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LMI Approach to Regularization and Stabilization
of Linear Singular Systems: The Discrete-time Case
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Abstract—Sufficient linear matrix inequalities (LMI) conditions
for regularization of discrete-time singular systems are given. Then
a new class of regularizing stabilizing controllers is discussed. The
proposed controllers are the sum of predictive and memoryless state
feedbacks. The predictive controller aims to regularizing the singular
system while the memoryless state feedback is designed to stabilize
the resulting regularized system. A systematic procedure is given to
calculate the controller gains through linear matrix inequalities.

Keywords—Singular systems; Discrete-time systems, Regulariza-
tion; LMIs.

I. INTRODUCTION

Singular systems arise in many engineering disciplines
including electrical networks, power systems, and aerospace
engineering. Since the late of 1970s singular systems have
attracted the attention of many researchers and the stabilization
of such systems has been the subject of numerous research
papers. Singular systems are those the dynamics of which are
governed by a mixture of differential equations and algebraic
equations. The inherently complex nature of singular systems
causes many difficulties in the control of such systems. In
that sense the question of their uniqueness and existence of
solution, solvability, question of consistent initial conditions
and stability deserves great attention. Several books and survey
papers dealing with these systems have addressed the issues
of solvability, controllability, pole assignment and elimination
of impulse behavior and so on [1], [2], [3], [4].

As we have mentioned before, singular systems are de-
fined as dynamical systems subject to algebraic constraints.
Therefore, the process of elimination of these constrains is
called a regularization problem. Actually, elimination of these
algebraic constrains needs a special feedback that does not
always exists. The majority of works that have dealt with
this problem were in the continuous-time case, see [5], [6],
[7], [8], [9] and the references therein. Furthermore, the
main contributions were focused only upon the conditions
of existence of regularizing controllers without showing how
to find, in efficient computationally way, the gains of such
regularizing feedbacks.

In this note sufficient LMI conditions for regularization
of discrete-time singular systems are given. Subsequently, a
novel form of regularizing stabilizing controllers that involve
the action of predictive and memoryless state feedbacks is
introduced. Our goal is two folds. First, we regularize the
singular systems by applying a predictive controller that
necessitates estimation of the system states at the forward
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iteration. Second, we feedback the resulting system by a
classical memoryless controller that achieves the stability of
the regularized system. The control action appears as the sum
of two independent controllers computed separately through
two linear matrix inequalities. The class of the proposed
controller seems interesting, in the sense, that the closed-loop
system behaves as a nonsingular system and consequently, all
the properties and behavioral phenomenons of singular system
disappear under the action of such feedback.

The paper is organized as follows. In section II, the problem
of regularization by both full state and output predictive
controllers is addressed. The conditions of existence of such
controllers are formulated in linear matrix inequalities. In
section III, the stabilization procedure of the regularized
system is given and the main result of this paper is stated. A
numerical example is also provided to highlight the efficiency
of the proposed technique. Finally, some concluding remarks
are given. Throughout this paper we note by IR the set of real
number. The notation X > 0 (resp. X < 0) means that the
matrix X is positive definite (resp. negative definite). A′ stands
for the transpose of A. We note by I the identity matrix of
appropriate dimension and by 0 the null matrix of appropriate
dimension.

II. REGULARIZATION OF DISCRETE-TIME SINGULAR

SYSTEMS

Consider the singular discrete-time system:

E xk+1 = Axk + Buk,
yk = Cxk,

(1)

where xk ∈ IRn is the state vector, uk ∈ IRm is the
control input, and yk ∈ IRp is the system output. The matrix
E ∈ IRn×n is supposed to be a singular square matrix. We
suppose that system (1) is completely observable and (E, A)
is a regular pair, i.e., det(sE − A) �= 0, ∀s. The imposed
regularity property guarantees the existence and the uniqueness
of solutions.

In this section, we will investigate the conditions of exis-
tence of a controller gain L ∈ IRm×n such that system (1)
under the feedback

uk = −Lxk+1 + vk, (2)

is equivalent to a discrete-time regular system of the form:

Er xk+1 = Axk + Bvk,
yk = Cxk,

(3)

where Er = E + BL is invertible or a full rank square
matrix. We call the feedback −Lxk+1 a regularizing controller
and vk ∈ IRm is the new control input to be designed
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later. The computation of L is fulfilled through the solution
of a linear matrix inequality. Subsequently, we give similar
LMI condition that guarantee the existence of regularizing
controller of the form:

uk = −Hyk+1 + vk, (4)

where H is a constant matrix of dimension m × p. For both
cases, we assume that xk+1 is available for feedback by an
appropriate observer.

A. Regularization by a predictive static feedback

A predictive static feedback is defined as in Eq. (2). Com-
puting the full state of the singular system at the stage k + 1
necessitates a full order observer. We refer the reader to the
references [10], [11] for more details on observer design for
discrete-time singular systems. A necessary condition for the
existence of the gain L is that [2]

rank [E B] = n. (5)

In this subsection we give a sufficient LMI condition to
regularize system (1) by a predictive static feedback of the
form (2). We summarize the result of this subsection in the
following statement.

Theorem 1: If there exist a positive and definite matrix X ∈
IRn×n and a matrix Y ∈ IRm×n such that the following LMI
holds [

XE′ + EX + Y ′B′ + BY X
X X

]
> 0. (6)

Then there exists L = Y X−1 such that the matrix Er = E +
BL has a full rank and consequently, system (1) is regularized
by the predictive static feedback

uk = −Y X−1xk+1 + vk. (7)

Proof: The matrix Er = E + BY X−1 has a full rank if

and only if E
′

rEr > 0. This means that
(
E

′

rEr

)
−1

exists and

consequently, E−1
r exists. If E

′

rEr > 0, then

E
′

rX
−1XX−1Er > 0.

Replacing Er by E + BY X−1, this gives
(
E′X−1 + X−1Y ′B′X−1

)
X

(
X−1E + X−1BY X−1

)
> 0

Since for given symmetric matrices Z, and W , we have

Z ′W + W ′Z ≤ Z ′XZ + W ′X−1W, (8)

then if we put Z ′ = E′X−1 + X−1Y ′B′X−1 and W = I ,
we obtain
(
E′X−1 + X−1Y ′B′X−1

)
X

(
X−1E + X−1BY X−1

)
≥

E′X−1 + X−1Y ′B′X−1 + X−1E + X−1BY X−1 − X−1 (9)

If the following inequality holds

E′X−1 + X−1Y ′B′X−1 + X−1E + X−1BY X−1 − X−1

> 0,
(10)

then by pre- and post multiplying the last inequality by X , we
have

XE′ + EX + BY + Y ′B′ − X > 0 (11)

and then E
′

rX
−1Er > 0 is verified which translates that Er is

invertible. By the Schur complement lemma, inequality (11)
is equivalent to (6). This ends the proof.

B. Regularization by a predictive static output feedback

Regularizing the singular system (1) by a predictive static
output feedback of the form (4) is a special case of the
regularization by full state predictive static feedback discussed
in the last subsection. The information yk+1 can be obtained
by designing an observer for the singular discrete-time system
(1) or by extrapolating the discrete outputs yk. The output
prediction yk+1 can also be obtained from an estimate of
the first derivative of yk. We refer the interested reader to
the reference [12] to see some recent works on estimation
of the output time-derivatives in the discrete-time case. The
sufficient condition for the existence of a predictive static
output feedback that regularizes the singular system (1) is
given by the following theorem.

Theorem 2: If there exist a matrix H ∈ IRm×p and 0 <
ǫ ≤ 1 such that the the following LMI holds[

E′E + E′BHC + C ′H ′B′E + C ′H ′B′ + BHC I
I ǫI

]

> 0
(12)

then, the controller

uk = −Hyk+1 + vk, (13)

regularizes system (1) and the matrix E + BHC has a full
rank.

Proof: As we have shown in the last subsection, the
invertibility condition of the matrix E + BHC is equivalent
to the following inequality

(E + BHC)
′

(E + BHC) > 0. (14)

The last inequality can be rewritten as

E′E + E′BHC + C ′H ′B′E + C ′H ′B′BHC > 0. (15)

For any 0 < ǫ ≤ 1, we have

C ′H ′B′BHC ≥ ǫC ′H ′B′BHC. (16)

Furthermore, by the use of (8), we can write

ǫC ′H ′B′BHC +
1

ǫ
I ≥ C ′H ′B′ + BHC (17)

This implies that if

E′E+E′BHC+C ′H ′B′E+C ′H ′B′+BHC−
1

ǫ
I > 0 (18)

then (15) is verified. Using the Schur complement lemma, then
(18) is equivalent to (12).
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III. STABILIZATION OF THE REGULARIZED SYSTEM

A. Preliminaries

Before giving the main result of this paper we would rather
begin by exposing some preliminary results.

Lemma 1: The following statements are equivalent

i) there exist symmetric and positive definite matrices P
and Q such that

A′PA − P + Q < 0; (19)

ii) there exist P = P ′ > 0 and Q = Q′ > 0 such that
 −P−1 P−1A′ P−1

AP−1 −P−1
0

P−1
0 −Q−1


 < 0. (20)

Proof: First we prove i) implies ii). If (19) is satisfied
then, we have

P−1 (A′PA − P + Q) P−1 < 0, (21)

or

−P−1 + P−1A′PAP−1 + P−1QP−1 < 0 (22)

By the Schur complement lemma, we conclude that

−P−1 + P−1A′PAP−1 < 0 (23)

and [
−P−1 + P−1A′PAP−1 P−1

P−1 −Q−1

]
< 0, (24)

which is equivalent to (20).
Now the equivalence ii) implies i) can be demonstrated as

follows. Starting from inequality (20), then we have for any
P = P ′ > 0 and Q = Q′ > 0

[
P A′P Q

]

 −P−1 P−1A′ P−1

AP−1 −P−1
0

P−1
0 −Q−1





 P

PA
Q


 < 0. (25)

By expanding the last inequality we get exactly inequality (19).
The result of lemma 1 is interesting, in the sense, that the

stabilizability problem of discrete-time systems can be easily
solved by the use of this lemma. For this purpose, we introduce
the following corollary.

Corollary 1: Consider the discrete-time system

xk+1 = Axk + Buk (26)

where xk ∈ IRn is the state vector and uk ∈ IRm is the
system input. Then if there exist a symmetric and positive
definite matrices P ∈ IRn×n, and Z ∈ IRn×n and a matrix
W ∈ IRm×n such that

 −P PA′ + W ′B′ P
BW + AP −P 0

P 0 −Z


 < 0 (27)

then the controller uk = WP−1xk stabilizes system (26) in
the origin.

Proof: Using result of lemma 1, then if we replace P
by P−1, Q−1 by Z, and A by A + BWP−1 in (20) the
condition of the stabilizability of system (26) by the controller
uk = WP−1xk is reduced to the solvability of the LMI (27).

B. Main result

In this subsection the design of the controller vk such that
the feedback (2) asymptotically stabilizes the singular system
(1) is given. Since the feedback gain L that guarantees the
invertibility of the matrix E + BL can be found without any
care of the stability of system (1), then the design of vk is seen
as a problem of the stabilizability of a regular discrete-time
system of the form xk+1 = Arxk + Bruk where Ar and Br

stand for the new resulting nominal matrices. The main result
of this paper that gathers the solvability of the regularization
problem along with the stabilization of system (1) is given by
the following theorem.

Theorem 3: Consider the discrete-time singular system (1).
If there exist a set of symmetric and positive matrices X ∈
IRn×n, P ∈ IRn×n, and Z ∈ IRn×n, and two matrices Y ∈
IRm×n and W ∈ IRm×n such that the LMI (6) holds and


 −P PA

′

r + W ′B
′

r P
BrW + ArP −P 0

P 0 −Z


 < 0 (28)

where Ar = (E + BY X−1)
−1

A and Br =

(E + BY X−1)
−1

B. Then the controller

uk = −Y X−1xk+1 + WP−1xk (29)

stabilizes system (1) in the origin.
Proof: The proof of this theorem is already proved by the

use of results of theorem 1 and corollary 1.
Remark 1: The LMI (28) and (6) must be satisfied simul-

taneously. LMI (6) must be solved first with respect to X
and Y before solving the LMI (28). Evidently, the regularized
matrices Ar and Br are function of the solution of (6) .
With the same analysis, if there exist H and 0 < ǫ ≤ 1
satisfying the LMI (12), a matrix W of appropriate dimension,
and two matrices P = P ′ > 0 and Z = Z ′ > 0 of dimensions
n × n such that the following LMI holds


 −P PÃ

′

r + W ′B̃
′

r P

B̃rW + ÃrP −P 0

P 0 −Z


 < 0 (30)

where Ãr = (E + BHC)
−1

A and B̃r = (E + BHC)
−1

B.
Then the controller

uk = −Hyk+1 + WP−1xk (31)

stabilizes system (1).
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C. Example

Consider the singular discrete-time system (1) with

E =


 1 1 1

1 1 1
0 0 1


 ,

A =


 0.1 −0.3 2

0.5 −3 −1
0.2 0.4 −0.1


 ,

B =


 −1 1

1 −1
1 1


 ,

C =

[
1 0 −1
0 1 0

]
.

(32)

The solution of the LMI (6) with respect to X and Y gives

X =


 1.4194 −0.1741 −0.1209

−0.1741 1.4194 −0.1209
−0.1209 −0.1209 1.6123


 ,

Y =

[
−1.3481 −0.0149 0
−0.3693 −0.9936 0.3544

]
.

(33)

The solution of (12) with respect to H and ǫ gives[
−0.5100 0.0997
0.0997 −1.1001

]
, ǫ = 0.8684.

This means that the system can be regularized by both full state
and output predictive controllers. Using the full state predictive
controller, we obtain the new matrices

Ar =


 −0.1534 0.5710 1.1679

0.2497 −1.8175 −1.1113
0.2037 −0.4034 0.4434


 ,

Br =


 −1.0050 0.4064

0.7175 −1.0204
0.2875 0.6140


 .

(34)

By solving the LMI (28), we get

P =


 0.7187 0.0808 0.0325

0.0808 0.4429 0.1136
0.0325 0.1136 0.7059


 ,

Z =


 1.3087 0.0422 0.0272

0.0422 1.2103 0.0537
0.0272 0.0537 1.3045


 ,

W =

[
−0.1024 0.4365 0.5713
−0.1032 −0.4029 −0.6107

]
.

(35)

IV. CONCLUSION

The problem of regularization of discrete-time singular
systems by predictive controllers is addressed. Sufficient LMI
conditions for the existence of such regularizing feedbacks are
given. The problem of the stabilizability of singular discrete-
time systems by means of sum of predictive and memoryless
feedbacks is also treated in an LMI framework. The results of
this paper can be seen as an extension of existing results on the
stabilizability of singular systems by memoryless feedbacks.
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