
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:12, 2009

1108

Abstract—Numerical integration of initial boundary problem for

advection equation in
3ℜ is considered. The method used is

conditionally stable semi-Lagrangian advection scheme with high
order interpolation on unstructured mesh. In order to increase time
step integration the BFECC method with limiter TVD correction is
used. The method is adopted on parallel graphic processor unit
environment using NVIDIA CUDA and applied in Navier-Stokes
solver. It is shown that the calculation on NVIDIA GeForce 8800
GPU is 184 times faster than on one processor AMDX2 4800+ CPU.
The method is extended to the incompressible fluid dynamics solver.
Flow over a Cylinder for 3D case is compared to the experimental
data.

Keywords—Advection equations, CUDA technology, Flow over
the 3D Cylinder, Incompressible Pressure Projection Solver, Parallel
computation.

I. GOVERNING EQUATIONS
QUATIONS of type

0=⋅∇+
∂
∂ G

t
F

, (1)

describe special conservative advection of the scalar
property F . These equations are commonly used in
incompressible and compressible fluid dynamics, free surface
flows, shallow water models etc. Here G is the flux vector of
the scalar function found as the product of the scalar function
and the advection velocity vector function. In terms of scalar
function – velocity function (1) can be rewritten as:

 0=⋅∇−∇⋅+
∂
∂ VFFV

t
F

, (2)

here V - velocity vector-function. Only some analytical
solutions exist for the simplest initial-boundary value

Irakli V. Gugushvili is the PhD student in the Institute for Hydraulics and
Hydrodynamics, Moscow Russia and working in the dam breach department.
(gugushvili_i@mail.ru)

Nickolay M. Evstigneev is the Doctor in Applied Mathematics and
working as a leading scientist in the Institute for System Analysis, Russian
Academy Of Science in the Nonlinear and Chaotic Dynamics Laboratory.
(evstigneevnm@yandex.ru)

The work is supported by RFFI grant 08-07-00074а and 09-07-00078а
alongside with program ONIT RAN (project 1.9).

problems in three dimensional space [1, p242]. In order to
solve general type initial boundary value problem one must
apply numerical methods for (2), especially in case of
nonlinear relations (i.e. advection term in Navier-Stokes
equations where F stands for conservative momentum
vector). Using regular finite volume methods takes great
usage of CPU time and memory, thus leading to parallel or
distributed computational methods.

II. SEMI-LAGRANGIAN METHOD
The method is widely used in meteorology and detail

description can be found, i.e. in [2, 4].
Let 3ℜ∈Ω be time invariant (steady) arbitrary domain,

bounded by 2ℜ∈Ω∂ . And let 3]..0[: ℜ→Ω tV be initial
velocity vector-function distribution. One must solve
numerically the following initial-boundary value problem for
(2):

)(),0(0 xFxF = ; 1),(
1

FxtF =
Ω∂

; 2
2

F
n
F

=
∂
∂

Ω∂

,

 (3)
Here F1 and F2 – arbitrary constants.
 Let the domain Ω be meshed with 3-simplexes
(tetrahedron) of N total number of elements. The problem (3)
will be solved for the following form of equations (2):

0=
dt
dF

;),(txV
dt
xd

= ;]..0[Nx Ω∈ (4)

The solution algorithm for (4) is written as follows:
1. Lagrange step. Every point in Ω , of the tetrahedron mass
center with coordinates ix , is transferred to coordinates ix *

for time moment t (previous time moment) in Ω by
integrating the trajectory:

∫
Δ+

−=
tt

t
ii dVxx ττ)(* . (5)

2. Interpolation step. Determination of the element
(localization in Ω) that contains the point with ix *
coordinates and calculation of scalar function value F by
interpolation between K-order neighbor elements:

)},{(),(* txFtxF Kii Ι= , (6)

Semi-Lagrangian Method for Advection
Equation on GPU in Unstructured

3ℜ Mesh for
Fluid Dynamics Application

Irakli V. Gugushvili, Nickolay M. Evstigneev

E

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:12, 2009

1109

here I – interpolation operator; Kix - neighbor coordinates up
to the neighbors of K-th order.
3. Regularization step. Scalar field update on t+Δt time step:

),(),(* txFttxF ii =Δ+ . (7)
The following procedure is monotonic (if TVD [9, 10]
condition is applied), conservative (if local mass conservation
is applied for every element [9]) and unconditionally stable
because solution characteristic lines are always in the physical
dependence domain. Various constructions of these steps
exist, see [4], but here some modifications are used.

A. Trajectory integration

In order to determine the trajectory integral (5) the velocity
vector-function values of either previous time step values or
both time steps are used [2 ,5]. The explicit formula to define
velocity function values on t and t+Δt time steps is used. So,
one of the coordinate vectors (i.e. in x direction) can be found
with the second order time integration as:

2
))(,(),(

)(
*

* ttxVtxV
tdVxx ixix

tt

t
xii

Δ++
Δ≈=− ∫

Δ+

ττ

, (8)
here xV - velocity vector-function value in ‘x’ direction.

It is obvious, that ix* from (8) can be found only by solving
system of algebraic linear equations. One should avoid
solving SLAE for every element in Ω for it is too
computationally expensive. To do so one can use Taylor series
expansion near point ix :

)()(),(),(),(2** xOxxtxVtxVtxV iiixixix +−⋅∇+= ,
 (9)
and by doing so derive explicit formula for ix* :

()

⎥⎦
⎤

⎢⎣
⎡ ∇

Δ
+

⋅∇−+Δ+
Δ

−=
),(

2
1

),(),(),(
2*

txVt

xtxVtxVttxVt

xx
ix

iixixix

ii

, (10)
here:),(txV ix∇ - gradient of velocity in ‘x’ direction. All
values in (10) are known on ‘t’ time step, so it is possible to
derive ix* explicitly.
 The following procedure is second order time accurate in
case of second or higher order gradient operator for velocity
vector-function.

 B. Element localization
 The procedure of element localization is conducted very
easy on structured meshes [4]. However it is very difficult to
find a proper element on unstructured meshes for every
element verification algorithm is O(N2) computationally
expensive and it becomes merely impossible to use it on large
element meshes. There exist numbers of advanced element
localization methods that simply return element number on

unstructured topology with coordinates };;{ ***
iii zyx . Very

good survey on these methods for pure Lagrangian integration
is given in [4] where it is proved that the most efficient
localization method is proposed in [3]. However, method [3]
suffers from dead lock cycling if the trajectory intersects
lower topological dimension primitives, i.e. planes and points;
and the denser the mesh is, the higher is dead lock cycling
probability. Leaving obvious topological explanations,
authors made some changes to the algorithm [3], so that it
doesn’t suffer from the dead cycles for lower dimensional
topological primitives.

The procedure contains the directional search algorithm that
determents the simplex boundaries (with lower topological
indexes) that trajectory intersects. It is done by locating the
point of intersection, first between planes (triangles of a
tetrahedron) and trajectory line, then between side lines
(triangle sides) and trajectory line, and then between points
(tetrahedron vertexes) and trajectory line. The algorithm is
straightforward and uses geometrical relations, which can be
found i.e. [4]. Further the algorithm travels through all
elements that have trajectory line intersections and terminates
when the traced element has no more intersections with the
trajectory. The algorithm was found steady and robust with
no dead lock cycling. Its computational cost can be estimated
as O(A⋅C⋅N) , here C-number of elements that the trajectory
intersects, A – number of simplex boundaries for intersection,
which for the worst case of intersection in a tetrahedron equals
4(for triangles)+6(for sides)+4 (for vertexes). C can be
estimated from the Courant–Friedrichs–Lewy condition for
(4) as xtVC ΔΔ⋅≈ / .

C. Interpolation
 The Voronoi diagram in the system of tetrahedra is used for
scalar-function interpolation shown on fig.1.

Fig. 1 Voronoi cell with six tetrahedra (two dimensional projection)

Voronoi cell vertexes are constructed using centers of mass
in neighbor tetrahedra. Value of the scalar-function Fx in the
‘t’ tetrahedron is estimated as the weighted sum of all Vronoi
cell vertexes. Vertex weight with value Ft (fig.1) can be found
as:

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:12, 2009

1110

∏ ∈
+

=
tf ff

t
t dxn

N
xw

σ

)(, (11)

with 1)(
1

=∑
=

m

t
txw . (12)

Here: tσ - set of Voronoi cell faces, adjoined to the ‘t’ vertex;

fn - face outward normal; x – distance from the point to the

face; fd - face plane shift; m – number of faces for a

Voronoi cell; tN - determinant of the matrix, formed by all

unit normals to tσ .
 If the tetrahedral grid is constructed using Delaunay
algorithm [11] than the formula (11) can be simplified due to
some spatial properties: 1) Vertex vectors of Delaunay mesh
are always perpendicular to the Voronoi faces; 2) A
tetrahedron volume is defined as 1/6det|Et|, where Et is the
matrix, formed by three vectors of vertexes 1e , 2e , 3e with a
base point among the tetrahedron vertexes. Then (11) can be
rewritten as:

∏

∏∏

∈

∈∈

−
=

=
−⋅

=
−

=

t

tt

f tf

f tff

t

f tf

t
t

xce
tVol

xcne
Neee

xcn
N

xw

σ

σσ

)(
)(6

)(||
||||||||

)(
)(321

, (13)
here Vol(t) is the volume of the tetrahedron ‘t’; fe is the

vector coming from the Voronoi cell to the other faces ‘t’; tc
is the mass center of the tetrahedron ‘t’; x is the point
coordinate for interpolation.
 After calculating)(xwt using (13) and, since (12) is true,
Fx is defined as:

∑
=

⋅=
m

t
titi FxwxF

1
)()(, (14)

which is used on regularization step. Boundary conditions (3)
are taken into consideration on this step as well. For Dirichlet
boundary conditions a virtual cell with a common topology is
considered and a value of F1 (3) is set explicitly. For
Neumann boundary conditions the face value in the
denominator in (13) is changed for F2, see (3).

 D. BFECC method with limiter
 In order to have a high order monotonic solution a BFECC
method is used, see [12]. The trajectory integration procedure
as in (10) with values of Vx(xi,t) on a time step t is considered.
And the solution procedure of the general problem (3) for
equations (4) on tetrahedral mesh in Ω domain that consists of
formulas (10), (14) and (7) as the operator ℑ is written as:

),(tttt FVF ℑ=Δ+ . (15)

The operator finds value of scalar-function F on the time
step t+Δt with the first order of accuracy in time. The
interpolation operator (14) does not violate monotonic
condition,, see [10, sec.4.4 p.257]. Thus, the procedure (15) is
absolutely stable and monotonous and has a first order of
accuracy in time.

The classical BFECC method [12] is not monotonous in
time and can create spurious oscillations. In order to restrain
monotonic condition a three stage TVD method is applied:

),(1 ttnt FVF ℑ=+ ,
 (16)

),)((12 nttnt FVF ++ −ℑ= , (17)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+ℑ=

+
Δ+]

2
)([,

2ntt
tttt FFrFVF ,

 (18)
here r is the limiting function slope [10,p.258], defined by the
TVD condition.

III. PROGRAM ADAPTATION ON THE GRAPHIC PROCESSOR
UNIT

For dense meshes the listed above algorithm should be
optimized for parallel computations. In this case one can
expect to use lesser wall time for challenging problems with
more than 10 millions elements. In this paper the method of
using graphic processor unit as a parallel computational
environment is used. NVIDIA CUDA [13] developers
environment is used in this paper to solve generally posed
problem (3) for equation (4) using algorithm (16)-(18).
Procedure and implementation in the CUDA C++ language
are similar to the procedure, listed in [8]. In accordance with
the NVIDIA CUDA [13] programmer’s guide, the program
was written that uses algorithms (16)-(18) as kernels in GPU
with utilization of the device shared memory. All pre- and
postprocessor instructions are using CPU.

Algorithm, responsible for the operator projection (15),
uses maximum time saving procedures. For that purpose a
shared memory block is created and all calculations are
conducted in the shared memory; this ought to speed up the
GPU calculations greatly as stated in the programmer’s guide
[13, p.55]. In order to minimize the ratio of global
memory/shared memory reloads, all nested tetrahedra are
supposed to be close to each other. For that purpose all
elements are regrouped in global memory of GPU before the
time loop, thus grouping neighboring elements close to each
other in the global device memory. This procedure is O(N1,5)
computationally expensive and can be used while a mesh is
loading. The indexing of the kernel uses single unsigned
integer over the whole domain that represents the element
number in the mesh geometric relation array. This index is
parallelized on maximum number of threads for the specific
device used. So all the cycle equations (16)-(18) are calculated
in the GPU with no GPU-CPU memory reloads during the
calculation in the time loop. The results are loaded from the
GPU to CPU memory only when the last timestep is finished.
After that all memory in the device is released and all post
processing work is conducted on the CPU. The GPU adapter,

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:12, 2009

1111

which is used in this work is NVIDIA GeForce 8800 GTX
with 768MB of device RAM that is installed on the AMD
Athlon 64X2 4800+ with 4GB of RAM.

IV. TEST CASES AND EFFICIENCY ESTIMATIONS
For the test case of the advection equation on GPU we are

considering the problem (3) for equation (4) where the scalar
function is given as an initial condition and a vector function
is given as a constant value. Two problems are considered –
step function and sinus and elliptic half periods in 3ℜ∈Ω .
The results are presented on fig2. for the single step function
and on fig.3 for the sinus and elliptic half period. The used
CFL number for all test cases is 3, number of tetrahedral
elements in the mesh is 40 000, the grid is not adaptive and
the ratio of mean element volume to it’s mean verge plane
square is 0.23mm. All tests are using 30 timesteps for the
positive value of the velocity vector function distribution and
30 timesteps for the negative velocity vector-function value
distribution to advect the initial given value of the F scalar
function.

Fig. 2. Mesh for the test case with the plane section.

The results show that the method has small amount of the
artificial viscosity. Comparison of the initial condition with
the step function gave a blur of 3.2% for 60 timesteps. The
results for the sinus and ellipse cases show some decay of the
sinus wave amplitude – this can be seen in the fig5 with the
cross plane section data plot. It happens due to the limiter
operation that imposes the TVD monotonic condition. Other
results show good correlation with the initial conditions,
especially for ellipse case and the step case.

Fig. 3. Step problem test case. Results are shown on the middle
plane. Top – initial condition; middle – 30 timeseps with positive
velocity; buttom – 30 timesteps with negative velocity.

Fig. 4. Sinus and ellipse test case. Results are shown on the middle
plane. Top – initial condition; middle – 30 timeseps with positive
velocity; buttom – 30 timesteps with negative velocity.

Fig. 5. Sinus and ellipse test case-initial conditions vs. time
integration for 60 timesteps. {X;0.5;0.5}-plane section.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:12, 2009

1112

Comparison of efficiency was conducted for these test cases
on GPU and CPU algorithms. CPU version of the code was
executed on the serial mode with one core operating on the
CPU. The results are close to the ones, obtained in the other
work for Poisson equation in [8] – the computer speed
increases to 184 times as fast as the CPU version from the
mesh of 1⋅106 elements and more.

V. FLUID DYNAMICS EXTENSION
The method, described in the paper was extended to

incompressible fluid dynamics solver, using pressure
projection algorithm on the unstructured tetrahedral mesh. The
governing equations are conservation PDEs of mass and
momentum – the Navier-Stokes equations:

⎪⎩

⎪
⎨
⎧

∇=∇+∇⋅+∂∂

=⋅∇
− VRPVVtV

V
21)(/

0

 (19)
here P is a pressure scalar function in Ωx(0..t).

The solution procedure of (19) consists of fractural step
method on physical processes as follows:

1. Advection stage, using (16)-(18) equations:
),(1 t

i
tnt

i vVv ℑ=+ , }3...1{=i , (20)

),)((12 nt
i

tnt
i vVv ++ −ℑ= , }3...1{=i , (21)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+ℑ=

+
+]

2
)(

[,
2nt

i
t

it
i

tat
i

vvr
vVv }3...1{=i , (22)

where iv is the velocity vector-function cartesian component

and ()ℑ is the advection operator, described in (8)-(14).
Internal fractural time steps are: ‘t’ for the previous timestep;
‘t+a’ – advection timestep; ‘t+d’ – diffusion timestep; ‘t+p’ –
pressure timestep and ‘t+Δt’ for the final timestep.

2. Diffusion step, using finite volume method with
the second order of accuracy:

)(1 σ+−++ Θ⋅⋅Δ+= t
i

at
i

dt
i vRtvv , (23)

where R is the Reynolds number and ()Θ is the diffusion
operator, see [9]. σ is a implicit (d) or explicit (a) method
switch. For R>100 it is better to use an explicit scheme.
Equation (23) represents the diffusion equation of the
form σ+−++ ∇⋅⋅Δ+= t

i
at

i
dt

i vRtvv 21 .
3. Pressure step that consists of the Poisson equation

dtVP +⋅−∇=∇ 2 , using finite volume method and
conjugate gradient method to solve the system of algebraic
equations:

dtVP +⋅−∇=Θ)(, (24)
where divergence term on the right evaluates using staged
finite volume formulation.
4. Pressure projection step that corrects velocity vector-
function using solenoidal pressure solution in the
form PtV ∇=∂∂ / is written as:

PtVV dttt ∇⋅Δ−= +Δ+ . (25)
All 1-4 steps are unconditionally stable if d stands for σ in
(23).

System of (20)-(25) is added with the proper class of
boundary and initial conditions for a general type of the
problem, see [8] and [9] for more details1.

The classical problem of 3D flow past the cylinder was
considered to verify the numerical method and to estimate
accuracy.

The adaptive mesh consists of 121 000 elements is shown
on fig.6 with literal plane cut.

Fig. 6. 3D Cylinder flow problem mesh – literal plane section.

Some calculations were concluded to get the laminar,

transient and turbulent flow regimes. To take turbulent regime
into account, the large eddy simulation strategy was
incorporated. The LES model was developed by one of the
authors can be classified as the dynamic eddy viscosity
subgrid model with implicit filtering. More details on LES
models can be found in [9].

Fig.7 Pressure instantaneous isasurfaces for R=5000

1 Some care must be taken for the pressure wall boundary conditions

because those are not physical. See [6,9] for details.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:12, 2009

1113

Fig. 7 shows instantaneous pressure isasurfaces plots and fig.8
presents instantaneous velocity vectors in a close-up view for
R equals 5000 in (19).

Fig. 8 Instantaneous velocity vectors close up view from the top for
R=5000. Scale starts from 2.256 for the red color.

 Averaged over the Z axis variations of the time mean drag
coefficient Cd are plotted on fig.9 to verify the solver. For that
purpose several test cases with different Reynolds numbers
were conducted for the flow over the cylinder. The
experimental results are taken from [14]. It can be clearly seen
that the solver predicts drag coefficient very good with detail
representation of the drag crisis regimes for relatively high
Reynolds numbers and drag partial recovery for even greater
R numbers.

Fig. 9 Averaged over the Z axis variations of the time mean drag
coefficient Cd. Line – experiment from [14], Crosses – numerical
results.

VI. CONCLUSION
A semi Lagrangian method for advection equations in three

dimensional Euclidian space is presented in the paper. The
method uses some novel interpolation and limiting techniques.
This guaranties it’s monotonic and conservation properties for
the advecting scalar function. The method is developed as the
parallel environment for the graphic processor units using
NVIDIA CUDA programming language. Advection property
test cases confirmed that the method is conservative,

monotonic and has a high order of approximation in time and
space. GPU implementation guarantees a significant speed up
of overall 184 times compared to the single processor
calculations on the CPU. This allows solving complex
problems on cheap and freely available personal computers
with the proper GPU video card installed. The method is
extended to incompressible pressure projection fluid dynamics
solver. It is used in the advection part of the Navier-Stokes
equations. The test case of the flow past a cylinder for high
Reynolds numbers shown that the method is correct and
accurate. To model the turbulent flow a LES methodology
was incorporated. In future the described method will be used
in the computational complex, developed by the author.

ACKNOWLEDGMENT
The second author wishes to thanks his wife, Marina, for

valuable corrections introduced.

REFERENCES
[1] A D Polyanin; V F Zaitsev. Handbook of Nonlinear Partial Differential

Equations. – Chapman & Hall/CRC Press, Boca Raton, 2003.
[2] Douglas Enright, Frank Losasso, Ronald Fedkiw. A Fast and Accurate

Semi-Lagrangian Particle Level Set Method. // Proceedings of the 4th
ASME-JSME Joint Fluids Engineering Conference, number
FEDSM2003, 45144. ASME, 2003.

[3] Chorda R, Blasco J.A., Fueyo N. An efficient particle-locating algorithm
for application in arbitrary 2D and 3D grids// Int. J. of Multiphase Flow,
28, 2002 N9, 1565-1580.

[4] Volkov K.N., Emelyanov V.N. Implementation of the Lagrangian
approach to the description of gas-particle flows on unstructured
meshes.// J. Numerical methods and programming. Vol9, pp. 19-33,
2008.

[5] Paoliy R. , Poinsotz T., Shari K. Testing semi-Lagrangian schemes for
two-phase flow applications.// Proceedings of the Summer Program
2006, pp213-222. Center for Turbulence Research, Toulouse, France.

[6] Chunlei Liang, Evstigneev N., A study of kinetic energy conserving
scheme using finite volume collocated grid for LES of a channel flow. //
Proceedings of the international conference on numerical methods in
fluid dynamics. King's College London, Strand, WC2R 2LS, 2006,
pp.61-79.

[7] Evstigneev N.M., Magnitskii N.A., Sidorov S.V. On the nature of
turbulence flow in the backward face step problem // J. Differential
equations, Vol.45, 2009, pp.69-73.

[8] Evstigneev N.M. Numerical integration of Poisson's equation using a
graphics processing unit with CUDA-technology // J. Numerical
methods and programming., Vol10, pp. 268-274, 2009.

[9] Evstigneev N.M., Magnitskii N.A., Sidorov S.V. New approach to the
incompressible flow turbulence. // Proc. ISA RAS, Vol33, pp.49-65,
2008.

[10] Evstigneev N.M. Solution of 3D nonviscous compressible gas equations
on unstructured meshes using the distributed computing approach. // J.
Numerical methods and programming., Vol8, pp. 252-264, 2007.

[11] Cignoni P., Montani C., Scopigno R., Dewall: A fast divide & conquer
Delaunay triangulation algorithm in Ed // Computer J. 2006. 19, No2, pp
178-181.

[12] T. F. Dupont, Y. Liu. Back and forth error compensation and correction
methods for removing errors induced by uneven gradients of the level
set function. // Journal of Computational Physics, vol. 190, no. 1, pp.
311–324, 2003.

[13] http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA
_CUDA_Programm ing_Guide_2.0.pdf

[14] A. Roshko. Experiments on the ow past a circular cylinder at very high
Reynolds number.// Journal of Fluid Mechanics, 10:345-356, 1961.

