
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

397

An Agent-Based Approach to Vehicle Routing
Problem

Dariusz Barbucha and Piotr Jȩdrzejowicz

Abstract— The paper proposes and validates a new method of
solving instances of the vehicle routing problem (VRP). The approach
is based on a multiple agent system paradigm. The paper contains
the VRP formulation, an overview of the multiple agent environment
used and a description of the proposed implementation. The approach
is validated experimentally. The experiment plan and the discussion
of experiment results follow.

Keywords— multi-agent systems, population-based methods, vehi-
cle routing problem.

I. INTRODUCTION

Last years many researchers has focused on the field of
multi-agent systems. A number of significant advances have
been made in both the design and implementation of au-
tonomous agents. Also a number of approaches based on
intelligent agents have been proposed to solve different types
of optimization problems (see for example [1], [12]).

One of the successful approaches to agent-based optimiza-
tion is the concept of an asynchronous team (A-Team), origi-
nally introduced by Talukdar [14]. An A-Team is a collection
of software agents that cooperate to solve a problem by
dynamically evolving a population of solutions. It is especially
dedicated for solving computationally difficult problems.

The area in which the the agent based approaches could
be successfully used is transportation and logistics. A widely
researched and probably most important combinatorial opti-
mization problem in this area is a vehicle routing problem
(VRP).

Till now only few approaches based on using intelligent
agents solving some transportation scheduling problems were
proposed. Some of them can be find in [4], [9], [15]. Others
present the description of the systems offering much complex
architecture. The survey of approaches based on autonomous
intelligent agents solving some transportation logistics prob-
lems can be found in [6].

The paper proposes using the JADE-based A-Team environ-
ment called JABAT for solving the vehicle routing problem.
The following sections contain the vehicle routing problem
formulation, a short overview of the functionality and structure
of the JABAT, a description of the proposed implementation, as
well as the experiment plan and the discussion of experiment
results.

Manuscript received February 28, 2007. The research was supported by
grants: KBN grant no. 3 T11C 059 28 and Gdynia Maritime University grant.

D. Barbucha is with the Department of Information Systems, Gdynia
Maritime University, Gdynia, Poland (corresponding author, e-mail: bar-
bucha@am.gdynia.pl).

P. Jȩdrzejowicz is with the Department of Information Systems, Gdynia
Maritime University, Gdynia, Poland (e-mail: pj@am.gdynia.pl).

II. VEHICLE ROUTING PROBLEM

Let G = (V, E) be an undirected graph, where V =
{0, 1, . . . , N} is the set of nodes and E is a set of edges. Node
0 is a central depot with NV identical vehicles of capacity W .
Each other node i ∈ V − {0} denotes customer with a non-
negative demand di. Each link (i, j) ∈ E denotes the shortest
path from customer i to j and is described by the cost cij

of travel from i to j by shortest path (i, j = 1 . . . , N). It
is assumed that cij = cji. The goal is to find vehicle routes
which minimize total cost of travel (or travel distance) and
satisfy following constraints:

• each route starts and ends at the depot,
• each customer is serviced exactly once by a single

vehicle,
• the total load on any vehicle associated with a given route

does not exceed vehicle capacity.
In addition to the vehicle capacity constraint, in some

problems, a further limitation is imposed on the total route
duration. In such case tij (i, j = 1 . . . , N) is defined to
represent the travel time for each edge (i, j), and ti (i =
1 . . . , N) represents the service time at any vertex i. It is
required that the total duration of any route should not exceed
a preset bound T .

There have been important advances in the development of
exact and approximate algorithms for solving VRP. Because of
the fact that this problem is computationally difficult, most of
them are of heuristic nature. The simplest and fastest are con-
structive heuristics (savings algorithms, insertion algorithms,
etc.) but the quality of solution is not satisfactory. On the other
hand, metaheuristics (evolutionary algorithms, tabu search, ant
algorithms) provide much better solutions, especially in case
of large-scale instances.

For a recent survey of algorithms for solving classical VRP
see [10], [16].

III. OVERVIEW OF JABAT

JABAT is a middleware allowing to design and implement
an A-Team architecture for solving various combinatorial op-
timization problems. The problem-solving paradigm on which
the proposed system is based can be best defined as the
population based approach.

The JABAT produces solutions to combinatorial optimiza-
tion problems using a set of agents, each representing an
improvement algorithm. To escape getting trapped into a local
optimum an initial population of solutions called individuals
is generated or constructed. Individuals forming an initial
population are, at the following computation stages, improved

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

398

by independently acting agents, thus increasing chances for
reaching a global optimum [2].

Main functionality of the proposed environment includes
organizing and conducting the process of search for the best
solution. It involves a sequence of the following steps:

1) Generating an initial population of solutions.
2) Applying solution improvement algorithms which draw

individuals from the common memory and store them
back after attempted improvement, using some user
defined replacement strategy.

3) Continuing reading-improving-replacing cycle until a
stopping criterion is met.

This functionality is realized mainly by two types of agents:
OptiAgents - OA and SolutionManagers - SMa. The JABAT
produces solutions to combinatorial optimization problems us-
ing a set of optimizing agents (OptiAgents), each representing
a single optimizing algorithm. To escape getting trapped into
a local optimum the initial population of solutions called indi-
viduals is generated. Individuals forming the initial population
are, at the subsequent computation stages, improved by inde-
pendently acting agents, thus increasing chances for reaching
a global optimum. Each SolutionManager is responsible for
finding the best solution of a single instance of the problem
and maintains a single population of solutions of this problem.
The agents of both types act in parallel and communicate with
each other exchanging solutions that are either to be improved
(when solutions are sent to OptiAgent) or stored back (when
solutions are sent to SolutionManager) [3].

JABAT offers the possibility of defining how a solution
received from SolutionManager may change the population of
solutions. This is done through providing the SolutionManager
with a replacement strategy. Such strategy in JABAT defines:

• how the initial population of individuals is created (for ex-
ample how many solutions it consists of and what method
is used to obtain an initial population) - implemented as
the initPopulationOfSolutions() function,

• how solutions are chosen to be sent to optimizing agents
- implemented as the readSolution() function,

• how solutions that has been received from optimizing
agents are merged with the population - implemented as
the addSolution() function,

• when the process of searching stops (after a predefined
number of iteration, after reaching given solution, or
when calculations do not improve current best solution
for some special time, etc.) - implemented as the stop()
function.

Fig. 1 presents an UML communication diagram which
shows messages exchange between agents in the process
of solving a task. After the SolutionManager initializes the
population of solution, it waits for the information from an
OptiAgent announcing its readiness to act. SolutionManager
reads the required number of solutions from common memory
and sends them to the OptiAgent, which improves it with its
inbuilt improvement algorithm. Next, the improved solution
is sent back to SolutionManager and added to the common
memory. SolutionManager may also sent the solution to So-
lutionMonitor, which generates a report on the progress and

Fig. 1. UML communication diagram of solving process in JABAT

results. Then, again, the OptiAgent sends a message informing
about its readiness. The whole process continues until some
stopping criterion is met.

There are several different predefined strategies in the
system to choose from. The simplest strategy is to allow
the SolutionManager to draw a random individual from the
common memory, forward it to some OptiAgents and replace
the worst solution from the common memory if agents have
been successful in improving the original one.

Apart from the above mentioned, there are also other
agents working within the system - responsible for initializing,
organizing the process of migrations agents, writing down the
results etc. More detailed description of JABAT environment,
its structure and full functionality was described in [2], [3].

IV. JABAT IMPLEMENTATION FOR SOLVING VRP

As it was mentioned earlier in order to use JABAT for
solving an optimization problem several elements need to be
defined. These include: representation of individuals, method
of creating an initial population, the form of fitness function,
improvement algorithms represented as optimization agents,
and chosen strategy for managing a population of individuals.

A. Representation of an individual

There are several known representation of individuals for the
VRP. One of the most common is a permutation of N numbers
(customers), where the order of numbers reflects order in
which customers are visited. This approach is based on the
path representation of the Traveling Salesman Problem (TSP)
but used for VRP requires procedure of splitting the individual
on segments (routes) [13], for example by taking successive
elements and forming the cluster (route) which satisfies the
problem constraints (elements in each cluster do not exceed
the capacity of the vehicle).

B. Creating the initial population

It is proposed to generate an initial population randomly
and divide each individual by taking successive elements
and forming the cluster (route) which satisfies the problem
constraints (elements in each cluster do not exceed the capacity
of the vehicle and the total cost of any route does not exceed
a given limit). Note, that the order of elements in each cluster
(order of visited customers by each vehicle) is determined
by the order in which they are placed in the permutation
representing the respective individual.

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

399

Fig. 2. Pseudocode of the OA 2-Opt algorithm

The proposed approach results in creation of the initial
population which is based on polar representation of each
vertex (customer) and uses an idea originated from split phase
of the sweep algorithm of Gillett and Miller [7]. First, each
vertex i ∈ V is transformed from cartesian coordinates to
polar coordinates (θi, ρi), where θi is the angle and ρi is the
ray length.

Generation of each individual in the population starts from
randomly choosing an arbitrary vertex i∗ and assigning a value
θ∗i = 0 to it. Next, the remaining angles centered at 0 from the
initial ray (0, i∗) are computed and the vertices are ranked in
increasing order of their θi value. Resulting ranking determines
an individual. The process of assignment vertices to clusters
(routes) is similar to the previously described:

• Starting from the first unrouted vertex having the smallest
angle, assign vertices to the cluster (route) as long as its
capacity or the maximal route length is not exceeded.

• Repeat this process until end of the individual is reached.
Finally, the elements in each route are reordered using the
cheapest insertion method [8]. It has been also decided to
include into the initial population one individual which is
obtained by solving the problem using savings method of
Clarke and Wright [5].

C. Fitness

Each individual from the population is evaluated and value
of its fitness is calculated. It is the cost of the whole route of
all vehicles and is calculated as a sum of the costs related to
each vehicles’ route.

D. Optimization agents

In JABAT for VRP algorithms which operate on an indi-
vidual are implemented as OptiAgents. It has been decided to
implement four local improvement procedures:

• OA 2-Opt - is an implementation of the 2 − opt local
search algorithm and operates on a single route. For a
given feasible solution, 2 edges are removed forming 2
disconnected segments. Next these segments are recon-
nected in all possible ways until a new feasible tour is
obtained. The pseudocode of an implementation of the
OA 2-Opt agent is shown on Figure 2.

• OA StringCross - agent in which two strings (routes) of
customers are exchanged by crossing two edges of two
different routes. The pseudocode of an implementation of
the OA StringCross agent is shown on Figure 3.

• OA 2-Lambda - is an implementation of local search
algorithms based on λ - interchange local optimization

Fig. 3. Pseudocode of the OA StringCross algorithm

Fig. 4. Pseudocode of the OA 2-Lambda algorithm

method [11]. It operates on many routes and is based on
the move or interchange of customers between sets of
routes. For each pair of routes from an individual a parts
of routes of length less than or equal to λ are chosen and
next these parts are shifted or exchanged, according to
the selected operator OP . Possible operators are defined
as pairs: (v, u), where u, v = 1, . . . , λ. and denote
the lengths of the part of routes which are moved or
exchanged. For example, operator (2, 0) indicates a shift
a two customers from the first route to the second route,
operator (2, 2) indicates an exchange of two customers
between routes. Typically, λ = 2 and such value was
used in the OA 2-Lambda agent. The pseudocode of an
implementation of the OA 2-Lambda agent is shown on
Figure 4.

• OA 2-LambdaC - is similar to the OA 2-Lambda algo-
rithm, but while the OA 2-Lambda is oriented for solving
the instances in which the customers are uniformly ar-
ranged on the plane, this agent concentrates on instances
in which the customers are clustered. The main idea of the
algorithm is to remove vertices which are relatively far
from the centroid of the current route and insert it to the
route for each the distance between the vertices and the
centroid of the other route is smaller. The pseudocode of
an implementation of the OA 2-LambdaC agent is shown
on Figure 5.

E. Replacement strategies

The system offers two main methods of reading a solution
from the population:

• Random - random solution is chosen from the population,
• Worst - the worst solution from the population is selected,

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

400

Fig. 5. Pseudocode of the OA 2-LambdaC algorithm

and four methods of adding an improved solution back to the
population:

• Random - a randomly chosen solution from the current
population is replaced by the received solution,

• RandomNotBest - a randomly chosen solution (except the
best one) from the current population is replaced by the
received solution,

• Worse - some randomly chosen worse solution from the
current population is replaced by the received solution,

• Worst - the worst solution from the current population is
replaced by the received solution).

The additional possible options in replacement strategies
are also available. One of them is mechanism of blocking
for a period a randomly chosen solution sent to optimiza-
tion agents (RandomBlocking), whereas the other removes
the worst solution from the population and adds a newly
generated one if last consecutive five solutions received from
the optimization agents did not improve existing solutions in
population (WorstBlocking).

Also, the mechanism of proportional selection known from
evolutionary algorithms has been implemented in JABAT. In
evolutionary algorithms it is used for selecting potentially
useful solutions for recombination in a way that is proportional
to their fitness. So, candidate solutions with a higher fitness
will be more likely to be selected but it does not guarantee
that the fittest member goes through to the next generation. In
JABAT implementation of selection strategy - Select, a solution
is selected using the proportional selection and next send for
improvement.

By combining possible settings of read and add operations,
one obtains twenty strategies, which are summarized in Table
I. It contains the name of strategy and readSolution() and
addSolution() methods used in managing a population of
solutions.

V. COMPUTATIONAL EXPERIMENT

Computational experiment aimed at validating effectiveness
of the approach and evaluating how the replacement strategy
mix influences computation results.

JABAT implementation for VRP was tested on 7 test prob-
lems from ORLibrary benchmark set [17]. The selected prob-
lems (no. 1-5 and 11-12) contain 50-199 customers and have
only capacity restriction. In the problems 1-5, the locations of

TABLE I
REPLACEMENT STRATEGIES AVAILABLE IN JABAT IMPLEMENTATION

Strategy readSolution() addSolution()
strategy01 Random Random
strategy02 Random RandomNotBest
strategy03 Random Worse
strategy04 Random Worst
strategy05 Random WorstBlocking
strategy06 Worst Random
strategy07 Worst RandomNotBest
strategy08 Worst Worse
strategy09 Worst Worst
strategy10 Worst WorstBlocking
strategy11 RandomBlocking Random
strategy12 RandomBlocking RandomNotBest
strategy13 RandomBlocking Worse
strategy14 RandomBlocking Worst
strategy15 RandomBlocking WorstBlocking
strategy16 Select Random
strategy17 Select RandomNotBest
strategy18 Select Worse
strategy19 Select Worst
strategy20 Select WorstBlocking

the vertices are randomly generated over the plane while in
the problems 11-12 vertices appear in clusters.

As it was mentioned in the previous section, the popu-
lation of individuals was generated randomly with dividing
procedure. The set of optimization agents included the four
local improvement methods introduced earlier. The process
of searching for the best solution stops when there are no
improvements of the best solution during last 5 minutes of
computation.

During the experiment population size was equal to 10 and
the replacement strategy was determined by readSolution()
and addSolution() functions. Twenty strategies presented in
table I were tested. Each of the 7 instances of the problem
was run for each possible strategy, in total giving 140 (7x20)
test problems. Moreover, each test problem was repeatedly
executed five times and mean results from these runs were
recorded.

The proposed approach was evaluated using the mean
relative error (MRE) from the best known solution, and the
computation time (T ).

All computations have been run on PC Pentium IV 2.8 GHz
under the MS Windows XP Professional operating system.

The experiment results are shown in tables II, III and IV.
The table II shows mean relative errors averages over all runs
for each tested strategy and each problem. Together with the
problem names the number of customers are presented in
the brackets. The table shows also the average value (AVG)
of errors for each strategy, as well as the average (AVG),
minimum (MIN) and maximum (MAX) value of MRE for
each problem separately. Table III presents the average time
(in seconds) in which the best solution was reached for each
problem and each strategy of population management and the
table IV summarizes average values of MRE and computation
time by grouping data from tables II and II by readSolution()
and addSolution() operations.

Results obtained during the experiment and presented in
table II show that the proposed approach produces good

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

401

TABLE IV
AVERAGE VALUE OF MRE (IN %) AND TIME (IN SEC.) FOR ALL KIND OF

OPERATION READ AND ADD SOLUTION FROM/TO POPULATION

Operations MRE Time

readSolution() Random 5.00% 33.60
Worst 5.19% 25.60

RandomBlocking 4.73% 40.75
Select 4.97% 32.89

addSolution() Random 4.83% 30.85
RandomNotBest 4.53% 45.39

Worse 5.04% 25.36
Worst 5.32% 34.99

WorstBlocking 5.14% 29.47

solutions of analyzed instances of the VRP. The average value
of mean relative error is less then 5%, but it depends on the
instance and for some instances is smaller. Minimal value
of MRE observed during the experiment is close to 1% or
less than 1% for most of the instances which confirms the
usefulness of the proposed method and its effectiveness.

By looking at the columns of table II corresponding to the
instances of the analyzed problem and trying to determine how
the chosen strategy of management of population of solution
implemented in the system influences the quality of solutions,
one can see that although there are differences between solu-
tion obtained for particular instances there are no significant
differences between results obtained for each instance using
different strategies. Taking into account both, reading and
adding operations, for all instances the best operation reading
solution from population seems to be a RandomBlocking
(randomly choosing a solution with blocking mechanism),
and the best operation which adds improved solution back to
the population is RandomNotBest (replacing randomly chosen
solution except the best one). It is represented as strategy12
in the system and provides the best value of MRE.

By analyzing the MRE values presented in table IV one can
conclude that the mean relative error calculated for strategies
grouped by readSolution() and addSolution() operations is
rather similar (4-5%) and it is difficult to point the best
one. More detailed statistical analysis shows that the only
one significant difference exists between RandomNotBest and
Worst method of adding a solution to the population.

It can be easily observed there are significant differences of
the average computation time needed for different replacement
strategies tested. Analysis of average values of time presented
in table III provides conclusion that there exists signifi-
cant differences between Worst and RandomBlocking methods
(readSolution() operation) and between RandomNotBest and
Random, RandomNotBest and Worse and RandomNotBest and
WorstBlocking (addSolution() operation). The smallest value
of computation time for all instances was obtained for the
Worst (the worst solution from the population is read from
population) and Worse (some randomly chosen worse solu-
tion from the current population is replaced by the received
solution) methods in one strategy (strategy08).

VI. CONCLUSIONS

In the paper an approach based on a multiple agent sys-
tem paradigm was proposed for solving the vehicle routing
problem (VRP). The validating experiment confirmed that the
approach based on multiple agents may be useful for solving
instances of the vehicle routing problem. Although results
obtained by JABAT are slightly inferior in comparison with
the best results obtained for example by some implementa-
tions of tabu search [10], the overall evaluation is positive
thanks to several features typical for multiple agent systems.
Among these one should note ability to increase computational
efficiency through parallelization and possibility of using dis-
tributed environment.

REFERENCES

[1] M.E. Aydin and T.C. Fogarty, ”Teams of autonomous agents for job-shop
scheduling problems: An Experimental Study”, Journal of Intelligent
Manufacturing, 15(4), pp. 455-462, 2004.

[2] D. Barbucha, I. Czarnowski, P. Jȩdrzejowicz, E. Ratajczak, and
I. Wierzbowska, ”JADE-based A-Team as a tool for implementing
population-based algorithms”, in Proc. of 6th IEEE International Con-
ference on Intelligent System Design and Applications (ISDA 2006),
Jinan, 2006, IEEE Press, vol. III, pp. 155-160.

[3] D. Barbucha, I. Czarnowski, P. Jȩdrzejowicz, E. Ratajczak, and
I. Wierzbowska, ”JABAT - An implementation of the A-Team concept”,
in Proc. International Multiconference on Computer Science and Infor-
mation Technology, Wisa, 2006, PTI, vol. 1, pp. 235241.

[4] K. Burckert, H.J. Fischer, and G. Vierke, ”Holonic transport scheduling
with TeleTruck”, Journal of Applied Artificial Intelligence, 14, pp. 697-
725, 2000,

[5] G. Clarke and J.W. Wright, ”Scheduling of vehicles from central depot
to a numbes of delivery points”, Operations Research 12, 1964, pp. 568-
581.

[6] P. Davidson, L. Henesey, L. Ramstedt, J. Tornquist, and F. Wernstedt,
”An analysis of agent-based approaches to transport logistics”, Trans-
portation Research Part C, 13, pp. 255-271, 2005

[7] B.E. Gillett, L.R. Miller, ”A heuristic algorithm for the vehicle dispatch
problem”, Operations Research 22, pp. 240-349, 1974.

[8] B. Golden and W. Stewart, ”Empirical analysis of heuristics”, in
Traveling Salesman Problem, E. Lawler, J. Lenstra, A. Rinnooy, and
D. Shmoys, Eds. New York: Wiley-Interscience, 1985, pp. 207-249.

[9] J. Kozlak, J.C. Creput, V. Hilaire, and A. Koukam, ”Multi-agent envi-
ronment for dynamic transport planning and scheduling”, in Computa-
tional Science - ICCS’2004, Bubak M. Albada, G.D.V., Sloot, P.M.A.,
Dongarra, J. (Eds.), Lecture Notes in Computer Science 3038, 2004,
pp. 638-645.

[10] G. Laporte, M. Gendreau, J. Potvin, and F. Semet, ”Classical and modern
heuristics for the vehicle routing problem”, International Transactions
in Operational Research, 7, pp. 285-300, 2000.

[11] I.H. Osman, ”Metastrategy simulated annealing and tabu search algo-
rithms for the vehicle routing problem”, Annals of Operations Research,
vol. 41, pp. 421-451, 1993.

[12] H.V.D. Parunak, ”Agents in overalls: Experiences and issues in the
development and deployment of industrial agent-based systems”, Inter-
national Journal of Cooperative Information Systems, 9(3), pp. 209-228,
2000.

[13] Ch. Prins, ”A simple and effective evolutionary algorithm for the vehicle
routing problem”, Computers & Operations Research, 31, pp. 1985-
2002, 2004.

[14] S. Talukdar, L. Baeretzen, A. Gove, and P. de Souza, ”Asynchronous
teams: Cooperation schemes for autonomous agents”, Journal of Heuris-
tics, 4, pp. 295-321, 1998.

[15] S.R. Thangiah, O. Shmygelska, and W. Mennell, ”An agent architecture
for vehicle routing problem”, in Proc. of the ACM Symposium on Applied
Computing (SAC’2001), Las Vegas, 2001, pp. 517-521.

[16] P. Toth, and D. Vigo, Ed. The Vehicle Routing Problem, SIAM Mono-
graphs Discrete Mathematics and Applications, SIAM:Philadelphia,
2002.

[17] ORLibrary, http://people.brunel.ac.uk/m̃astjjb/jeb/orlib/vrpinfo.html

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

402

TABLE II
THE MEAN RELATIVE ERROR (MRE) IN % FROM THE BEST KNOWN SOLUTION OBTAINED BY JABAT IMPLEMENTATION FOR VRP FOR SELECTED

INSTANCES FROM ORLIBRARY

PROBLEM
STRATEGY vrpnc1 (50) vrpnc2 (75) vrpnc3 (100) vrpnc4 (150) vrpnc5 (199) vrpnc11 (120) vrpnc12 (100) AVG

strategy01 0.24% 9.45% 6.27% 8.09% 5.32% 2.38% 1.93% 4.81%
strategy02 0.40% 5.73% 6.07% 8.09% 8.40% 0.41% 1.15% 4.32%
strategy03 0.48% 9.36% 6.17% 8.09% 10.11% 0.43% 2.36% 5.28%
strategy04 0.34% 9.29% 6.27% 8.09% 8.25% 3.03% 5.23% 5.78%
strategy05 0.09% 9.46% 6.17% 8.09% 4.66% 2.86% 2.36% 4.81%

strategy06 1.73% 6.99% 6.01% 8.09% 9.48% 2.86% 2.36% 5.36%
strategy07 2.30% 6.77% 4.70% 7.04% 6.88% 2.86% 2.29% 4.69%
strategy08 2.21% 9.37% 5.63% 8.09% 7.74% 2.86% 2.36% 5.47%
strategy09 1.53% 5.79% 4.73% 8.09% 7.54% 2.86% 2.36% 4.70%
strategy10 2.01% 9.29% 6.17% 8.09% 5.96% 2.86% 5.72% 5.73%

strategy11 1.62% 9.15% 5.28% 7.17% 4.94% 1.40% 1.19% 4.39%
strategy12 0.57% 8.23% 6.16% 8.16% 4.91% 1.42% 0.63% 4.30%
strategy13 0.66% 8.00% 5.42% 8.09% 7.31% 0.82% 1.47% 4.54%
strategy14 0.44% 9.45% 6.27% 8.09% 4.67% 6.88% 2.36% 5.45%
strategy15 0.01% 9.28% 6.16% 8.09% 6.07% 2.86% 2.36% 4.98%

strategy16 0.72% 9.29% 6.17% 8.09% 5.24% 1.90% 1.93% 4.76%
strategy17 0.25% 9.46% 6.27% 8.35% 4.63% 2.38% 2.36% 4.81%
strategy18 0.75% 9.46% 6.17% 8.09% 4.34% 2.86% 2.36% 4.86%
strategy19 0.09% 9.28% 6.27% 8.09% 4.77% 2.86% 6.10% 5.35%
strategy20 0.00% 9.29% 6.17% 8.39% 6.78% 2.38% 2.36% 5.05%

AVG 0.82% 8.62% 5.93% 8.02% 6.40% 2.46% 2.56% 4.97%
MIN 0.00% 1.40% 1.63% 2.82% 3.37% 0.24% 0.13%
MAX 4.59% 9.77% 8.91% 9.60% 10.11% 22.94% 21.10%

TABLE III
AVERAGE TIME (IN SEC.) CONSUMED BY SYSTEM FOR OBTAINING THE BEST SOLUTION FOR EACH STRATEGY AND EACH PROBLEM

PROBLEM
STRATEGY vrpnc1 (50) vrpnc2 (75) vrpnc3 (100) vrpnc4 (150) vrpnc5 (199) vrpnc11 (120) vrpnc12 (100) AVG

strategy01 34.80 1.48 2.23 5.60 114.90 10.58 18.65 26.89
strategy02 55.95 99.28 9.25 4.70 89.63 50.03 72.33 54.45
strategy03 17.50 0.65 1.20 4.55 12.48 56.93 1.60 13.56
strategy04 38.23 0.68 1.23 5.90 77.15 91.00 38.68 36.12
strategy05 55.28 1.75 1.60 4.95 188.75 3.53 3.00 36.98

strategy06 19.40 83.25 32.65 3.65 17.93 2.93 1.08 22.98
strategy07 14.40 56.65 34.48 27.68 86.63 2.10 14.83 33.82
strategy08 9.13 0.98 22.08 5.78 41.15 2.00 1.93 11.86
strategy09 40.10 96.68 32.88 3.35 48.68 2.95 0.98 32.23
strategy10 47.68 1.25 1.93 4.70 130.25 2.80 1.23 27.12

strategy11 19.78 6.38 28.08 33.68 149.20 37.15 34.80 44.15
strategy12 47.73 26.73 1.33 4.30 143.75 52.45 93.05 52.76
strategy13 55.43 20.73 14.03 5.83 69.20 118.83 48.05 47.44
strategy14 60.45 1.75 1.78 4.78 198.98 2.58 1.68 38.85
strategy15 12.63 1.55 2.30 3.98 118.63 2.88 2.03 20.57

strategy16 21.33 1.78 2.23 4.53 135.05 19.88 20.93 29.39
strategy17 30.35 2.10 2.33 4.70 226.98 14.63 2.70 40.54
strategy18 15.93 1.75 1.60 4.98 170.45 2.95 2.30 28.56
strategy19 16.70 1.63 2.63 6.40 196.98 2.45 2.45 32.75
strategy20 49.28 1.48 1.58 5.48 143.85 28.45 2.28 33.20

AVG 33.10 18.54 10.50 8.50 121.24 24.76 16.60 33.32
MIN 0.32 0.36 0.54 0.81 2.69 0.58 0.48
MAX 169.61 225.90 157.92 142.73 358.90 226.17 196.19

 

 


