
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3476

Visualizing Transit Through a Web Based

Geographic Information System
Ricardo Hoar

Abstract— Currently in many major cities, public transit schedules
are disseminated through lists of routes, grids of stop times and
static maps. This paper describes a web based geographic information
system which disseminates the same schedule information through
intuitive GIS techniques. Using data from Calgary, Canada, an map
based interface has been created to allow users to see routes, stops and
moving buses all at once. Zoom and pan controls as well as satellite
imagery allows users to apply their personal knowledge about the
local geography to achieve faster, and more pertinent transit results.
Using asynchronous requests to web services, users are immersed
in an application where buses and stops can be added and removed
interactively, without the need to wait for responses to HTTP requests.

Keywords— Geographic Information Systems, Public Transit, Web
Services, AJAX, Human Computer Interface

I. INTRODUCTION

F
UEL costs and environmental concerns present new ob-

stacles to transportation. Our reliance on personal trans-

port has spawned numerous simulations of traffic flow [8],

light timings [7], pedestrian crossings[9] and other intelligent

transportation applications [3]. Unfortunately, this focus has

overlooked the mode of transport with the greatest potential:

public transit. Public transit offers us a potential solution which

does not require substantially new investment or infrastructure.

Despite these potential benefits, many people have a negative

opinion of public transportation, and will continue to drive

their personal vehicles.

Transit’s negative image stems from many independent

variables including punctuality, frequency, overcrowding, se-

curity, schedule information, and others [6]. If access to

transit information is hindered by poor user interfaces, large

lag times, or difficult street name abbreviations, the negative

image of public transportation will be reinforced. However,

if we provide better, more intuitive access to information, we

empower transit users, create a better overall experience, and

effect a positive change in the public perception of transit [14].

Research of transit models, and route planning is extensive

[2], [1], [17], but there remains limited research presenting

the existing data to end users through the web [10].

For this research project, the public transit system of Cal-

gary, Canada; a city with over 1 million citizens, is used.

With 2 light rail transit lines, nearly 600 vehicles in service

at a peak times[15], and over 5500 transit stops, the amount

of data is significant, and through a classic web interface,

absolutely overwhelming. Given the prevalence of successful

Google Maps projects [12], a web based application has

been developed to explore alternative techniques of schedule

R. Hoar (rhoar@mtroyal.ca) is with Mount Royal College, Calgary, Canada
supported by the 2008-2009 Petro-Canada Young Innovator Award.

dissemination using the PHP scripting language[5], MySQL 5

database [11], client side Javascript and Google Maps API[4].

This paper describes the techniques and strategies devel-

oped for transit data visualization & web services that can

be generalized to any transit system with similar schedules

and scope. In particular, the database design, web services,

user interface, and map visualizations will all be described,

illustrated and analyzed to determine if these visualizations

are effective.

The ongoing research project can be seen at

http://transit.mtroyal.ca.

II. PUBLIC INTERFACE

The public interface to a myriad of data presents a challenge

for any interface designer. Current systems require users to

input or select routes and stops in a multi step form submission

process. By displaying schedule data through a GIS, we are

able to leverage the viewport of a user as an explicit input

of a location. This input can then be used to determine what

information to display. Applied to transit, a location can serve

as input to retrieve nearby routes, buses and stops.

However, more experienced users of transit may prefer to

see a particular route, without the need to input a geographic

location. Therefore a second interface was created to allow

faster retrieval of data using an input box to select and add

particular buses they are interested in. These two interfaces

are called; the location search and bus list shown together in

Fig. 1.

Fig. 1. Screenshot showing the overall interface

The bus list interface allows user selections to input exact

values for queries to the web services, through add and delete

options (Fig. 5). This direct interface allows experienced users

to add and remove buses they are interested in, giving them

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3477

2

direct access to the information they require. Users who select

buses through the location based interface will eventually

notice those buses being added to the list. This list and it’s

associated options are always displayed for all bus routes

being drawn allowing users to toggle the various visualizations

depending on their particular needs.

To supplement the expert users knowledge, the location

search interface allows users to browse nearby stops and routes

using a search box. Using Google’s asynchronous geocoding

request system, a request for a location can be translated into

a location on the map which can query a web service to

determine nearby stops and routes (Fig. 3). Since information

will be displayed on the map, these type of interactions will

be more natural to non expert users of the system.

Rather then segregate data, and require multiple interfaces

and queries to display disjoint data sets, users are able to

select multiple routes, buses and stops at once, providing them

with data sets that help support their decision. Classic web

systems require separate form submissions for each distinct

bus route. By obfuscating and asynchronizing the requests

made to web services, and allowing buses and stops to be

added and removed in an easy way, the user is immersed in

an application with fewer refreshes, and no loss of control over

the map with each request made.

A. Asynchronous Requests and Responses

Fig. 2. Diagram depicting the typical web service interaction

To create web applications that behave like traditional

desktop applications, AJAX technologies are utilized [13],

[16]. Each time the user makes a request, a HTTP GET request

is sent to a web service. This web service then returns an

XML response to the query which is handled by the javascript

callback function set to handle it. If the response is delayed due

to bandwidth traffic or server load, the application continues

to run, and allow user interaction until the response arrives.

The response is parsed, and the specific data is presented to

the user through the interfaces described below. A diagram of

this asynchronous process is given in Fig 2.

B. Location Search Interface

Geographic information systems are often used to search

for a location given a street or business name. To facilitate

such an interaction, a location search interface was developed

using the geocoder from Google to present the results in a

useful context.

Fig. 3. Search Interface showing possible results

The user enters their query into the search box and clicks

the search button. The request is sent to Google geocoding

services which return an XML formatted result set containing

possible matches. These possible matches are presented as a

list to the user as seen in Fig. 3. The user can then select

one of the matches to centre the map and show nearby bus

stops (Fig. 4). This process merges the transit data with a

particular geographic location of interest empowering the user

who wants to see transit service in a particular area.

(a)

(b)

Fig. 4. The map displaying a location and nearby stops (a), and the associated
search interface (b).

Each bus stop can display the upcoming stop times and

buses, so the user can determine which buses service the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3478

3

nearby area, merging the useful data from transit with a

particular geographic location of interest. In future work, this

location search will be the initial stage of selecting a start and

destination for trip planning purposes.

C. Bus List Interface

The major function of this interface is to allow the fast

retrieval of a particular bus, by name or number. Each bus has

visualization options, and a way to get stop times. As seen

in figure 5 the interface allows users to click on javascript

hyperlinks to toggle the display of routes, show and hide stops

on that buses route, and to delete that Bus from the list of

displayed buses. Each of the hyperlinks has descriptive text

that changes when clicked, so as to enable toggling by clicking

on the same link.

Fig. 5. Screenshot showing the interface for each bus.

1) Visualizing Routes: Since the order of stops in a bus

route are known, and a particular bus route is requested, a route

can be displayed by drawing a line on the map connecting the

stops in order. The route can be displayed at all zoom levels

since the polyline is redrawn with each map interaction, using

the coordinates of the stops on the route. The user clicks the

link Draw Route under the bus they wish to draw. The route

will display, and the text will change to say Hide Route to

allow toggling of the map with one link. Fig. 6 shows a bus

route being displayed on the map. The route displayed does

not necessarily depict the actual path of the bus, but rather

a connection of straight lines connecting the stops in order.

Although this discrepancy between the path travelled and the

path drawn limits the accuracy of the route drawing, it provides

implicit stop locations. Furthermore, large distances between

stops are more readily observable then they would be if an

exact trace of the bus path was used.

Fig. 6. Screenshot showing a route as a dark line overlayed on a map

Because multiple polylines can be displayed at once, mul-

tiple routes can be displayed. However, to ensure users can

differentiate the routes, multiple colours must be used to

distinguish routes apart.

2) Visualizing Stops and Upcoming Stop Times: If a user

wants to select a particular stop, or browse stop locations, they

click the See Stops link. This sends a request to the Route web

service. Upon returning the list of stops associated with the

bus is displayed. Users can move their mouse over the list of

stops, with the map centering on each stop as they are selected

(Fig. 7).

Fig. 7. Interface showing the list of stops for one bus

When a user checks the box next to a stop, that stop appears

on the map as an icon with it’s number. Icons are generated so

that each stop is a unique image. Fig. 8 shows example icons.

Fig. 8. Generated icons for a stop, bus and a wheelchair accessible bus.

No HTTP request is required since the list of stops is cached

from the earlier request. This, or any other stop icon shown

on the map can now be clicked to trigger an asynchronous

request to the Stop Times Web Service. The stop number and

the time are sent, and the next few buses to stop at that stop

are returned and displayed in the icon’s pop up window (Fig.

9).

Fig. 9. Screenshot of a clicked stop icon displaying upcoming times.

3) Vehicle Plotting: To indicate the location of a vehicle, an

icon is used. To allow users to distinguish between buses, icons

are generated for each bus number as seen in Fig. 8(b). Buses

which are handicap accessible are indicated with a different

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3479

4

icon to give immediate information about the bus type (Fig.

8(c)).

With the Bus Position Web Service able to return the current

location of all buses, the map can display icons at each of the

locations returned. By making this request at regular intervals,

and refreshing the bus icons, the bus appears to move on the

map in real time. This emergent effect is valuable to riders

who can anticipate the arrival time of the next bus, through

their own experience with the route and the current location

of the bus.

It also provides a fast overview of the number of buses on a

particular route. If the route is littered with multiple buses, one

can infer the service is at a high level and less preparedness

is required. However if only a single bus can be seen on the

route, then the user knows more care must be taken in catching

it. Together with actual stop times, and route visualization, the

vehicle plotting provides a powerful and intuitive visualization

of transit data.

III. DATA

Calgary Transit, like many public transportation systems,

produces a wide range of information. The data is available

to the public through the web site (http://calgarytransit.com)

and an automated telephone system. Although the process a

user must undergo in the current system is relevant to transit

schedule usability, it is not generic enough to warrant in depth

discussion in this paper. The uniform manner in which Calgary

transit data is presented is well suited for automated retrieval.

For this research, the data sets retrieved include: the bus names

and numbers, the stops on each route, and stop times for each

route for every day.

A. Database Design

Data is conceptually separated into temporal and non tem-

poral data. The list of buses, the route plans and the stop

locations are all treated as static. The daily schedules are the

temporal data which can be fetched anew every day. For an

illustration of the tables and relationships see Fig. 10 where

static tables are grouped on the left, and temporal tables on

the right.

Fig. 10. ERD diagram depicting the relational database design

The Bus table stores the name, number and possible direc-

tions of each bus. The Stop table stores the latitude, longitude,

name, and a list of buses that stop there. These intuitive

Table Rows Size (in KB)

Bus 284 15
Route 300 72
BusStop 10,544 455
Stop 5,547 575
RouteRun 36,052 15155
StopTimes 2,236,427 146944

TABLE I

A LISTING OF DATABASE TABLES ORDERED BY SIZE.

tables are supplemented by a normalized version of Stop called

BusStop which contains multiple entries for each stop, one

duplicate for each distinct bus that stops there. The final static

data is the Route table which maintains an ordered list of

Stop numbers referencing the BusStop table, a direction and

a reference to Bus. This data allows the drawing of routes

on a map, by using the ordered list of stops from Route in

conjunction with positional information from Stop.

Integrating the schedules requires two more tables. The

RouteRun table uses one row for each such route execution,

storing the start and end times and the day which provides

temporal data to facilitate time based queries.

Every time a bus is scheduled to stop corresponds to a row

in the StopTimes table. Each entry refers to the Bus, RouteRun

and BusStop tables. This table is the largest is magnitude,

with over 2 million rows for a week’s worth of schedules. A

summary of the database with one week of schedules is shown

in Table I.

B. Geocoding Stop Locations

The data acquired from Calgary transit does not provide

coordinates for the stops, only names and numbers. Since

geographic information systems require geographic attributes

of displayable items, this data had to be acquired from a third

party or entered manually. Since manual updates could be

necessary in any event, a mapping interface which utilizes

many of the GIS techniques for the main site was developed

to plot bus stops. This administrative user interface allows each

stop to be dragged onto it’s perceived location, which in turn

updates the underlying database through an asynchronous call

to a web service. Fig. 11 shows this interface, with the stop

list on the right, and the selected stop ready to be dragged. The

different colours indicate the status of the stop: hand plotted,

geocoded from Google, and unknown.

However, with over 5500 stops in the Calgary transit system,

plotting each one manually would be too onerous a task.

Therefore, using the information contained in the stop name,

the location of each stop was roughly determined through a

geocoding request to Google. Stop names were first cleansed

of extraneous data such as the bus direction, and words

such as “over” and “under”. The resulting string was then

further parsed to replace street abbreviations with standard

street types, which the geocoder could interpret. Once the

cleaning process was completed the request was sent, and the

result analyzed. If the result was within the city limits, it was

recorded with a flag to indicate it was a result of a geocoding

request. If a stop fell outside the city limits, or did not return

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3480

5

Fig. 11. Plotting interface, where stops can be updated by dragging and
dropping

a coordinate, it was marked as undefined, and would later be

coded by hand.

Using this geocoding technique over 90% of the stops

were retireved. Manual refinement and verification of these

stops, and the manual input of the remaining stops was then

undertaken to identify and correct erronious stop locations.

With stops now plotted, the visualization of bus stops, busses,

and routes can occur through web services.

IV. WEB SERVICES

Throughout the public user interface, users will make re-

quests to change what information they want to see. By

asynchronously answering their requests the interface does not

refresh itself like a classic web page. Rather, the map and

interface continue to be interactive and work correctly, with the

request response resulting in new data being displayed as soon

as possible. At the heart of this asynchronous request response

system is a set of web services which respond to user queries.

All web services will refer to the databases design presented

above.

Each web service resides on it’s own unique URL to

differentiate and partition the services. All requests are

made through HTTP GET requests facilitating asynchronous

javascript. Each service replies using an XML encoded re-

sponse containing the pertinent data.

A. Route Service

Every bus in the system has one or more associated

routes. There are 2 scenarios where a user will request this

web service: a request to display the route as a polyline

on the map, or to see the full list of ordered stops. Each

point returned in the XML therefore has latitude and

longitude as well as a display name and number. This data

is easily retrieved from the Route table joined together

with the Stop table. The parameters passed to this service is

simply the route to return. A request to get route #1 would be:

GET route.php?route=1.

B. Bus Position Service

If a user requests to see the state of buses at a particular

time, or the current time, the interface sends their request to

the bus position web service. A request will encode the time,

and a list of - separated buses. For example, to see the buses 1

and 201 at the current time the web service would be called at:

GET bus.php?bus=1-201&time=now.

Using the passed time and buses, a query determines all

the buses currently on the road using the start and end time

stored in the RouteRun table. For each route on the road,

the next and previous stop times are then retrieved from the

StopTimes table. Using the two locations and times, we can

calculate the current location of the bus by interpolation of the

stop coordinates. These coordinates are returned in the XML

response for client side processing.

C. Nearby Stops Service

When a user wants to know which stops are near a

particular location a request to the Nearby Stops Service is

sent which includes the latitude and longitude associated with

the area of focus. The XML result set includes the name and

location of the nearest stops to the coordinates passed. This

response can then be parsed and displayed to the user on the

map. A query to get stops near Mount Royal College would be:

GET /stops.php?lat=51.01672450&lng=-114.1296672.

D. Stop Times Service

Finally, a user may want to request stop times for a

particular stop number, and a date. This web service will

return upcoming stop times. Using the StopTimes table, the

particular stop number requested will return all the times a

bus stops at that stop. Specifying the next n stop times after

the date stamp passed, refines that result set into useful data

which is returned as XML to the requester. The query to get

the next stop times at stop 6700 would be:

GET stops.php?mystops=6700&time=now.

V. IP BASED CUSTOMIZATION

Many campuses and large corporations are assigned blocks

of IP addresses, which easily identifies computers visiting from

such locations. Using this knowledge, we can provide different

default settings for visitors from specified Ip ranges, so that

the map is centred around the location of the IP addresses,

with local stops and buses being displayed by default.

VI. CONCLUSION

The current scheduled location of a particular bus is of

interest to transit users. Using an asynchronous web based

map application the location of a bus can be accurately and

intuitively visualized providing information to the user which

was previously obfuscated by overwhelmingly large data sets.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3481

6

Seeing a bus route is of great importance to transit users.

By allowing multiple routes to be drawn on an interactive web

based map, users can see a bus route at multiple zoom levels,

and situate themselves with map and satellite imagery. When

multiple routes are viewed in parallel, intersections between

routes can easily be seen, which is not possible with a disjoint

presentation of individual routes.

These visualization techniques do not create new data, but

rather allow the geographic attributes inherent in the data to

be expressed intuitively. By increasing the perceived quality

of the data and the ease with which information can be

retrieved, the shortcomings of classic web based schedule

dissemination techniques can be overcome, resulting in a better

experience for the end user. By empowering transit users,

we grant all users expert knowledge formerly reserved for

experienced riders only and begin to address some of the

perceived shortcomings of public transit.

VII. FUTURE WORK

With data retrieval, and several visualizations in place,

future work will look towards further enhancing the user

experience, and providing concise summaries of complex sit-

uations. Improvements will include user based customization

where individuals can save their preferences which will then

be applied to a trip planner, which can suggest transit trips

based on start and end locations.

Integrating third party data such as weather, distance and

speed between stops will increase the accuracy and provide

a better basis for planning trips. Additional visualizations to

illustrate the discrepancy between the scheduled and antici-

pated arrival time will provide even more useful information

to users.

Finally, experiments which evaluate the effectiveness of the

final interfaces will help us determine which visualizations and

techniques are most and lest beneficial. Surveys and usability

studies will assess the effectiveness of the web based GIS in

comparison to traditional dissemination techniques.

REFERENCES

[1] Moshe Ben-Akiva Asad Khattak, Amalia Polydoropoulou. Modeling re-
vealed and stated pretrip travel response to advanced traveler information
systems. Transportation Research Record: Journal of the Transportation

Research Board, 1537:46–54, 1996.
[2] S. Travis Waller Athanasios K. Ziliaskopoulos. An internet-based

geographic information system that integrates data, models and users for
transportation applications. Transportation Research Part C: Emerging

Technologies, 8:427–444, February-December 2000.
[3] L. Figueiredo, I. Jesus, J.A.T. Machado, J.R. Ferreira, and J.L. Mar-

tins de Carvalho. Towards the development of intelligent transportation
systems. Intelligent Transportation Systems, 2001. Proceedings. 2001

IEEE, pages 1206–1211, 2001.
[4] Google. Google maps api reference.

http://code.google.com/apis/maps/documentation/reference.html.
[5] The PHP Group. Php: Hypertext preprocessor. http://php.net.
[6] Inc. HarGroup Management Consultants. Calgary transit customer

satisfaction survey 2007. http://calgarytransit.com/pdf/2007 .pdf, 2007.
[7] R. Hoar and J. Penner. The application of artificial intelligence to

transportation system design. Crossroads, 9(3):5–9, 2003.
[8] R. Hoar, J. Penner, and C. Jacob. Evolutionary swarm traffic: if ant

roads had traffic lights. Evolutionary Computation, 2002. CEC ’02.

Proceedings of the 2002 Congress on, 2:1910–1915, 2002.
[9] Ricardo Hoar. Multi-agent modeling and analysis of pedestrian and

vehicular traffic. Master’s thesis, University of Calgary, 2004.
[10] S.D. Maclean and D.J. Dailey. Busview: a graphical transit information

system. Intelligent Transportation Systems, 2001. Proceedings. 2001

IEEE, pages 1073–1078, 2001.
[11] Sun Microsystems. Mysql 5.0 reference manual.

http://dev.mysql.com/doc/refman/5.0/en/index.html.
[12] Christopher C. Miller. A beast in the field: The google maps mashup

as gis/2. Cartographica: The International Journal for Geographic

Information and Geovisualization, 41:12, 2006.
[13] L.D. Paulson. Building rich web applications with ajax. Computer,

38(10):14–17, Oct. 2005.
[14] John C. Sutton. Gis applications in transit planning and operations:

A review of current practice, effective applications and challenges in
the usa. Transportation Planning & Technology, 28(4):p237 – 250,
20050801.

[15] Calgary Transit. About ct (satistics - fleet information).
http://calgarytransit.com/html/fleet information.html.

[16] J.S. Zepeda and S.V. Chapa. From desktop applications towards ajax
web applications. Electrical and Electronics Engineering, 2007. ICEEE

2007. 4th International Conference on, pages 193–196, Sept. 2007.
[17] Qian Zhen, Lu Huapu, and Liu Chong. Research on urban transit plan-

ning and management system based on gis. Intelligent Transportation

Systems, 2005. Proceedings. 2005 IEEE, pages 504–509, Sept. 2005.

