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Abstract—Numerical integration of initial boundary problem for 

advection equation in 
3ℜ is considered. The method used is 

conditionally stable semi-Lagrangian advection scheme with high 
order interpolation on unstructured mesh. In order to increase time 
step integration the BFECC method with limiter TVD correction is 
used. The method is adopted on parallel graphic processor unit 
environment using NVIDIA CUDA and applied in Navier-Stokes 
solver. It is shown that the calculation on NVIDIA GeForce 8800 
GPU is 184 times faster than on one processor AMDX2 4800+ CPU. 
The method is extended to the incompressible fluid dynamics solver. 
Flow over a Cylinder for 3D case is compared to the experimental 
data. 
 

Keywords—Advection equations, CUDA technology, Flow over 
the 3D Cylinder, Incompressible Pressure Projection Solver, Parallel 
computation. 

I. GOVERNING EQUATIONS 
QUATIONS of type  

0=⋅∇+
∂
∂ G

t
F

,      (1) 

describe special conservative advection of the scalar 
property F . These equations are commonly used in 
incompressible and compressible fluid dynamics, free surface 
flows, shallow water models etc. Here G  is the flux vector of 
the scalar function found as the product of the scalar function 
and the advection velocity vector function. In terms of scalar 
function – velocity function (1) can be rewritten as: 

 0=⋅∇−∇⋅+
∂
∂ VFFV

t
F

,      (2) 

here V - velocity vector-function. Only some analytical 
solutions exist for the simplest initial-boundary value 
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problems in three dimensional space [1, p242]. In order to 
solve general type initial boundary value problem one must 
apply numerical methods for (2), especially in case of 
nonlinear relations (i.e. advection term in Navier-Stokes 
equations where F  stands for conservative momentum 
vector). Using regular finite volume methods takes great 
usage of CPU time and memory, thus leading to parallel or 
distributed computational methods. 

II. SEMI-LAGRANGIAN METHOD 
The method is widely used in meteorology and detail 

description can be found, i.e. in [2, 4]. 
Let 3ℜ∈Ω  be time invariant (steady) arbitrary domain, 

bounded by 2ℜ∈Ω∂ . And let 3]..0[: ℜ→Ω tV  be initial 
velocity vector-function distribution. One must solve 
numerically the following initial-boundary value problem for 
(2): 

)(),0( 0 xFxF = ; 1),(
1

FxtF =
Ω∂

; 2
2

F
n
F

=
∂
∂

Ω∂

,  

 (3) 
Here F1 and F2 – arbitrary constants.  
 Let the domain Ω be meshed with 3-simplexes 
(tetrahedron) of N total number of elements. The problem (3) 
will be solved for the following form of equations (2): 

0=
dt
dF

; ),( txV
dt
xd

= ; ]..0[ Nx Ω∈      (4) 

The solution algorithm for (4) is written as follows: 
1. Lagrange step. Every point in Ω , of the tetrahedron mass 
center with coordinates ix , is transferred to coordinates ix *  

for time moment t (previous time moment) in Ω  by 
integrating the trajectory: 

∫
Δ+

−=
tt

t
ii dVxx ττ )(* .      (5) 

2. Interpolation step. Determination of the element 
(localization in Ω ) that contains the point with ix *  
coordinates and calculation of scalar function value F  by 
interpolation between K-order neighbor elements: 

)},{(),( * txFtxF Kii Ι= ,     (6) 
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here I – interpolation operator; Kix - neighbor coordinates up 
to the neighbors of K-th order. 
3. Regularization step. Scalar field update on t+Δt time step: 

),(),( * txFttxF ii =Δ+ .     (7) 
The following procedure is monotonic (if TVD [9, 10] 
condition is applied), conservative (if local mass conservation 
is applied for every element [9]) and unconditionally stable 
because solution characteristic lines are always in the physical 
dependence domain.  Various constructions of these steps 
exist, see [4], but here some modifications are used. 

A. Trajectory integration 

In order to determine the trajectory integral (5) the velocity 
vector-function values of either previous time step values or 
both time steps are used [2 ,5]. The explicit formula to define 
velocity function values on t and t+Δt time steps is used. So, 
one of the coordinate vectors (i.e. in x direction) can be found 
with the second order time integration as: 

2
))(,(),(

)(
*

* ttxVtxV
tdVxx ixix

tt

t
xii

Δ++
Δ≈=− ∫

Δ+

ττ

,  (8) 
here xV  - velocity vector-function value in ‘x’ direction. 

It is obvious, that ix*  from (8) can be found only by solving 
system of algebraic linear equations. One should avoid 
solving SLAE for every element in Ω for it is too 
computationally expensive. To do so one can use Taylor series 
expansion near point ix : 

)()(),(),(),( 2** xOxxtxVtxVtxV iiixixix +−⋅∇+= , 
  (9) 
and by doing so derive explicit formula for ix* : 
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xx
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iixixix

ii

,        (10) 
here: ),( txV ix∇  - gradient of velocity in ‘x’ direction. All 
values in (10) are known on ‘t’ time step, so it is possible to 
derive ix*  explicitly.  
 The following procedure is second order time accurate in 
case of second or higher order gradient operator for velocity 
vector-function.  

 B. Element localization 
 The procedure of element localization is conducted very 
easy on structured meshes [4]. However it is very difficult to 
find a proper element on unstructured meshes for every 
element verification algorithm is O(N2) computationally 
expensive and it becomes merely impossible to use it on large 
element meshes. There exist numbers of advanced element 
localization methods that simply return element number on 

unstructured topology with coordinates };;{ ***
iii zyx . Very 

good survey on these methods for pure Lagrangian integration 
is given in [4] where it is proved that the most efficient 
localization method is proposed in [3]. However, method [3] 
suffers from dead lock cycling if the trajectory intersects 
lower topological dimension primitives, i.e. planes and points; 
and the denser the mesh is, the higher is dead lock cycling 
probability.  Leaving obvious topological explanations, 
authors made some changes to the algorithm [3], so that it 
doesn’t suffer from the dead cycles for lower dimensional 
topological primitives. 

The procedure contains the directional search algorithm that 
determents the simplex boundaries (with lower topological 
indexes) that trajectory intersects. It is done by locating the 
point of intersection, first between planes (triangles of a 
tetrahedron) and trajectory line, then between side lines 
(triangle sides) and trajectory line, and then between points 
(tetrahedron vertexes) and trajectory line. The algorithm is 
straightforward and uses geometrical relations, which can be 
found i.e. [4]. Further the algorithm travels through all 
elements that have trajectory line intersections and terminates 
when the traced element has no more intersections with the 
trajectory.  The algorithm was found steady and robust with 
no dead lock cycling. Its computational cost can be estimated 
as O(A⋅C⋅N) , here C-number of elements that the trajectory 
intersects, A – number of simplex boundaries for intersection, 
which for the worst case of intersection in a tetrahedron equals 
4(for triangles)+6(for sides)+4 (for vertexes). C can be 
estimated from the Courant–Friedrichs–Lewy condition for 
(4) as xtVC ΔΔ⋅≈ / .  

C. Interpolation 
 The Voronoi diagram in the system of tetrahedra is used for 
scalar-function interpolation shown on fig.1. 

 
Fig. 1 Voronoi cell with six tetrahedra (two dimensional projection)  
 

Voronoi cell vertexes are constructed using centers of mass 
in neighbor tetrahedra.  Value of the scalar-function  Fx in the  
‘t’ tetrahedron is estimated as the weighted sum of all Vronoi 
cell vertexes. Vertex weight with value Ft (fig.1) can be found 
as: 
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Here: tσ - set of Voronoi cell faces, adjoined to the ‘t’ vertex;  

fn - face outward normal; x – distance from the point to the 

face; fd  - face plane shift; m – number of faces for a 

Voronoi cell; tN  - determinant of the matrix, formed by all 

unit normals to tσ . 
 If the tetrahedral grid is constructed using Delaunay 
algorithm [11] than the formula (11) can be simplified due to 
some spatial properties: 1) Vertex vectors of Delaunay mesh 
are always perpendicular to the Voronoi faces; 2) A 
tetrahedron volume is defined as 1/6det|Et|, where Et is the 
matrix, formed by three vectors of vertexes 1e , 2e , 3e with a 
base point among the tetrahedron vertexes. Then (11) can be 
rewritten as: 
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,  (13) 
here Vol(t) is the volume of the tetrahedron ‘t’; fe is the 

vector coming from the Voronoi cell to the other faces ‘t’; tc  
is the mass center of the tetrahedron ‘t’; x is the point 
coordinate for interpolation. 
 After calculating )(xwt  using (13) and, since (12) is true, 
Fx is defined as: 

∑
=

⋅=
m

t
titi FxwxF

1
)()( ,     (14) 

which is used on regularization step. Boundary conditions (3) 
are taken into consideration on this step as well. For Dirichlet 
boundary conditions a virtual cell with a common topology is 
considered and a value of F1 (3) is set explicitly. For 
Neumann boundary conditions the face value in the 
denominator in (13) is changed for F2, see (3). 

 D. BFECC method with limiter 
 In order to have a high order monotonic solution a BFECC 
method is used, see [12]. The trajectory integration procedure 
as in (10) with values of Vx(xi,t) on a time step t is considered.  
And the solution procedure of the general problem (3) for 
equations (4) on tetrahedral mesh in Ω domain that consists of 
formulas (10), (14) and (7) as the operator ℑ  is written as: 

),( tttt FVF ℑ=Δ+ .      (15) 

The operator finds value of scalar-function F on the time 
step t+Δt with the first order of accuracy in time. The 
interpolation operator (14) does not violate monotonic 
condition,, see [10, sec.4.4 p.257]. Thus, the procedure (15) is 
absolutely stable and monotonous and has a first order of 
accuracy in time. 

The classical BFECC method [12] is not monotonous in 
time and can create spurious oscillations. In order to restrain 
monotonic condition a three stage TVD method is applied: 

),(1 ttnt FVF ℑ=+ ,     
 (16) 

),)(( 12 nttnt FVF ++ −ℑ= ,     (17) 
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Δ+ ]

2
)([,

2ntt
tttt FFrFVF ,  

 (18) 
here r is the limiting function slope [10,p.258], defined by the 
TVD condition.  

III. PROGRAM ADAPTATION ON THE GRAPHIC PROCESSOR 
UNIT 

For dense meshes the listed above algorithm should be 
optimized for parallel computations. In this case one can 
expect to use lesser wall time for challenging problems with 
more than 10 millions elements. In this paper the method of 
using graphic processor unit as a parallel computational 
environment is used. NVIDIA CUDA [13] developers 
environment is used in this paper to solve generally posed 
problem (3) for equation (4) using algorithm (16)-(18). 
Procedure and implementation in the CUDA C++ language 
are similar to the procedure, listed in [8]. In accordance with 
the NVIDIA CUDA [13] programmer’s guide, the program 
was written that uses algorithms (16)-(18) as kernels in GPU 
with utilization of the device shared memory. All pre- and 
postprocessor instructions are using CPU.   

Algorithm, responsible for the operator projection (15), 
uses maximum time saving procedures. For that purpose a 
shared memory block is created and all calculations are 
conducted in the shared memory; this ought to speed up the 
GPU calculations greatly as stated in the programmer’s guide 
[13, p.55]. In order to minimize the ratio of global 
memory/shared memory reloads, all nested tetrahedra are 
supposed to be close to each other. For that purpose all 
elements are regrouped in global memory of GPU before the 
time loop, thus grouping neighboring elements close to each 
other in the global device memory. This procedure is O(N1,5) 
computationally expensive and can be used while a mesh is 
loading. The indexing of the kernel uses single unsigned 
integer over the whole domain that represents the element 
number in the mesh geometric relation array. This index is 
parallelized on maximum number of threads for the specific 
device used. So all the cycle equations (16)-(18) are calculated 
in the GPU with no GPU-CPU memory reloads during the 
calculation in the time loop. The results are loaded from the 
GPU to CPU memory only when the last timestep is finished. 
After that all memory in the device is released and all post 
processing work is conducted on the CPU. The GPU adapter, 
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which is used in this work is NVIDIA GeForce 8800 GTX 
with 768MB of device RAM that is installed on the AMD 
Athlon 64X2 4800+ with 4GB of RAM. 

IV. TEST CASES AND EFFICIENCY ESTIMATIONS 
For the test case of the advection equation on GPU we are 

considering the problem (3) for equation (4) where the scalar 
function is given as an initial condition and a vector function 
is given as a constant value. Two problems are considered – 
step function and sinus and elliptic half periods in 3ℜ∈Ω . 
The results are presented on fig2. for the single step function 
and on fig.3 for the sinus and elliptic half period. The used 
CFL number for all test cases is 3, number of tetrahedral 
elements in the mesh is 40 000, the grid is not adaptive and 
the ratio of mean element volume to it’s mean verge plane 
square is 0.23mm. All tests are using 30 timesteps for the 
positive value of the velocity vector function distribution and 
30 timesteps for the negative velocity vector-function value 
distribution to advect the initial given value of the F scalar 
function.  

 
Fig. 2. Mesh for the test case with the plane section. 

 
 

The results show that the method has small amount of the 
artificial viscosity. Comparison of the initial condition with 
the step function gave a blur of 3.2% for 60 timesteps. The 
results for the sinus and ellipse cases show some decay of the 
sinus wave amplitude – this can be seen in the fig5 with the 
cross plane section data plot. It happens due to the limiter 
operation that imposes the TVD monotonic condition. Other 
results show good correlation with the initial conditions, 
especially for ellipse case and the step case. 

 
Fig. 3. Step problem test case. Results are shown on the middle 
plane. Top – initial condition; middle – 30 timeseps with positive 
velocity; buttom – 30 timesteps with negative velocity. 

 

 
Fig. 4. Sinus and ellipse test case. Results are shown on the middle 
plane.  Top – initial condition; middle – 30 timeseps with positive 
velocity; buttom – 30 timesteps with negative velocity. 

 
Fig. 5. Sinus and ellipse test case-initial conditions vs. time 
integration for 60 timesteps. {X;0.5;0.5}-plane section. 
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Comparison of efficiency was conducted for these test cases 
on GPU and CPU algorithms. CPU version of the code was 
executed on the serial mode with one core operating on the 
CPU. The results are close to the ones, obtained in the other 
work for Poisson equation in [8] – the computer speed 
increases to 184 times as fast as the CPU version from the 
mesh of 1⋅106 elements and more.  

V. FLUID DYNAMICS EXTENSION 
The method, described in the paper was extended to 

incompressible fluid dynamics solver, using pressure 
projection algorithm on the unstructured tetrahedral mesh. The 
governing equations are conservation PDEs of mass and 
momentum – the Navier-Stokes equations: 

 

⎪⎩

⎪
⎨
⎧

∇=∇+∇⋅+∂∂

=⋅∇
− VRPVVtV

V
21)(/

0
    

 (19) 
here P is a pressure scalar function in Ωx(0..t). 

The solution procedure of (19) consists of fractural step 
method on physical processes as follows: 

1. Advection stage, using (16)-(18) equations: 
 ),(1 t

i
tnt

i vVv ℑ=+ , }3...1{=i ,    (20)
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where iv  is the velocity  vector-function cartesian component 

and ()ℑ  is the advection operator, described in (8)-(14). 
Internal fractural time steps are: ‘t’ for the previous timestep; 
‘t+a’ – advection timestep; ‘t+d’ – diffusion timestep; ‘t+p’ – 
pressure timestep and ‘t+Δt’ for the final timestep. 

2. Diffusion step, using finite volume method with 
the second order of accuracy: 

)(1 σ+−++ Θ⋅⋅Δ+= t
i

at
i

dt
i vRtvv ,      (23) 

where R is the Reynolds number and ()Θ is the diffusion 
operator, see [9]. σ is a implicit (d) or explicit (a) method 
switch. For R>100 it is better to use an explicit scheme. 
Equation (23) represents the diffusion equation of the 
form σ+−++ ∇⋅⋅Δ+= t

i
at

i
dt

i vRtvv 21 . 
3. Pressure step that consists of the Poisson equation 

dtVP +⋅−∇=∇ 2 , using finite volume method and 
conjugate gradient method to solve the system of algebraic 
equations: 

dtVP +⋅−∇=Θ )( ,     (24) 
where divergence term on the right evaluates using staged 
finite volume formulation. 
4. Pressure projection step that corrects velocity vector-
function using solenoidal pressure solution in the 
form PtV ∇=∂∂ / is written as: 

PtVV dttt ∇⋅Δ−= +Δ+ .     (25) 
All 1-4 steps are unconditionally stable if d stands for σ in 
(23). 

System of (20)-(25) is added with the proper class of 
boundary and initial conditions for a general type of the 
problem, see [8] and [9] for more details1. 

The classical problem of 3D flow past the cylinder was 
considered to verify the numerical method and to estimate 
accuracy. 

The adaptive mesh consists of 121 000 elements is shown 
on fig.6 with literal plane cut.  

 
Fig. 6. 3D Cylinder flow problem mesh – literal plane section. 

 
Some calculations were concluded to get the laminar, 

transient and turbulent flow regimes. To take turbulent regime 
into account, the large eddy simulation strategy was 
incorporated. The LES model was developed by one of the 
authors can be classified as the dynamic eddy viscosity 
subgrid model with implicit filtering. More details on LES 
models can be found in [9].  

 
Fig.7 Pressure instantaneous isasurfaces for R=5000 

 
 

 
1 Some care must be taken for the pressure wall boundary conditions 

because those are not physical. See [6,9] for details. 
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Fig. 7 shows instantaneous pressure isasurfaces plots and fig.8 
presents instantaneous velocity vectors in a close-up view for 
R equals 5000 in (19). 

 

 
Fig. 8 Instantaneous velocity vectors close up view from the top for 
R=5000. Scale starts from 2.256 for the red color. 

 
 Averaged over the Z axis variations of the time mean drag 
coefficient Cd are plotted on fig.9 to verify the solver. For that 
purpose several test cases with different Reynolds numbers 
were conducted for the flow over the cylinder. The 
experimental results are taken from [14]. It can be clearly seen 
that the solver predicts drag coefficient very good with detail 
representation of the drag crisis regimes for relatively high 
Reynolds numbers and drag partial recovery for even greater 
R numbers. 

 
Fig. 9 Averaged over the Z axis variations of the time mean drag 
coefficient Cd. Line – experiment from [14], Crosses – numerical 
results. 

VI. CONCLUSION 
A semi Lagrangian method for advection equations in three 

dimensional Euclidian space is presented in the paper. The 
method uses some novel interpolation and limiting techniques. 
This guaranties it’s monotonic and conservation properties for 
the advecting scalar function. The method is developed as the 
parallel environment for the graphic processor units using 
NVIDIA CUDA programming language. Advection property 
test cases confirmed that the method is conservative, 

monotonic and has a high order of approximation in time and 
space. GPU implementation guarantees a significant speed up 
of overall 184 times compared to the single processor 
calculations on the CPU. This allows solving complex 
problems on cheap and freely available personal computers 
with the proper GPU video card installed. The method is 
extended to incompressible pressure projection fluid dynamics 
solver. It is used in the advection part of the Navier-Stokes 
equations. The test case of the flow past a cylinder for high 
Reynolds numbers shown that the method is correct and 
accurate. To model the turbulent flow a LES methodology 
was incorporated. In future the described method will be used 
in the computational complex, developed by the author.  
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