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Abstract—In this paper, we propose an efficient hierarchical DNA 

sequence search method to improve the search speed while the 
accuracy is being kept constant. For a given query DNA sequence, 
firstly, a fast local search method using histogram features is used as a 
filtering mechanism before scanning the sequences in the database.  
An overlapping processing is newly added to improve the robustness 
of the algorithm. A large number of DNA sequences with low 
similarity will be excluded for latter searching. The Smith-Waterman 
algorithm is then applied to each remainder sequences. Experimental 
results using GenBank sequence data show the proposed method 
combining histogram information and Smith-Waterman algorithm is 
more efficient for DNA sequence search. 
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I. INTRODUCTION 
POLLO project of life sciences [1], [2], that is, the 
decipherment of 3-billion-base human genome sequence 

was finally completed by the international cooperation in April 
2003. Since this achievement of human genome project, 
researchers around the world are now having a very keen 
competition on clarification of the structure and performance 
analysis of the protein, genes and protein networks, and new 
gene sequences are clarified every day. The enormous quantity 
of data has been accumulated in the database like GenBank [7], 
EMBL, and DDBJ, etc. Moreover, the volume of data of 
Genome Database still increases in exponential [8].  

Homology search of genome sequences (DNA, mRNA and 
protein) is the most important task in the life science area. 
There are 4 types of the DNA nucleotides, namely, A (adenine), 
C (cytosine), G (guanine) and T (thymine), which are utilized to 
encode DNA. If gene A and gene B have high homology, it is 
surmisable that the function of gene A is similar to that of gene 
B.   

Normally, when a new DNA or protein sequence is 
determined, it would be compared to all known sequences in 
the annotated databases such as GenBank, EMBL, and DDBJ, 
etc. Because the database is very large, a lot of algorithms are 
studied and used for the speeding-up of data search. Needleman 
and Wunsch presented the Needleman-Wunsch algorithm [3], 
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which calculates similarities between sequences by the 
dynamic programming, and Smith-Waterman algorithm is the 
improved approach [4].  

However, it takes much time to retrieve data with these 
algorithms because they require too many amounts of 
calculation. Blast [5], FASTA [6] and PatternHunter [9], [10] 
are three rapid heuristic algorithms are regularly used for 
searching protein and DNA sequence databases. The idea in 
these tools is to find subsequences that share some patterns 
called as filtration techniques. While BLAST and FASTA have 
improved the retrieving speed with heuristic algorithms, there 
is a possibility of missing an alignment or giving inaccurate 
output. Thus, many researches have been trying to improve 
both the search time and the precision. 

We have proposed an efficient method combining histogram 
features and Smith-Waterman dynamic programming 
algorithms [4] in order to improve both speed and precision 
[11]. Histogram features of sequences are firstly used to 
compare the query sequence with the sequences in database and 
similarity scores would be obtained. Only the sequences whose 
similarities exceeded a given threshold are then aligned using 
exhaustive Smith-Waterman dynamic programming algorithm. 
The effects have been demonstrated by using GenBank 
sequence data, which is the NIH genetic sequence database, a 
collection of all publicly available DNA sequences. For 
sequences which range of length variation is not very large, the 
experimental results show the proposed algorithm is very 
efficient, but the efficiency decreases with variation in 
sequence length. 

In this paper, we propose a local search method in order to 
improve both efficiency and speed even the sequence length 
changes largely. An overlapping processing is newly added to 
improve the robustness. The effects will be demonstrated by 
using GenBank sequence data. 

This paper is organized as follows. In section II, we will first 
introduce the proposed local search algorithm using histogram 
features for DNA sequences in detail. Experimental results 
using publicly available GenBank sequence data will be 
discussed in section III. Finally, conclusions are given in 
section IV. 
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II. PROPOSED METHOD 
When using classical Smith-Waterman algorithm [4] to align 

two sequences, searching and comparing a query sequence with 
the databases with large size of sequences is complicated and 
requires for more time and spaces complexity. Therefore, the 
need of mechanism to discard the unrelated or irrelevant 
sequences compared to a query is highly demanded. In this 

paper, we present a new search method for DNA sequence 
matching in a large size of DNA sequence databases. 
Histogram features of sequences are firstly used to compare the 
query sequence with the sequences in database and similarity 
scores would be obtained. Only the sequences whose 
similarities exceeded a given threshold are then aligned using 
exhaustive Smith-Waterman dynamic programming algorithm 
[4].   
     Figure 1 shows the processing steps of our proposed 
method. When an unknown query base sequence is input, it will 
be divided into short parts. As shown in figure 3, we newly 
utilize an overlapping method to divide the sequence into 
partial sequences. The overlapping step will be discussed in the 
experimental sectional. It is thought that more robust features 
can be extracted if order information of the base sequence is 
added. For each separate partial sequence, it will be divided 
into small sequence, for instance, ACT and CGG, etc. A small 
sequence can be considered as a three dimensional vector. This 
processing overlaps over all the sequence. After that, the 
histogram feature is calculated. There are only 4 types of DNA 
bases, so the number of combination of 3-dimensional vector is 
64. A reference table with the size of 64 is shown in Figure 2, 
by which the index number of the 3-dimensional vector is very 
easy and fast to be determined. The number of vectors with 
same index number in each separate partial sequence is counted 
and feature vector histogram is easily generated, and it is used 
as histogram feature of the separate partial sequence.  

As the input query base sequence is divided into n partial 
sequences, the histograms of n parts are generated. On the other 
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Fig. 1  Processing steps of proposed method 
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Fig.  2   Reference table 
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hand, the histogram features can also be extracted from the 
DNA sequence in the database using the same method 
respectively. In our previous method, the histogram generated 
from each partial sequence is then compared with the histogram 
from the same partial sequence in the database by calculating 
similarities between them. The shortcoming of this approach is, 
when the difference of sequence length between the input base 
sequence and that in the database is large, the error of the 
normalization of histogram can not be ignored.  

In this paper, we propose a local search approach to resolve 
this problem. As shown in figure 3, when the histograms of n 
parts of input query base sequence are generated, a search 
processing will be carried out to get a best matched part in the 
database for each partial sequence. The similarity between 
these histograms is used and the best match will be located. 
Next, the partial sequence is then extended from both sides of it 
until the corresponding similarity between the partial sequence 
belonging to input query base sequence and that in the database 
does not increase any more.  

The histogram generated from each extended partial 
sequence is then compared with the histograms from the 
corresponding matched partial sequence in the database by 
calculating similarity (si) between them (as shown in formula 
(2)). Then the integrated similarities (S) are obtained by 
averaging as shown in the following formula (1). 
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jfreq  are the frequencies of 3-dimensional 

vectors that belong to a separate partial sequence of an input 
query sequence and  that belong to the  same separate partial 
sequence of full length sequences in the database, respectively. 
N is number of vectors in the separate partial sequence.  

The integrated similarities (S) are then compared with a 
given threshold (T), only the sequences whose similarities 
exceeded the given threshold are then aligned using exhaustive 
Smith-Waterman dynamic programming algorithm [4]. 

III. EXPERIMENTS AND DISCUSSIONS 

A. Data sets 
GenBank is the NIH genetic sequence database, an 

annotated collection of all publicly available DNA sequences.  
There are approximately 106,533,156,756 bases in 
108,431,692 sequence records in the traditional GenBank 
divisions and 148,165,117,763 bases in 48,443,067 sequence 
records in the WGS division as of August 2009 [8]. 

We have downloaded plant sub-database of GenBank DNA 
database which contain approximately 1,432,314 sequences. 
From this sub-database, 853,825 DNA sequences with the 
sequence length within 400-2000 have been selected to be used 
in the experiments. The performance and reliability of the 
developed algorithm was evaluated. The query sequences have 
been chosen randomly from the 853,825 sequences. 

We performed all of the experiments on a conventional 
PC@3.2GHz (2G memory). The algorithm was implemented in 
ANSI C. 

B. Experimental results 
We select 50 results with highest scores among the whole 

results of the entire DNA sequences which given by the 
Smith-Waterman algorithm [4], and perform the same search 

CGAT ・・TCG A GTC ・・・GCAT ・・・AGTC ・・・TGC GTT
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CGAT ・・TCG A GTC ・・・GTA CGTT・・CTG A  GTC・・TGC 
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Fig. 3   Local search approach 
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by using histogram information algorithm, and calculating the 
recall and the precision. Recall indicates the proportion of 
results yielded from histogram information algorithm to the 
highest 50 scores, and precision indicates the proportion of 
correct scores included in the results from histogram 
information algorithm.  

Fig. 4 shows the experimental results with variations of 
overlapping steps, where the partial sequence length is 80. It can 
be seen the best performance is given at the step 40, where the 
search domain for the recall of 1.00 is about 0.269% of the 
whole range 853,825 with the sequence length within 400-2000. 
The comparison result of required search time for the 
experiment is shown in Table 1. The time spending of the same 
search with histogram information algorithm is about 37.4 
seconds, which is 0.518% of about 2 hours (7207.8 seconds) of 
exhaustive search by Smith-Waterman algorithm, and is about 
2.78 times faster than BLAST algorithm. We can obtain the 
same results in all cases.  

IV. CONCLUSIONS 
In this paper, we proposed an improved local search method 

that improves both the speed and the precision of search by 
combining histogram features and Smith-Waterman dynamic 
programming algorithms in the fast search of DNA sequences. 
Experimental results using GenBank sequence data show the 
proper overlapping step will give more robust resulting and the 
proposed method is more efficient compared with conventional 
algorithms for DNA sequence search. 
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TABLE 1  COMPARISON WITH CONVENTIONAL ALGORITHMS AND 
PROPOSED METHOD 
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Fig. 4  Experimental results with overlapping step variations 


