Proof. Rearrange Eq. (13) yields

f ′′′ = 1− (f ′)2 + ff ′′ (14)

Suppose for η = η0, we have f ′(η0) = 1 and f ′′(η0) = 0.
Afterwards, it follows from the derivatives of Eq. (14) that f ′′′

and all higher derivatives are zero when η = η0. Considering
a variable transformation

λ(η) = f ′(η)
λ(η0) = 1 (15)

Expand the function into Taylor’s series near η0, we have

f ′(η) = λ(η) =
∞∑

n=0

λ(n)(η0)

n!
(η − η0)n

= λ(η0) +
∞∑

n=1

λ(n)(η0)

n!
(η − η0)n

= 1 +
∞∑

n=1

λ(n)(η0)

n!
(η − η0)n

≡ 1

Hence, the boundary condition f ′(0) = 0 is thus not satisfied
and the Lemma is proved.

Lemma 2: When f ′ has a stationary value, if |f ′| < 1 it is
a minimum and if |f ′| > 1 it is a maximum.
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Proof: From Eq. (14), when f ′ has a stationary value, it means
f ′′ = 0 and Eq. (14) becomes

f ′′′ = 1− (f ′)2 (16)

If |f ′| < 1, f ′′′ > 0 and it is minima. Else if |f ′| > 1, f ′′′ < 0
and it is maxima. Eventually, the lemma is proved.

Lemma 3: If f ′′(η) vanishes for η = η1, η2 ... with η1 <
η2 < ..., then the sequence f ′(ηi) does not tend to 1 as ηi →
∞.
Proof: Consider a region where (η1, η2) is far away from the
origin. Multiply f ′′ to Eq. (14) and integrate it between η1
and η2 with respect to η.

f ′′f ′′′ = f ′′ − (f ′)2F ′′ + f(f ′′)2∫ η2

η1

f ′′f ′′′dη =

∫ η2

η1

[f ′′ − (f ′)2f ′′ + f(f ′′)2]dη

1

2
[(f ′′)2]η2

η1
= [f ′ − 1

3
(f ′)3]η2

η1
+

∫ η2

η1

f(f ′′)2dη

When f ′(∞) → 1, it is required that f ′′(η1) = f ′′(η2) = 0
and thus

[f ′ − 1

3
(f ′)3]η2

η1
= −L

wheras L =

∫ η2

η1

f(f ′′)2dη is always positive and we can

obtain
[f ′ − 1

3
(f ′)3]η2

η1
< 0

f ′(η2)− 1

3
[f ′(η2)]3 < f ′(η1)− 1

3
[f ′(η1)]3

[f ′(η2)]3 − 3f ′(η2) > [f ′(η1)]3 − 3f ′(η1)

Consider G = f ′3 − 3F ′ as a function of f ′, then

G′ = 3f ′2 − 3

As f ′ = 1, then G′(1) = 0, which makes G a minimum. We
do not have f ′(ηi) = 1 as ηi →∞

Theorem 1: Given any f ′(η) → 1 as η → ∞, no solution
of Eq. (13) exists.
Proof : When |f ′| < 1, since f ′ → 1 as η →∞, then f ′′ must
be greater than zero. Hence, recall from Eq. (14),

f ′′′ = 1− (f ′)2 + ff ′′ > 0.

for all η > η0. After integrating f ′′′(η) > 0 from η0 to η > η0,
we have

f ′′(η) > f ′′(η0) = K > 0.

Another integration from η0 to η > η0 yields

f ′(η) > f ′(η0) +K(η − η0).
By Lemma 2, f ′(η) has at most one stationary value because
one cannot have two consecutive stationary values which are
both minima. Since f ′′(η) > 0, when η → ∞, f ′(η) → ∞.
It violates that f ′(η) → 1. A similar argument shows that a
solution cannot approach to 1 when |f ′| > 1.

III. ASYMPTOTIC SOLUTION

When τ is relatively small, Proudman and Johnson [5]
first considered the early stages of the diffusion of the initial
vortex sheet at y = 0. They suggested that, when the flow is
near the plane region, the viscous forces are dominant, and
the viscous term in the governing Navier-Stokes equations is
important only near the boundary. On the contrary, the viscous
forces were neglected away from the wall. The convection
terms dominate the motion of external flow in considering the
inviscid equation in the fluid. According to their solution, the
general features of the predicted streamline are sketched in
Fig. (3).

Fig. 3. Streamlines of reversed stagnation-point flow

We therefore consider the similarity of the inviscid equation

fητ − (fη)
2 + ffηη + 1 = 0. (17)

Proudman and Johnson obtained a similarity solution of (17)
is in the form

f(η, τ) = eτF (γ) (18)

and the further integration provides an exact solution

F (γ) = γ − 2

c
(1− e−cγ) (19)

where c is a constant of integration; the improved numerical
evaluations of Robins and Howarth [6] estimate the value of
c to be approximately 3.51. This solution describes the flow
in the outer region.

IV. SOLVING ODES WITH MATLAB
In the previous section, it was proven that Eq. (13) does not

satisfy the boundary condition f(∞) = 1. Consider another
situation that we differentiate the similarity equation (13)
respect to η twice, the similarity equation becomes

fv + f ′f ′′ + (f ′′)2 − ff iv − f ′′f ′′′ = 0 (20)

where it is assumed that

f ′′(∞) = f ′′′(∞) = 0, (21)

to ensure that the fluid flows smoothly far away from the wall.
Also, in order to satisfy the no-slip condition at y = 0, a
boundary condition is required that

f(0) = f ′(0) = 0 (22)
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Fig. 4. Similarity solutions of reversed stagnation-point flow

Eq.(20) is a fourth-order nonlinear ordinary differential
equation. It does not have exact analytic solution, and thus it
is necessary to apply approximation and numerical techniques
to solve it.

It is convenient when solving an ODE system numerically
to describe the problem in terms of a system of first-order
equations in MATLAB[7]. For example when solving an nth-
order problem numerically is common practice to reduce the
equation to a system of n first-order equations. Then, by
defining y1 = f, y2 = f ′, y3 = f ′′, y4 = f ′′′, y5 = f iv , the
ODE reduces to the form

dy

dx
=

⎡
⎢⎢⎢⎢⎣

y2
y3
y4
y5

y1y5 + y3y4 − y2y4 + y23

⎤
⎥⎥⎥⎥⎦ (23)

The first task is to reduce the equation above to a system
of first order equations and define in MATLAB a function to
return these. The relevant MATLAB expression for Eq. (23)
would be:

Listing 1. MATLAB expression
f u n c t i o n dydx = ode ( ˜ , y )
dydx =[ y ( 2 ) ;

y ( 3 ) ;
y ( 4 ) ;
y ( 5 ) ;
y ( 1 )∗ y ( 5 ) + y ( 3 )∗ y ( 4 )
−y ( 2 )∗ y (4)−y ( 3 )∗ y ( 3 ) ] ;

end

Later, we need to rewrite the boundary conditions to corre-
spond to this form of the problem. For two-point boundary
value conditions of the form bc(y(a), y(b)),

Listing 2. MATLAB expression
f u n c t i o n r e s = bc ( ya , yb )
r e s =[ ya ( 1 ) ;

ya ( 2 ) ;

yb (2)−1;
yb ( 3 )
yb ( 4 ) ] ;

end

The next step is to create an initial guess for the form of the
solution. Here we select the asymptotic solution at τ = 3 as
our initial guess.

Listing 3. MATLAB expression
f u n c t i o n y= g u e s s ( x )
c = 3 . 5 1 ;
t =3 ;
y ( 1 ) = exp ( t ) ∗ ( x∗ exp(− t )−2/ c∗

(1−exp(−c∗x∗ exp(− t ) ) ) ) ;
i f x==0

y ( 2 ) = 0 ;
e l s e

y (2)=1−2∗ exp(−c∗x∗ exp(− t ) ) ;
end
y (3 )=2∗ c∗ exp(−c∗x∗ exp(− t )− t ) ;
y (4)=−2∗ c ˆ2∗ exp(−c∗x∗ exp(− t )−2∗ t ) ;
y (5 )=2∗ c ˆ3∗ exp(−c∗x∗ exp(− t )−3∗ t ) ;
end

We can solve boundary value problems for ordinary differ-
ential equations by the ode solver bvp4c. Similarly, we then
rewrite them to correspond to this form of the problem.

Listing 4. MATLAB expression
f u n c t i o n main

s o l i n i t = b v p i n i t ( l i n s p a c e ( 0 , 1 0 , 1 0 ) ,
@guess ( x ) ) ;

s o l = bvp4c ( @ode , @bc , s o l i n i t ) ;

The similarity solution for two-dimensional stagnation-point
flow is shown in Fig.(4).

V. CONCLUSION

This study provides that the similarity solution of reversed
stagnation-point flow does not exist, because the governing
equation does not satisfy the boundary conditions. On the other
side, under the external boundary condition that f ′′(∞) =
f ′′′(∞ = 0, the numerical solution of the reversed stagnation-
point flow is provided.
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