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Abstract—A new estimator for evolutionary spectrum (ES) based 
on short time Fourier transform (STFT) and modified group delay 
function (MGDF) by signal decomposition (SD) is proposed. The 
STFT due to its built-in averaging, suppresses the cross terms and the 
MGDF preserves the frequency resolution of the rectangular window 
with the reduction in the Gibbs ripple. The present work overcomes 
the magnitude distortion observed in multi-component non-stationary 
signals with STFT and MGDF estimation of ES using SD. The SD is 
achieved either through discrete cosine transform based harmonic 
wavelet transform (DCTHWT) or perfect reconstruction filter banks 
(PRFB). The MGDF also improves the signal to noise ratio by 
removing associated noise. The performance of the present method is 
illustrated for cross chirp and frequency shift keying (FSK) signals, 
which indicates that its performance is better than STFT-MGDF 
(STFT-GD) alone. Further its noise immunity is better than STFT. 
The SD based methods, however cannot bring out the frequency 
transition path from band to band clearly, as there will be gap in the 
contour plot at the transition. The PRFB based STFT-SD shows good 
performance than DCTHWT decomposition method for STFT-GD. 

Keywords—Evolutionary Spectrum, Modified Group Delay, 
Discrete Cosine Transform, Harmonic Wavelet Transform, Perfect 
Reconstruction Filter Banks, Short Time Fourier Transform. 

I INTRODUCTION

N general, signals like speech, seismic, biomedical signals 
(EEG, ECG), communication signals (frequency shift 

keying, radar returns involving Doppler shift, etc.) and 
communications over time varying channels (interference 
excision, channel modeling and equalization) display some 
form of non-stationary characteristics [1],[2]. It is often 
advantageous to display a non-stationary signal over a joint 
time frequency (TF) plane using TF signal representation 
methods [3]. For non-stationary signals, it is intuitively clear 
that its spectral properties change with time and, hence, a  
meaningful representation of these spectral properties must 
depend on a time variable. Thus, we look for a time – 

H K  Lakshminarayana is with the Department of Electronics, Kuvempu 
Uiversity, Shankarghatta, Shimoga, Karnataka,577 451, INDIA. (e-mail: 
lakkysharmahk@rediffmail.com). 

J S Bhat is with the Physics Department, Karnatak University , Dharwad, 
580 003, INDIA (e-mail: js_bhat@hotmail.com). 

H M Mahesh is with the Department of Electronics Science, Jnana 
Bharathi, Banglore University, Banglore, (corresponding author: Mahesh HM 
, phone: +91 08022961361; fax: +91 08022961361; e-mail: 
hm_mahesh@rediffmail.com). 

dependent power spectrum of the form ),( ftSx  with S being 
a TF function of x, and t & f indicate the time and frequency, 
respectively. The short time Fourier transform (STFT), 
Wigner Ville distribution (WVD) and evolutionary spectrum 
(ES) are the techniques generally employed for the time-
dependent spectral analysis. 

It has been shown that the evolutionary periodogram (EP), 
STFT and a class of bilinear distribution (BD) are estimators 
of ES [2],[4][5]. In the case of STFT, due to built-in time 
domain smoothing, there are no cross terms and the 
spectrogram, the magnitude square of the STFT ensures the 
positivity of time–frequency spectral representation. However, 
with the STFT there is an uncertainty between time and 
frequency resolutions. The EP also produces positive spectra 
without any cross terms and for a given number of expansion 
functions, the data length controls the resolution of EP. Thus, 
the STFT is similar to EP; therefore in the rest of the paper we 
emphasis only on STFT than EP. Further, for a given window 
length, the STFT achieves best frequency resolution when the 
window is rectangular but suffers from Gibbs ripple due to 
abrupt truncation of signal. The use of any window other than 
rectangular though reduces the Gibbs ripple but only at the 
cost of frequency resolution [6],[7]. Thus the STFT can 
become a better estimator of ES, if the Gibbs ripple can be 
reduced without affecting the frequency resolution of the 
rectangular window. 
   For the spectral estimation, a modified group delay function 
(MGDF) has been proposed [7] - [10]. In the case of a signal 
obtained as output from a system, the MGDF removes the 
noise effect from the signal, which can be due to input and/or 
the one added at its output (observation noise). Further, for a 
signal associated with white noise, the MGDF improve the 
signal to noise ratio (SNR) without additional filtering. The 
MGDF has also been used to remove the Gibbs ripple without 
using any common window function and hence preserves the 
frequency resolution of the rectangular window [6],[11],[12]. 
In the transfer functions, zeros close to the unit circle 
introduce white noise to signal. The MGDF basically removes 
these zeros without disturbing the poles of the system/signal 
and hence preserves the frequency resolution [8, 10], but in 
special cases like multi amplitude and/or multi-component 
signals like cross chirp signals with different amplitudes, it 
shows magnitude distortion.  
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In this paper we have proposed an improved estimator of 
evolutionary spectrum based on signal decomposition with 
DCTHWT or perfect reconstruction filter banks (PRFB). The 
STFT -GD with signal decomposition (SD) is used to reduce 
the magnitude distortion of improved STFT-GD. The SD 
based improved STFT performance is studied with DCT-
HWT or PRFB. The improved readability of the TF 
representation is observed in the results of the present work. 
The application of the present work is demonstrated in 
interference modeling for non-stationary jamming noise in 
Direct Sequence Spread Spectrum (DSSS). 

II. TIME-FREQUENCY REPRESENTSTION 
Fourier transform (FT) assumes that the spectral 

characteristics of a signal do not change with time and hence it 
is not appropriate for the analysis of non-stationary signals. To 
get the information about spectral characteristics at different 
times the time–frequency representations (TFR) came into 
picture. This representation gives a natural description for the 
non-stationary signals. Indeed, TFRs characterize signals over 
a TF plane. They combine time-domain and frequency domain 
analyses to yield a potentially more revealing picture of the 
temporal localization of a signal's spectral components. The 
STFT is the first step in this direction and the bilinear 
distributions and evolutionary spectrum have evolved later. 

A. Short time Fourier transform 
The linear time–frequency representation STFT ),(nX

of a signal )(nx  at time n  and frequency  is defined as 
1

0
][][),(

N

k

kjekxnkhnX ,where h [.] is a window 

function centered about zero. 
      The STFT gives the spectral information of the signal 
within the window at its position. By sliding the window 

][nh to different positions it is possible to get the time-
varying spectral characteristics of the signal. However, STFT 
assumes that the signal is stationary within the length of the 
window. To better localize the signal characteristics in time, 
the window length has to be reduced. But, this results in a 
poor frequency resolution. Hence there is a tradeoff between 
frequency and time resolution [2]. Further, the use of a 
rectangular window that provides best possible frequency 
resolution suffers from Gibbs ripple. Hence to overcome the 
Gibbs ripple it is necessary to use common window functions 
like Hamming or Hanning. However, use of such window 
functions reduces the frequency resolution depending upon 
the smoothness of the window. For a given window, the 
frequency resolution can be improved only by increasing the 
window length but at the cost of time resolution. The squared 
magnitude of the STFT of the signal x[n] is given by  

21

0
][][1),(ˆ

N

k

kj
STFT ekxnkh

N
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B. Evolutionary spectrum 
The evolutionary spectrum for the nonstationary signal 

analysis was introduced by Priestly and according to this; it is 
the set of bandpass filter with output powers computed by 
averaging the squared output samples in time [16]. But the 
Wold–Cramer evolutionary spectrum considers a 
nonstationary signal x[n] as the output of a linear time-varying 
(LTV) system driven by a stationary white noise [6], given by, 

)(),(][ dZenHnx nj  .             (2) 

Where )(Z  is a process with orthonormal increments and 
).(nH is a process slowly varying in time 

The Wold–Cramer ES is given by 

21
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iEP ekxkn

M
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where }][{ in are a set of M expansion of functions, which 
are orthonormal over 10 Nn , N is the length of the 
signal x[k]. The frequency resolution of the EP is given 
by NM /2 . The data length determines the basic resolution, 
i.e, N/2 . Hence for a given number of basis functions, the 
frequency resolution can be improved by only increasing the 
data length [6]. 
     The STFT has more resemblance to the EP compared to 
BD and can be used as an estimator of ES. The EP and STFT 
differ only in terms of window function, which decides the 
frequency resolution. The EP provides a better frequency 
resolution than STFT. Improving the frequency resolution of 
STFT can make it a better estimator of ES with rectangular 
window [7]. 

III. HARMONIC WAVELET TRANSFORM [20] 
The wavelet transform (WT) of a signal is generally 

realized in time domain by a two-channel PRFB using a 
dyadic structure. Newland[20] introduced the HWT and this 
enables the wavelet/ wave packet implementation in the 
frequency domain. For a wavelet function )(tw , the WT 

coefficient )(ta  of a signal )(tx  is given by 

dtwxta )()()( .             (4) 

In terms of Fourier transform, 

)()()( *WXA ,                 

)]()([)( *1 WXFta .             (5) 
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Thus, the WT coefficients can be computed using FFT 
algorithm by Eq. (5) using )(X with )(W  for different 
wavelet functions. Specifically, for the HWT of Newland 
[20], )(W , is very simple and it is zero except over a finite 
band ]/,/[ qp , where p, q can be real numbers, not 
necessarily integers. The multiplication of )(X  by )(*W ,
while using the discrete Fourier transform (DFT), is 
equivalent to grouping of the DFT coefficients of a signal in a 
dyadic fashion. The inverse DFT of each group yields 
harmonic wavelet transform coefficients (HWC) [20]. The 
inverse HWT can be achieved by deriving the complete DFT 
by proper concatenation of the DFT coefficient groups 
obeying the possible DFT conjugate symmetry and taking its 
inverse DFT. For HWT, the above choice of )(W , though 
compact in the frequency domain, is of infinite duration in 
time domain. This can be overcome by using a proper 
smoothing weighing function for the grouped DFT coefficient 
sequence.

A. DCT harmonic wavelet transform (DCTHWT)
The harmonic wavelet transform based on DFT 

(DFTHWT), as already explained, has the features of 
simplicity with its built-in decimation and interpolation 
operations. The Fourier coefficients, which are already 
affected by leakage, are grouped. The processing on any band 
will affect the neighboring bands indirectly as the leaked 
energy also gets processed. Therefore to utilize the features of 
the harmonic wavelet transform, it is necessary to reduce the 
leakage effects and in this direction, use of DCT instead of 
DFT is an important step. Compared to the DFT, the DCT has 
a better frequency resolution due to data extension and this 
enables DCT to resolve the closely spaced spectral 
components [11].  
    The DCT of a N point signal )(nx , )1(,....,1,0 Nn  is 
defined as the DFT of a 2N point symmetrically extended 
signal y(n) , 

,12),12(
,10),(

)(
NnNnNx

Nnnx
ny                           (6) 

where y (n) is even symmetric with respect to the point [N-
(1/2)]. This leads to DCT and is given by 

.12),2(

,10,
2

)12(cos)(2
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N
nknx

kC

x

N

nx
         (7) 

Here, the DCT has been derived from the DFT. 
With the DFTHWT, in getting the decimated subband 

component signal and in signal reconstruction, the conjugate 
symmetry of the DFT has to be accounted. The component 
signals can also be complex. But with the DCTHWT as the 
coefficients are real and the symmetry is built-in, no 
conjugation symmetry operation is required. Thus the 
DCTHWT is simpler and provides better performance. 

B. Design of Two channel perfect reconstruction filter 
Banks with Frequency masking approach [18]
A filter bank is a set of filters. The analysis bank often has 

low pass and high pass filters. This separates the input signal 
into frequency bands. Two channel filter banks are mainly 
designed using three methods, i.e. spectral factorization 
method, Cepstrum method and Frequency-Response Masking 
(FRM) approach. First two methods result in more 
computational complexity when the individual filters have 
narrow transition bands. This problem can be resolved by 
using the FRM approach [19]. One price to pay is overall 
delay. 

In the FRM approach, the transfer function of the overall 
filter is expressed as  

zFzGzFzGzH L
C

L
10 ,         (8)   

where zG  and zGC  are referred to as the model filter and 
complementary model filter, respectively. The filters zF0

and zF1  are referred to as the masking filters which extract 

one or several passbands of the periodic model filter LzG
and complementary periodic model filter L

C zG , where L is 
the interpolation factor. For a low-pass filter, typical 
magnitude responses for the model, masking, and overall 
filters are as shown in Fig 1.  

Fig. 1 Illustration of magnitude responses in the frequency-response 
masking approach. 
 The model filters zG  and zGC are odd-order linear-
phase FIR filters with symmetric and anti-symmetric impulse 
responses, respectively, with zGC  being related to zG  as 

zGC = zG . The filter zG  and zGC  can be used to 
obtain two-channel filter banks with zero aliasing and 
arbitrary small magnitude distortion. The two masking filters 

zF0  and zF1  are linear-phase filters with equal delays. 
Both filters are consequently of either even or odd order and 
their impulse responses are symmetric since they must be able 
to realize both low pass and high pass filters.  
       If we use a non-linear phase filter in the analysis 
(synthesis) filter bank we need to use another filter in the 
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synthesis (analysis) filter bank in order to make the overall 
distortion function a linear-phase function. A linear-phase 
filter can be obtained by cascading zH 0  and zH1  as given 
by 

zFzGzFzGzH L
C

L
100

              

zFzGzFzGzH L
C

L
101

 .             (9) 

In filter banks the analysis and synthesis filters are given by 

zFzGzFzGzH L
C

L
a 100

             
zEzGzEzGzH L

C
L

a 101
             

zFzGzFzGzH L
C

L
S 100

                                     

zEzGzEzGzH L
C

L
S 101

,          (10) 

where all of zHa0 , zH a1 , zHS0  and zH S1
 belongs to the 

class of FRM FIR filters. In order to make the 
analysis/synthesis filters zHa0

 and zH a1
 [ zH S0

 & zHS1 ]

low pass and high pass filters, respectively, zF0
 and zF1

must be low pass filters, whereas zE0  and zE1 must be 
high pass filters. zE0  and zE1  can be obtained by the 
relation, zFzE 10     and zFzE 01 .
   The analysis and synthesis filters make use of the same 
model and masking filters. The only difference is, in the 
synthesis filters, zF1  and zE1  are replaced with zF1

and zE1 , respectively. The reason for this is, the distortion 
function then has a linear phase since both zHa0 , zHS0

and

zH a1
, zH S1

 are all linear-phase filters.  

Given the pass band and stop band edges of zG , denoted 
here TG

C  and TG
S , respectively. We get pass band and stop 

band edges of zF0
 and zF1  as 

L
Tk

T
G

C
C

2 ,
L

TkT
G

S
S

2         (11) 

and

L
Tk

T
G

S
C

2 ,
L

TkT
G

C
S

2   ,       (12) 

respectively. Here k=(L-1)/4, only odd values of L are 
feasible since k is an integer. In the present case we have 
taken L=5. 

IV. MGDF FOR COMPLEX SIGNALS [8],[3],[14]

 The signal ][nx  is a minimum phase real signal with 
)(X  as its Fourier transform, 

,)]cos()([)(ln
0n

nncX           (13) 

The GDF derived from the spectral magnitude is  

.]cos)([

)]([)(

0n

p

nnnc

             (14) 

Here, )( is the unwrapped phase and )(nc are cepstral 
coefficients. The cepstral coefficients are derived from 
magnitude information from (13). The GDF )(p  is obtained 

using these coefficients and hence is called magnitude group 
delay (MGD). 

The ripple/variance in a spectrum can be due to: 
1)  Signal truncation effect. 
2)  Associated white noise.  
3) The input white noise that drives a system in generating       

the signal.
4)  Any of the possible combinations.  

These introduce zeros close to the unit circle. Application 
of a smoothing window to the signal, results in pulling the 
signal poles and zeros towards the origin in addition to the 
zeros near the unit circle. Hence the reduction in variance due 
to signal windowing is only at the cost of frequency 
resolution. The MGD modification given in [3] & [4] only 
removes the zeros close to the unit circle without disturbing 
the signal or system poles. Hence the use of modified MGD 
enables variance reduction preserving the frequency resolution 
of the rectangular window. 

For a real signal )(nx , if ),(/)()( DNX then )(D
corresponds to the signal peaks and )(N mainly contributes 
to the ripples/variance [8],[3],[14]. Hence the ripple/variance 
of )(X can be removed by dividing it by )(N . However, this 
may result in singularity problems. In the group delay domain, 
the same operation can be realized by multiplication avoiding 
any singularity. The MGD of )(X , )(p

is

)()()( pDpNp ,               (15) 

where )(pN and )(pD are the MGDs corresponding to 

)(N and )(D respectively. The group delay of signal )(nv
is given by 

2)(
)()()()()(

V
YVYV IIRR

v
,.               (16) 

where,

)].([)()],([)(),()( nyFTYnvFTVnnvny  Further 
)(),( RR YV are the real and )(,)( II YV are the imaginary 
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parts of )(V and )(Y , respectively. Representing the 

numerator by )(K ,
2)(
)()(

V
K

v
.

With this representation, (16) can be written as, 

.
)(

)(
)(

)(
)( 22 D

K
N
K DN

p
                           (17) 

For the simplicity of explanation, )(NK and )(DK can be 
considered as constants [10]. For zeros close to the unit circle, 

2)(N will be very small and for signal poles which are 

relatively far from unit circle,  2)(D   is large. Hence in (17), 

for )(p , the contribution is mainly from the first term and 

this masks the signal peaks which are due to second term. This 
masking effect of these zeros can be reduced by multiplying 

)(p by 2)(N . Hence, the modified MGD 

(MGDF) )(po , becomes, 

.)(
)(

)( 2
2 N

D
KK D

Npo
           (18) 

The estimate of 2)(N , 2
)(N̂ is given by [10], 

2

2

2

2
2

)(ˆ

)(
1

)(ˆ

)(
)(ˆ

XX

X
N  ,         (19) 

and
2)()()( ppo
                (20) 

where 2
)(X̂ is the smoothed power spectrum of the signal 

obtained by the truncated cepstral coefficient sequence and 
)(  represents the fluctuating part of )(X .  For smoothed 

power spectrum 2
)(X̂ , the number of cepstral coefficients 

used should be sufficient to get only the gross feature of the 
spectrum. Selection procedure of number of cepstral 
coefficients are discussed in [3]. For a signal having flat 
spectral characteristic, in the GD )(p the contribution is 

only due to )( . Therefore, to get a modified GDF 

)(po that is free from ripple on the flat floor, )(p has to 

be multiplied by 2)(  [3], [8].  

V. IMPROVED ESTIMATION OF EVOLUTIONARY 
SPECTRUM WITH STFT BASED ON SD BY 

DCTHWT/PRFB AND MGDF 
The estimation of ES by STFT using a rectangular window 

shows better frequency resolution but, suffers mainly from 

ripple effect. One of the obvious solutions to remove the 
ripple effect is to use a smooth window function, which will 
smear the ripple effect and make the spectrum smooth. But 
this smoothness or reduction in the variance of the spectrum 
will reduce frequency resolution. Hence though the STFT is 
free from crossterms, it is not a good estimator of ES. 
Therefore, it is required to remove the ripple effect without 
any loss of frequency resolution. This is achieved by the 
application of MGDF [4].  

In the proposed method, the multicomponent signal is 
decomposed into its components by DCTHWT /PRFB and 
their STFTs are computed. The Gibbs ripple in each STFT 
slice is reduced by applying the MGDF. The MGDF is applied 
for the fullband STFT [8]. Depending upon number of 
component present in the signal, fullband processing can be 
replaced by subband processing.  

A.Improved estimation of evolutionary spectrum based on 
SD by DCT by MGDF processing in fullband 
(IFCTWVD). 

After the decomposition of the signal, the STFT is 
computed with a rectangular window of suitable length and at 
each instant of time MGDF is computed. In STFT 
computation, autocorrelation coefficients for higher-order 
lags, derived from spectrogram, are made zero to reduce the 
variance and its FT is considered as an estimate of 
spectrogram. This estimate is supposed to be a positive 
quantity as it represents the power spectral density (PSD). 
However; the inevitable presence of the rectangular window 
may make the spectrogram values negative. Further, since the 
GDF )(p  involves logarithmic operation as in (13) and 

(14), it is necessary to ensure that values of the slice of the 
spectrogram at each instant of time are positive. This is 
achieved by raising sufficiently the floor level by scaling up 
the autocorrelation coefficient at the zeroth lag. Further, in 
computing )(p

, the equivalent magnitude spectrum is  

a)
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b)

c)

d)

e)

f)

a)

Fig. 2 Contour plots of STFT-GD (a),SD- STFT-GD with PRFB (b), SD-STFT-GD with DCT-HWT (c), for crossing 
chirp signals. Same plots with 3 dB noise (d, e & f). 
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b)

c)

d)

e)

f)

a)

Fig. 3 Mesh plots of STFT-GD (a), SD- STFT-GD with PRFB (b), SD-STFT-GD with DCT-HWT (c), with cross chirp 
signals. Same plots for 3 db noise (d, e & f ). 
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b)

c)

d)

e)

f)

a)

Fig. 4 Contour plots of STFT-GD (a),SD- STFT-GD with PRFB (b), SD-STFT-GD with DCT-HWT (c),for FSK signal with 3 dB 
of FSK signal. Same plots with 3 db noise (d, e & f ). 
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b)

c)

d)

e)

f)

Fig. 5 Mesh plots of STFT-GD (a), SD- STFT-GD with PRFB (b), SD-STFT-GD with DCT-HWT (c) , for FSK signal. Same plots 
with 3 dB noise (d, e, & f). 
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a)

b)

c)

Fig. 6 Contour plots of STFT-GD (a), SD-STFT-GD with DCT-HWT 
(b), SD- STFT-GD with PRFB (c) for nonstationary interference 
signal in DSSS. 

a)

b)

c)

Fig. 7 Mesh plots of STFT-GD (a), SD-STFT-GD with DCT-HWT 
(b), SD- STFT-GD with PRFB (c), for nonstationary interference 
signal in DSSS. 
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computed from the spectrogram slice. To get back the TFR 
slice from GD function the gain and base level are adjusted 
with respect to the original log spectrum. For each TFR slice 
obtained from the MGDF, the original floor level is restored 
by subtracting its mean value and adding a scaled mean value 
(the scale factor being the same as that used in enhancing the 
autocorrelation at the zeroth lag). For deterministic signals 
like, cross chirps or frequency shift keying (FSK) signals, 
where only the Gibbs ripple on the floor is to be reduced, 

)(p is modified by multiplying with 2)( . For a time 

varying random process, 2)(N  function is used for 

computing modified )(p
.

B. Algorithm for the proposed improved ES Estimator 
Step 1: Obtain the component signals with DCT HWT/PRFB 
as explained in Section III-A and III-B.  
Step 2: Compute the FT of each truncated signal to get a 
component STFT slice and concatenating to get full STFT. 
Step 3: At a particular instant 1nn , compute the GD )(lp .

For this, compute the definitely positive power spectral 
density: take inverse FT of the STFT slice and this gives 
complete IACR for that instant and raise the floor level of the 
STFT by multiplying the IACR zeroth lag value by which is 
much greater than unity (say 5000). 
Step 4: Compute the MGDF )(lpo

 as mentioned in section 

IV, and get improved SD-STFT-GD slice. 
Step 5: Compute the estimate of ES at time 1n : For this: 

(i) Compute the sequence )(ks from );(lpo

)}({)(1 lIDFTks po
,             

.1,.....,12/,0

2/
)(

,2/,......1,)(2

)( 1

1

NNk

Nk
k
ks

Nk
k

ks

ks
     

(ii) Compute )]],([Re[)(:)( ksDFTlSlS
(iii) Obtain the normalized estimate )(lSN by 

scaling )(lS  with respect to ),( 1 lnIM ,

,)(1)()(
1

0

N

l
m lS

N
lSlS            

AlnIMlnIMandlnIM
N

A m

R

l
),(),(,),(1

11
0

.

    And R is the number of coefficients considered for gain 
and level adjustment   

A
G

lSlS

lnIMlSG

m
N

mm

)()(

)],,(max[/)](max[ 1 .       

(iv) The estimate of ES, ),( 1 lnES  is obtained from 
)(lSN ,

1

0
)(11)],(2exp[)(1

N

l
N lS

N
BandlSlS      

.)(1),( 1 U
BBlSlnES          

Step 6: Repeat steps 2 to 5 for each sample instant n, in the 
time interval considered and obtain the ),( lnES  of single 

component signal. 
Step 7: Concatenating the ES of different components to get 
the full ES in proper position. 

VII. SIMULATION RESULTS
The performance of the proposed ES estimator will be 

illustrated for cross chirp signals (with different amplitude 
levels) and FSK signal. In all figures, the STFT-GD and 
STFT-GD with SD (with DCTHWT or PRFB) is illustrated 
with contour and mesh plots. The cross chirp signal is 
considered, i.e. given by 

])6.176(2cos[............
...])6.1566(2cos[)(

2

1

s

s

nTnA
nTnAnx

For the proposed methods of ES estimation, in the case of 
crossing chirp signal with A1=1 and A2=0.5, and   rectangular 
window of length 32 is used. The DFT length used is 256. The 

2)( estimate is obtained by considering first 8 cepstral 

coefficients and lifting factor U=1000. The same parameters 
are used all STFT-SD illustrations. For designing of PRFB 
prototype filters )(ZG  and )(ZGc , filter length 32 is 
considered and then it is interpolated with the factor L=5 to 
get )( LZG and )( L

c ZG . The anti-imaging filters are 
constructed with the length of 10. The resultant FRM based 
filter frequency response is illustrated in Fig. 1 that shows 
sharp cut-off.

The time–frequency contour and mesh plots for STFT-GD 
and for the proposed methods for two linear chirps are shown 
in Fig.2-3 (a, b & c) and for FSK signals are shown in Fig.4-5 
(a, b & c), respectively. From the figures, the proposed ES is 
having better visibility/detectability and frequency resolution 
(in case of FSK) than that obtained with STFT-GD. In the 
proposed method two chirp signals are clearly visible, but in 
the STFT -GD method its magnitude is reduced. This 
indicates that the new ES is the generalization of STFT-GD. 
To bring out the performance of the algorithm in the presence 
of additive white Gaussian noise (AWGN) with SNR of 3 dB 
is considered, i.e. shown in Fig.2, 3, 4 and 5 (e, f & g). Here
new algorithm shows better performance in noise suppression 
compared to STFT-SD. 

For a FSK signal, the frequency resolution of the STFT–
GD with SD is better than that of STFT-GD for lower window 
length. The frequency transition from one frequency to the 
other is better for STFT-GD but there is a smearing along the 
time axis indicating it has good frequency localization but 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:11, 2009

2152

poor time localization. In SD-STFT-GD achieves better time 
and frequency localization, which is also evident from the 
contour plot Fig. 4 (c).

A. Application to interference modeling in spread spectrum 
technique.

We finally apply our improved evolutionary spectrum to 
model the nonstationary multi-component interference in DS-
SS signal, which helps in suppression of interference. The 
received signal is modeled as, ),()()()( nwnqnsnx
where,

k
ck KNncbns )()(  is the transmitted signal 

( }1,1{kb ) are the transmitted bits and )(nc is the length-

cN  spreading sequence), )(nq  as a interference ( jammer ) 

signal and )(nw as the white noise. Two linear Frequency 
Modulated (Chirp) signals with different amplitudes are 
considered as interference.

In order to model the interference, we simulated a spread –
spectrum system with cN =11 and SIR=-60db with neglecting 
noise. The signal length was 1100 with 100 data bits. The 
PRFB prototype filters are built with the parameters, window 
length 32 and frequency bins of 128. Also, final filter length 
of 32 is considered for PRFB.  

The present technique has built in noise suppression 
capability; therefore it focuses only on the interference not on 
data components which act as a noise. The simulated results of 
the interference model are shown in Fig. 6 (a, b & c) with 
contour and Fig. 7(a, b & c) with mesh plots. This clearly 
indicates that, the SD based ES showed better detection of 
lower amplitude nonstationary signals and in SD PRFB 
showed good performance than DCTHWT technique. 

VIII. CONCLUSION

A new Evolutionary Spectrum with improved performance 
based on signal decomposition (SD) by DCT- HWT / PRFB 
(with FRM approach) and MGDF processing in fullband is 
proposed. The DCTHWT is simple in computations, as 
compare to PRFB without FRM, but performance is better 
with PRFB. The FRM approach reduces the computational 
cost about 24% than earlier PRFB techniques and that makes 
it efficient for present approach. The proposed ES is applied 
to two linearly crossing chirps with different amplitude, FSK 
signal and same chirp signals as a non stationary interference  

signal in DS-SS communication are considered for 
performance measure. The result shows the better 
performance of the SD based ES with and without noise. They 
indicate that the detectability of low level component is high 
in SD based STFT–GD than STFT-GD. The frequency 
resolution even with noise is better than STFT-GD. The new 
algorithm for ES with STFT-GD and PRFB decomposition 
shows better performance than DCTHWT decomposition. In 
all the results of PRFB shows good detectability and in the 
crossing position than that of DCTHWT and the linearity in 
the frequency is clearer in PRFB case. 
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