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Abstract—Extensive research has been devoted to economic 

production quantity (EPQ) problem. However, no attention has been 
paid to problems where production period length is constrained. In 
this paper, we address the problem of deciding the optimal 
production quantity and the number of minor setups within each 
cycle, in which, production period length is constrained but a minor 
setup is possible for pass the constraint. A mathematical model is 
developed and Iterated Local Search (ILS) is proposed to solve this 
problem. Finally, solution procedure illustrated with a numerical 
example and results are analyzed.  
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I. INTRODUCTION 
HE economic production quantity (EPQ) model has been 
widely used in practice because of its simplicity. 

However, there are some drawbacks in the assumption of the 
original EPQ model and many researchers have tried to 
improve it with different viewpoints, and the assumption of 
the unconstrained production period length is one of these 
shortcomings. 

The classic EPQ model assumes that production period 
length is unconstrained. However, in real production 
environment, this assumption does not accurately reflect the 
reality. Because, it can often be observed that the production 
period length is constrained due to some technical services 
reasons. Hence, the inventory policy determined by the 
conventional model might be inappropriate. 

Khouja [1] reformulated some inventory models which 
allow for adjustments to the process within a production cycle 
to restore it to an "in control" state. These adjustments can be 
performed without interrupting the system or may require 
system stoppage and can be thought of as minor setups. He 
used the quality assumptions previously proposed by Porteus 
[2] and Rosenblatt and Lee [3] and showed that the 
incorporation of minor setups leads to an increased optimal lot 
size and improved yield.  

In this paper, we reformulate the EPQ model in which 
production period length is constrained but a minor setup is 
possible for pass the constraint. A minor setup does not 
involve performing all activities of a full setup and incurs only 
a fraction of a full setup cost and time. We use ILS and 
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present a method to solve the economic production quantity 
model of minimizing the total annual cost subject to 
constrained production cycle length and minor setups. The 
paper is organized as follows: Section 2 describes the 
problem. Section 3 explains the basics of iterated local search 
(ILS). In section 4 we explain the steps of ILS algorithm to 
solve the problem. A numerical example and some results are 
represented in section 5. Finally, section 6 contains the 
conclusions. 

II. PROBLEM DESCRIPTION 
In this section, we derive a mathematical statement for the 

EPQ model with constrained production period length. The 
basic EPQ model is that of determining a production quantity 
of an item, subject to the following conditions related to the 
production facility and marketplace [4]: 

• Demand rate and production rate are continuous, 
known and constant. Production rate is greater than or 
equal to demand rate. 

• All demand must be met. 
• Holding costs are determined by the value of the item. 
• A single full setup is accomplished at beginning of 

each cycle. 
• Setup time is assumed to zero. 
• Unit production cost of product and setup cost are 

time and quantity invariant. 
• There are no quantity constraints. 
• No shortages are allowed. 
 
Most of the assumptions in our mathematical model are the 
same as those in the conventional EPQ. Besides, we 
release some assumptions: 

• A single full setup is accomplished at beginning 
of each cycle; also some minor setups are allowed 
equally spaced within the production cycle. 

• The full setup at each cycle is accomplished at 
segment of previews cycle in which all 
production machinery are unemployment. 

• Minor Setup time is assumed to be known and 
positive constant. 

 
In classic EPQ model production period length is assumed 

to be unrestricted. Generally, in reality production machinery 
have a finite ability for continuous production due to fatigue 
of operators and equipments, necessity to service operations 
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and etc. Also, production run length can influence the quality 
of produced goods. In this situation, at end of a long 
production cycle, produced items have lower quality. 
Therefore, some minor setups within a cycle may be justified 
to restore the production process to an "in control" state, in 
which produced goods quality is acceptable. 

 
In order to state the problem mathematically, let 
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  Annual demand rate of product 
Annual production rate of product 
Annual unit holding cost  
The fixed cost of a full setup which involves all 
tasks required for preparing and adjusting the 
production process 
The fixed cost of a minor setup which involves only 
the tasks required to pass the production length 
constraint 
The fixed time of a minor setup 
The fixed constrained production period length after 
each full or minor setup 
 Unit production cost 
Cycle length  
Production period length in a cycle 
Only-demand period length in a cycle 
Inventory level at beginning of the first minor setup 
within a cycle 
Inventory level at end of the first minor setup within 
a cycle 
Maximum inventory level within a cycle 
Production quantity (real positive decision variable) 
The number of minor setups within a cycle (integer 
non-negative decision variable) 
Annual total cost (objective function) 

 
The behavior of inventory level in classic EPQ model which 
minor setup is not allowed is illustrated in Fig.1. 

Fig.1. The relation between inventory level and time for one cycle 
without minor setup 

 
From graphical representation of EPQ model in Fig.1, we 

have: 
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The behavior of inventory level at a cycle with three minor 
setups is shown in fig. 2.   

 

 
Fig. 2. The relation between inventory level and time for one cycle 
with three minor setups 

 
From graphical representation of model in Fig.2, we have: 
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Let relax the integrity of m temporally. 
The elements of Hessian matrix are: 
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Then ATC is a non-convex function. Therefore, taking the 
partial derivatives of ATC with respect to the Q and m, and 
solving equations 0=

∂
∂ ATC
Q

 and 0=
∂
∂ ATC
m

 don’t 

guarantee the necessary conditions for Q and m to be optimal.  
For a given number of minor setups m, equation (7) gives 

an expression of ATC as a function of only Q which called 
reduced-ATC. Although ATC is a non-convex function, but it 
is obvious from expression (11) that reduced ATC is a convex 
function. Therefore, taking the first derivative of reduced ATC 
with respect to Q and setting 0 =ATCreduced

dQ
d  yields 

the only positive solution at: 
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This problem poses a difficult computational task due to the 
integrity of m and non-convexity involved. Due the 
complexity to solve this optimization problem, we developed 
a method based on iterated local search (ILS) metaheuristic.  

III. ITERATED LOCAL SEARCH 
Iterated local search is a simple but powerful meta-heuristic 

algorithm [5]. It applies local search to an initial solution until 
it finds a local optimum; then it perturbs the solution and it 
restarts local search. The importance of the perturbation is 
obvious: too small a perturbation might not enable the system 
to escape from the basin of attraction of the local optimum just 
found. On the other side, too strong a perturbation would 
make the algorithm similar to a random restart local search.  

A local search is effective if it is able to find good local 
optima, that is, if it can find the basin of attraction of those 
states. When the search space is wide and/or when the basin 
of attraction of good local optima is small, a simple multi-start 
algorithm is almost useless. An effective search could be 
designed as a trajectory only in the set of local optima s*, 
instead of in the set s of all the states. Unfortunately, in most 
cases there is no feasible way of introducing a neighborhood 
structure for s*. Therefore, a trajectory along local optima s*

1, 
s*

2, …, s*
t is performed, by applying the following scheme: 

 
1) Execute local search from an initial state s until a local 

optimum s* is found. 
 2) Perturb s* and obtain s'. 
 3) Execute local search from s' until a local optimum s'* is 
reached. 
 4) On the basis of an acceptance criterion decide whether to 
set s*          s'*. 
5) Go to step 2. 

The requirement on the perturbation of s is to produce a 
starting point for local search such that a local optimum 
different from s is reached. However, this new local optimum 
should be closer to s than a local optimum produced by a 
random restart. The acceptance criterion acts as a counter 
balance, as it filters and gives feedback to the perturbation 
action, depending on the characteristics of the new local 
optimum. A high level description of ILS steps is presented in 
Table I. 

 
TABLE I 

ITERATED LOCAL SEARCH (ILS) ALGORITHM 
s0                           Generate Initial Solution () 
s*                                 Apply Local Search(s0) 

While termination condition not met do 
    s'                                   Apply perturbation (s*) 
    s'*                                 Apply Local Search (s') 
    s*                 Apply acceptance criterion (s*, s'*) 

                     Memorize Best Found Solution 
End While 

         
The design of ILS algorithms has several degrees of 

freedom in the choice of the initial solution, perturbation and 
acceptance criteria.   

IV. APPLYING ILS ALGORITHM TO THE PROBLEM 
To obtain the number of minor setups within each cycle and 

the economic production quantity of the above mentioned 
model we are to minimize ATC, using iterated local search. In 
this regard, the steps of this algorithm are briefly presented 
bellow where the following notation is used: 

 
(m0, Q0)       Initial solution 
(m , Q )        Current solution 
(m'*, Q'*)      Local optimum solution 
(m*, Q*)        Best solution 
ATC (m, Q) Value of the objective function at solution (m, Q) 
ε                  Maximum avoidable deviation  
λ                  Perturbation step-length parameter 
k                   Repetition counter 
L                   Number of repetitions allowed  

 
Initialize the ILS control parameter ( λ ,ε ,L)  

select an initial solution  (m0, Q0) by setting 
⎥⎦
⎥
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end 
set m'* = m; 
set m* = m'*; 
set Q'* = Q; 
set Q* = Q'*; 
set k = 1; 
while k < L do: 
          generate a binary random number }1,0{∈z   
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          end 
          set m'* = m; 
          set Q'* = Q; 
          if ATC (m'*, Q'*) ≤ ATC (m*, Q*) 
                    set m* = m'*; 

                    set Q* = Q'*; 
          end 
          k = k +1; 
          reduce the Perturbation step-length parameter λ ;  
end 
 
The algorithm starts by initializing the so-called 

perturbation step-length parameter λ , the maximum 
acceptable deviation ε  and number of repetitions allowed L. 
also; algorithm sets the initial solution (m0, Q0).  It is logical 
that, minor setups are economic if the cost of a minor setup, a, 
be considerably less than the cost of a full setup, A. Else, it 
will be beneficial to restart the production system after 
elapsing each constrained period length, τ. At upper extreme 
case, if we suppose that annual unit holding cost, h, be almost 
zero, then maximum 

⎥⎦
⎥

⎢⎣
⎢

a
A  minor setup(s) can be economic. 

Also, at lower extreme case, the number of minor setups 
cannot be negative. Therefore, we have 
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Am  ,0* . In 

proposed model, the initial number of minor setups within 
each cycle, m0, is assumed to be rounded mean of the 
mentioned interval, namely, 

⎥⎦
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. Initial production 

quantity, Q0, is obtained with replacing m0 in Eq. (13). To 
generate neighborhood solutions we use mathematical base of 
Eq. (7) as bellow: If the first derivative of ATC with respect to 
m at solution (m, Q) is negative, a neighborhood solution is 
generated by increasing of m at current solution by an amount 
of 1, and if the first derivative of ATC with respect to m at 
solution (m, Q) is positive, a neighborhood solution is 
generated by decreasing of m at current solution by an amount 
of 1, and new Q is obtained with replacing new m in Eq. (13). 
Then the generated solution replaces the current one. In 
proposed model, the values of m must be integer, so we select 
neighborhood step-length equal to 1. This procedure continues 
until a local optimum solution (m'*,Q'*) is reached, namely, the 
first derivative of Eq. (7) with respect to m at solution (m, Q) 
almost equals to zero. This first local optimum solution sets as 
best solution (m*, Q*). In the inner cycle of ILS, repeated 
while k < L, a perturbed solution of the current local optimum 
solution (m'*, Q'*) is generated as follows: with generating a 
binary random number }1,0{∈z , we select a direction for 
perturbation (increase or decrease). Perturbed solution is 
obtained by adding to or subtracting from current local 
optimum number of minor setups m'*, a dynamic amount, 
depending on the perturbation direction and λ , where 

]1,0[∈λ  is the perturbation step-length parameter playing an 
important role in our algorithm. Perturbed Q is obtained with 
replacing perturbed m in Eq. (13). The generated solution 
replaces the current one. Local search procedure is applied to 
the newly chosen solution. We suppose that after the local 
optimum is reached, it is always acceptable. Hereby, the most 
important feature of this algorithm, as a metaheuristic, is the 
possibility of accepting a worst solution, which can allow it to 
prevent falling into local optimum trap.  
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The choice of an appropriate λ  is crucial for the 
performance of the algorithm. The value of parameter λ  
decreases during the search process, thus at the beginning of 
the search, diversification is high and as it gradually goes on 
its search path, intensification becomes intense. The terms 
diversification generally refers to the exploration of the search 
space, whereas the term intensification refers to the 
exploitation of the accumulated search experience. Hereby, 
with choice of an appropriate λ , a dynamic balance is given 
between diversification and intensification. 

V. NUMERICAL EXAMPLE AND DISCUSSION 
To illustrate the usefulness of the model developed in 

section 4 let us consider the inventory situation where a stock 
is replenished with Q units where production period length is 
constrained to 0.01 year. The parameters needed for analyzing 
the above inventory situation are given below: 

 
Demand rate, D = 12000 units/year, 
Production rate, P = 20000 units/year 
Holding cost, h = 30 $/unit/year 
Full setup cost, A = 500 $/cycle 
Minor setup cost, a = 100 $/minor setup 
Minor setup time, s = 0.005 year/minor setup 
Restricted production period length, t = 0.01 year 
Unit production cost, c = 25 $/unit  
 
Using the above mentioned ILS procedure gives Q*= 

2014.94, m*= 9 and ATC*=307979.33 whereas without 
permission for minor setups we have Q*= 1000 and 
ATC*=312000. It is clear that using 9 minor setups within 
each cycle leads to larger lot sizes with lower ATC. In general, 
this reality is obvious from expression (13) that if at least one 
minor setup within each cycle has justified, optimal lot size 
will be increased. Also, the expression (13) reveals that 
optimal lot size has inverse relation with Minor setup cost, 
Minor setup time and restricted production period length. 

VI. CONCLUSIONS 
In this paper, we reformulated the economic production 

quantity (EPQ) model with constrained production period 
length which a minor setup is allowed for pass the constraint. 
A minor setup does not involve performing all activities of a 
full setup and incurs only a fraction of a full setup cost and 
time. The problem described with a mathematical model, and 
then the Iterated Local Search (ILS) algorithm proposed to 
solve it. The results showed that using minor setups within 
each cycle leads to larger lot sizes. 
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