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Abstract—In this paper, based on almost periodic functional hull
theory and M-matrix theory, some sufficient conditions are estab-
lished for the existence and uniqueness of positive almost periodic
solution for a class of BAM neural networks with time-varying
delays. An example is given to illustrate the main results.
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I. INTRODUCTION

IN the past few years, BAM neural networks have been
extensively studied and applied in many different fields

such as signal processing, pattern recognition, solving opti-
mization problems and automatic control engineering. They
have been studied widely both in theory and applications.
In [1-4], some sufficient conditions have been obtained for
global stability of delayed BAM networks. Moreover, authors
in [5-7] investigated the periodic oscillatory solution of BAM
neural networks. But, as mentioned above, these researches
and applications mainly rely on the existence and stability
of equilibrium points or periodic solutions. However, upon
considering long-term dynamical behaviors, the periodic pa-
rameters often turn out to experience certain perturbations,
that is, parameters become periodic up to a small error. Thus,
almost periodic oscillatory behavior is considered to be more
accordant with reality.

Recently, existence of almost periodic solutions of BAM
neural networks have received much attention, one can see
[8-9] and the references cited therein. However, the results
obtained in these papers by using the same method - Banach
fixed point theorem. In this paper, we will study the existence
and global exponential stability of almost periodic solution
based on almost periodic functional hull theory and M-matrix
theory.

Motivated by the above, we consider the following BAM
neural networks:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = −ai(t)xi(t) +

m∑
j=1

pji(t)fj(yj(t − τji(t)))

+Ii(t), i = 1, 2, · · · , n,

y′
j(t) = −bj(t)yj(t) +

n∑
i=1

qij(t)gi(xi(t − ϑij(t)))

+Lj(t), j = 1, 2, · · · ,m,

(1)
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where xi(t) and yj(t) are the activations of the ith neuron and
the jth neuron, respectively. pji, qij are the connection weights
at time t, Ii(t) and Lj(t) denote the external inputs at time t.
gi, fj are the input-output functions (the activation functions).
Time delays τji(t), ϑij(t) correspond to finite speed of axonal
transmission, ai(t), bj(t) represent the rate with which the
ith neuron and jth neuron will reset their potential to the
resting state in isolation when they are disconnected from the
network and the external inputs at time t. m,n correspond to
the number of neurons in layers.

The system (1) is supplemented with initial values given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi(s) = φi(s), s ∈ [−ϑ, 0],
ϑ = max

1≤i≤n,1≤j≤m
sup
t∈R

{
ϑij(t)

}
, i = 1, 2, · · · , n,

yj(s) = ϕj(s), s ∈ [−τ, 0],
τ = max

1≤i≤n,1≤j≤m
sup
t∈R

{
τji(t)

}
, j = 1, 2, · · · ,m,

where φi(·) and ϕi(·) denote real-valued continuous functions
defined on [−τ, 0] and [−ϑ, 0]. Let ψ(s) = (φ1(s), · · · , φn(s),
ϕ1(s), · · · , ϕm(s))T .

Throughout this paper, we make the following assumptions:
(H1) ai(t)(i = 1, 2, · · · , n, t ∈ R) and bj(t)(j = 1, 2, · · · ,m,

t ∈ R) are positive, continuous and bounded functions.
(H2) pji(t), qij(t), Ii(t), Lj(t), 0 < ϑij(t) < ϑ, 0 < τji(t) <

τ are all positive continuous bounded almost periodic
functions on R, i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

(H3) fj , gi ∈ C(R, R) and fj , gi ≥ 0(i = 1, 2, · · · , n, j =
1, 2, · · · ,m) are Lipschitzian with Lipschitz constants
ηj , λi > 0, |fj(x)−fj(y)| ≤ ηj |x−y|, |gi(x)−gi(y)| ≤
λi|x − y|, ∀ x, y ∈ R.

For convenience, we denote ā = sup
t∈R

|a(t)|, a = inf
t∈R

|a(t)|.
The organization of this paper is as follows: In Section 2,

we introduce some notations and definitions and prove some
preliminary results needed in the later sections. In Section 3,
by using M-matrix theory, we shall derive sufficient conditions
to ensure that the solution of (1) is global exponentially stable.
In Section 4, by using almost periodic functional hull theory,
we show that the almost periodic system (1) has a unique
globally exponentially stable strictly positive almost periodic
solution. In Section 5, an examples is given to illustrate the
main result.

II. PRELIMINARIES

In this section, we shall first recall some basic definitions,
lemmas which are used in what follows.
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Definition 2.1 [10] Let x(t) ∈ C(R, R) be continuous in t.
x(t) is said to be almost periodic in the sense of Bohr on R,
if for any ε > 0, the set T (x, ε) = {τ : |x(t + τ) − x(t)| <
ε,∀t ∈ R} is relatively dense, i.e., for any ε > 0, it is possible
to find a real number l = l(ε) > 0, for any interval with length
l(ε), there exists a number τ = τ(ε) in this interval such that
|x(t + τ) − x(t)| < ε, ∀t ∈ R.

Definition 2.2 [10] Suppose that f(t) be an almost periodic
function, the function set H(f) = {g : there exist real
sequence α, such that Tαf = g uniformly on R} is called the
hull of f(t), where Tαf(t) = g(t) denotes lim

k→∞
f(t + αn) =

g(t), t ∈ R, and T is called shifting operator.
Definition 2.3 The almost periodic solution z∗ = (x∗

1, x
∗
2,

· · · , x∗
n, y∗

1 , y∗
2 , · · · , y∗

m)T of system (1) is said to be exponen-
tially stable, if there exist constants γ > 0 and λ > 0 such
that

‖z − z∗‖ ≤ γ‖ψ − z∗‖e−λt

for all t ≥ 0.
Lemma 2.1 [11] Let z(t) be a solution of the differential

inequality

D+z(t) ≤ Cz(t) + Dz̄(t), t ≥ 0,

where z̄(t) = (x̄1, x̄2, · · · , x̄n, ȳ1, ȳ2, · · · , ȳm)T , x̄i(t) =
sup

s∈[t−ϑ,t]

xi(s), ȳj(t) = sup
s∈[t−τ,t]

yj(s). If the conditions

(1) C = (cij)(n+m)×(n+m), cij ≥ 0(i �= j), D =
(dij)(n+m)×(n+m), dij ≥ 0(i �= j),

(2) −(C + D) is an M -matrix,
hold. Then there exists a constant λ > 0 and a constant vector
k ≥ z̄(0) such that z(t) ≤ ke−λt, t ≥ 0.

Lemma 2.2 Let y, f ∈ C(R, R) and p is a constant, then

y′(t) ≤ py(t) + f(t), ∀ t ∈ R

implies

y(t) ≤ y(t0)ep(t−t0) +
∫ t

t0

ep(t−s)f(s)ds, ∀ t ∈ R.

The lemma also holds, if ” ≤ ” replaced by ” ≥ ”.
Proof: We only prove the ” ≤ ” case, the ” ≥ ” case can

be proved similarly. By using the product rule to calculate

[y(t)e−p(t−t0)]′ = y′(t)e−p(t−t0) − py(t)e−p(t−t0)

= (y′(t) − py(t))e−p(t−t0),

then

y(t)e−p(t−t0) − y(t0) =
∫ t

t0

(y′(s) − py(s))e−p(s−t0)ds

≤
∫ t

t0

f(s)e−p(s−t0)ds,

that is

y(t) ≤ y(t0)ep(t−t0) +
∫ t

t0

ep(t−s)f(s)ds, ∀ t ∈ R.

The proof is completed.
Lemma 2.3 Assume that the assumptions (H1)-(H3) are

satisfied. Any solution z(t) = (x1(t), · · · , xn(t), y1(t), · · · ,
ym(t)) of system (1) is uniformly bounded on [0,∞).

Proof: From system (1), for any t ∈ [0,∞), we have

x′
i(t) ≤ −aixi(t) +

m∑
j=1

p̄jif̄j + Īi,

y′
j(t) ≤ −bjyj(t) +

n∑
i=1

q̄ij ḡi + L̄j , (2)

and

x′
i(t) ≥ −āixi(t) +

m∑
j=1

p
ji

f
j
+ Ii,

y′
j(t) ≥ −b̄jyj(t) +

n∑
i=1

q
ij

g
i
+ Lj . (3)

Then, from (2), by Lemma 2.2, for some t0 ≥ 0, we have

xi(t) ≤ xi(t0)e−ai(t−t0)

+
∫ t

t0

e−ai
(t, σ(s))

[ m∑
j=1

p̄jif̄j + Īi

]
ds

≤ xi(t0)e−ai(t−t0)

+
[
−

m∑
j=1

p̄jif̄j + Īi

ai

]
(e−ai(t−t0) − 1)

= e−ai(t−t0)

[
xi(t0) −

m∑
j=1

p̄jif̄j + Īi

ai

]

+

m∑
j=1

p̄jif̄j + Īi

ai

≤

m∑
j=1

p̄jif̄j + Īi

ai

, i = 1, 2, · · · , n.

Similarly, we can get

yj(t) ≤

n∑
i=1

q̄ij ḡi + L̄j

bj

, j = 1, 2, · · · ,m.

On another side, from (3), by Lemma 2.2, for some t0 ≥ 0,
then

xi(t) ≥ xi(t0)e−āi(t−t0)

+
∫ t

t0

e−āi
(t, σ(s))

[ m∑
j=1

p
ji

f
j
+ Ii

]
ds

≥ xi(t0)e−āi(t−t0)

+
[
−

m∑
j=1

p
ji

f
j
+ Ii

āi

]
(e−āi(t−t0) − 1)

= e−āi(t−t0)

[
xi(t0) −

m∑
j=1

p
ji

f
j
+ Ii

āi

]

+

m∑
j=1

p
ji

f
j
+ Ii

āi
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≥

m∑
j=1

p
ji

f
j
+ Ii

āi
, i = 1, 2, · · · , n.

Similarly, we can get

yj(t) ≥

n∑
i=1

q
ij

g
i
+ Lj

b̄j
, j = 1, 2, · · · ,m.

So, any solution z(t) = (x1(t), · · · , xn(t), y1(t), · · · , ym(t))
of system (1) is uniformly bounded on [0,∞). The proof is
completed.

III. GLOBAL EXPONENTIAL STABILITY

Suppose that z∗ = (x∗
1, x

∗
2, · · · , x∗

n, y∗
1 , y∗

2 , · · · , y∗
m)T =

(z∗1 , z∗2 , · · · , z∗n+m)T is a solution of system (1). In this section,
we will construct some suitable differential inequality to study
the global exponential stability of this solution. Hereafter, we
will use the following norm:

‖z‖ = max
1≤l≤n+m

sup
t∈R

|zl(t)|

= max
{

max
1≤i≤n

sup
t∈R

|xi(t)|, max
1≤j≤m

sup
t∈R

|yj(t)|
}

.

Theorem 3.1 Assume that (H1) − (H3) hold and if

Υ :=
[

A −PL
−QΛ B

]
(n+m)×(n+m)

is an M -matrix, where A = diag(a1, a2, · · · , an)n×n, B =
diag(b1, b2, · · · , bm)m×m, P = (p̄ji)m×n, Q = (q̄ij)n×m,
L = diag(η1, η2, · · · , ηm),Λ = diag(λ1, λ2, · · · , λn), then
system (1) is global exponential stability.

Proof: Suppose that z∗ = (x∗
1, x

∗
2, · · · , x∗

n, y∗
1 , y∗

2 , · · · , y∗
m

)T is a solution of system (1), and z = (x1, x2, · · · , xn, y1, y2,
· · · , ym)T is another arbitrary solution. Then, system (1) can
be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xi(t) − x∗

i (t)
)′ = −ai(t)xi(t) + ai(t)x∗

i (t)

+
m∑

j=1

pji(t)(fj(yj(t − τji(t)))

−fj(y∗
j (t − τji(t)))),(

yj(t) − y∗
j (t)

)′ = −bj(t)yj(t) + bj(t)y∗
j (t)

+
n∑

i=1

qij(t)(gi(xi(t − ϑij(t)))

−gi(x∗
i (t − ϑij(t)))).

(4)

The initial condition of (4) is ψ(s) = (φ1(s), · · · , φn(s),
ϕ1(s), · · · , ϕm(s))T .

Let V (t) = |z(t)−z∗(t)|, the upper right derivative D+V (t)
along the solutions of system (4) is as follows:

D+V (t) = sign(z(t) − z∗(t))(z(t) − z∗(t))′

≤
[ −A 0

0 −B

]
V (t) +

[
0 PL

QΛ 0

]
V̄ (t).

According to Lemma 2.1, then there exist constants μ >
0, γ > 1, such that

|zl(t) − z∗l | ≤ γ max
{

max
1≤i≤n

sup
−ϑ≤s≤0

|φi(s) − x∗
i |,

max
1≤j≤m

sup
−τ≤s≤0

|ϕj(s) − y∗
j |

}
e−μt,

where 1 ≤ l ≤ n + m. So

‖z − z∗‖ = γ‖ψ − z∗‖e−μt.

From Definition 2.3, the almost periodic solution z∗ =
(x∗

1, x
∗
2, · · · , x∗

n, y∗
1 , y∗

2 , · · · , y∗
m)T is global exponentially sta-

ble. The proof is completed.

IV. ALMOST PERIODIC SOLUTION

Suppose that h(t) is an almost periodic function defined on
R. Let H(h(t)) denote the hull of h(t).

Suppose that

a∗
i (t) ∈ H(ai(t)), b∗j (t) ∈ H(bj(t)), p∗ji(t) ∈ H(pji(t)),

q∗ij(t) ∈ H(qij(t)), τ∗
ji(t) ∈ H(τji(t)),

ϑ∗
ij(t) ∈ H(ϑij(t)), I∗i (t) ∈ H(Ii(t)), L∗

j (t) ∈ H(Lj(t))

are selected such that there is a time sequence {tk}:

ai(t + tk) → a∗
i (t), bj(t + tk) → b∗j (t),

pji(t + tk) → p∗ji(t), qij(t + tk) → q∗ij(t),
τji(t + tk) → τ∗

ji(t), ϑij(t + tk) → ϑ∗
ij(t),

Ii(t + tk) → I∗i (t), Lj(t + tk) → L∗
j (t)

as k → ∞ and tk → ∞ for all t ∈ R. Then we get a hull
equation of system (1) as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = −a∗

i (t)xi(t) +
m∑

j=1

p∗ji(t)fj(yj(t − τ∗
ji(t)))

+I∗i (t), i = 1, 2, · · · , n,

y′
j(t) = −b∗j (t)yj(t) +

n∑
i=1

q∗ij(t)gi(xi(t − ϑ∗
ij(t)))

+L∗
j (t), j = 1, 2, · · · ,m,

(5)

According to the almost periodic theory, we can conclude
that if system (1) satisfies (H1)− (H3), then the hull equation
(5) also satisfies (H1) − (H3).

For convenience, we write functional differential equation
(1) as the following almost periodic functional differential
equation

z′(t) = F (t, zt), (6)

where z = (x1, · · · , xn, y1, · · · , ym), F (t, zt) ∈ C(R × S, Ω)
is an almost periodic function, and Ω is compact subset of
R

n+m.
Lemma 4.1 If each of hull equation of system (6) has a

unique strictly positive solution, then almost periodic system
(1) has a unique strictly positive almost periodic solution.

Proof: Suppose ϕ(t) is a strictly positive solution of
system (6) for t on R. There exist sequences of real values α̂
and β̂ which have common subsequence α ⊂ α̂ and β ⊂ β̂
such that Tα+β = TαTβF (t, zt) for t on R and z ∈ R

n+m,
Tα+βϕ(t) and TαTβϕ(t) exist uniformly on compact set of R.
Then Tα+βϕ(t) and TαTβϕ(t) are solutions of the following
common hull equation of system (6)

z′(t) = Tα+βF (t, zt).

Therefore, we have Tα+βϕ(t) = TαTβϕ(t) then ϕ(t) is an
almost periodic solution of system (6). Since α ⊂ α̂ = {α̂}
and α̂ → ∞ as k → ∞, TαF (t, zt) = F (t, zt) is uniformly
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tenable with respect to t on R and z ∈ R
n+m. For the

sequences α̂ and α ⊂ α̂, we conclude that Tαϕ(t) = ψ(t) is
uniformly tenable with respect to t on R and ψ(t) ∈ R

n+m.
According to the uniqueness of solution and Tαψ(t) = ψ(t)
one obtains that ϕ(t) = ψ(t). The proof is completed.

Lemma 4.2 Suppose that conditions (H1) − (H3) are
satisfied, then there exists a bounded solution z∗(t), t ∈ R

of system (1).
Proof: Since ai(t), bj(t), pji(t), qij(t), τji(t), ϑij(t),

Ii(t), Lj(t) are nonnegative almost periodic functions, and
with same sequence {tk}, as k → ∞ and tk → ∞ for all t
on R, and

ai(t + tk) → ai(t), bj(t + tk) → bj(t),
pji(t + tk) → pji(t), qij(t + tk) → qij(t),
τji(t + tk) → τji(t), ϑij(t + tk) → ϑij(t),
Ii(t + tk) → Ii(t), Lj(t + tk) → Lj(t)

If z(t) = (x1(t), · · · , xn(t), y1(t), · · · , ym(t)) is a bounded
solution of system (1) for t ≥ 0 corresponding to the initial
condition ψ(t), then zk(t) = z(t + tk) for t ≥ tk satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = −ai(t + tk)xi(t)

+
m∑

j=1

pji(t + tk)fj(yj(t − τji(t + tk)))

+Ii(t + tk),
y′

j(t) = −bj(t + tk)yj(t)

+
n∑

i=1

qij(t + tk)gi(xi(t − ϑij(t + tk)))

+Lj(t + tk).

Since zk(t) is bounded uniformly on [tk,∞), k = 1, 2, · · ·,
which implies that z(t + tk) is also bounded uniformly on
[tk,∞), k = 1, 2, · · ·. Hence zk(t) is bounded uniformly and
equicontinuous. So, there exists a subsequence {t1k} of {tk}
with t1k > t2 such that z(t + t1k) → z1(t)(k → ∞) and
z1(t)(t ∈ [−t1,∞)) satisfies system (1). Similarly, proceeding
by induction we have subsequence {tnk} of {tn−1

k } such that
z(t + tnk ) → zn(t)(k → ∞) and zn(t)(t ∈ [−tk,∞)) satisfies
system (1). According to the diagonal procedure we have z(t+
tnk ) → z∗(t)(k → ∞) and zn(t)(t ∈ [−tk,∞)) converges
uniformly on any compact set of R, and z∗ satisfies system
(1).

Theorem 4.1 If almost periodic system (1) satisfies (H1)−
(H3), then almost periodic system (1) has a unique strictly
positive almost periodic solution which is global exponentially
stable.

Proof: By Lemma 4.1, we only need to prove that each
of hull equation of almost periodic system (1) has a unique
strictly positive solution, hence we need firstly prove that each
of hull equation of almost periodic system (1) has at least a
strictly positive solution (the existence), then we further prove
that each of hull equation of system (1) has a unique strictly
positive solution (the uniqueness).

Now we prove the existence of strictly positive solution of
any hull equation (5). According to the almost periodic hull

basic theory, there exists a time sequence {tk}:

ai(t + tk) → a∗
i (t), bj(t + tk) → b∗j (t),

pji(t + tk) → p∗ji(t), qij(t + tk) → q∗ij(t),
τji(t + tk) → τ∗

ji(t), ϑij(t + tk) → ϑ∗
ij(t),

Ii(t + tk) → I∗i (t), Lj(t + tk) → L∗
j (t)

as k → ∞ and tk → ∞ for all t on R. Suppose z(t) =
(x1(t), · · · , xn(t), y1(t), · · · , ym(t)) is any positive solution of
hull equation (5). By the proof of Lemma 2.3, we have

0 < inf
t∈[0,∞)

xi(t) ≤ sup
t∈[0,∞)

xi(t) < ∞, (7)

0 < inf
t∈[0,∞)

yj(t) ≤ sup
t∈[0,∞)

yj(t) < ∞. (8)

Let zk(t) = z(t + tk) for all t ≥ −tk, k = 1, 2, . . . such
that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = −ai(t + tk)xi(t)

+
m∑

j=1

pji(t + tk)fj(yj(t − τji(t + tk)))

+Ii(t + tk),
y′

j(t) = −bj(t + tk)yj(t)

+
n∑

i=1

qij(t + tk)gi(xi(t − ϑij(t + tk)))

+Lj(t + tk).

(9)

From inequality (7), (8) and assumptions (H1)−(H3), there
exists a positive constant vector K which is independent of
n such that z′k(t) ≤ K for all t ≥ −tk, k = 1, 2, . . ..
Therefore, for any positive integer r, sequence {zk(t) : k ≥ r}
is uniformly bounded and equicontinuous on [−tk,∞). Ac-
cording to Ascoli-Arzela Theorem, one concludes that there
exists a time subsequence {tk} of {tk} such that sequence
{zk(t)} not only converges on t on R, but also converges
uniformly on any compact set of R as k → ∞. Suppose
lim

k→∞
zk(t) = z∗(t) = (x∗

1(t), · · · , x∗
n(t), y∗

1(t), · · · , y∗
m(t)),

then z∗(t) is continuous on R, and by Lemma 4.2, we have

0 < inf
t∈(−∞,∞)

x∗
i (t) ≤ sup

t∈(−∞,∞)

x∗
i (t) < ∞,

0 < inf
t∈(−∞,∞)

y∗
j (t) ≤ sup

t∈(−∞,∞)

y∗
j (t) < ∞.

From differential equation (9) and assumptions (H1)−(H3),
we can easily see that z∗(t) is a solution of hull equation (5),
hence each of hull equation of almost periodic system (1) has
at least a strictly positive solution.

In the following section, we will prove the uniqueness of
strictly positive solution for any hull equation (5). Suppose
that the hull equation (5) has two arbitrary strictly positive
solutions z∗1(t) = (x∗

1(t), · · · , x∗
n(t), y∗

1(t), · · · , y∗
m(t)) and

z∗2(t) = (x̂∗
1(t), · · · , x̂∗

n(t), ŷ∗
1(t), · · · , ŷ∗

m(t)). Now by using
the method in section 3, then we can get

0 ≤ ‖z∗1 − z∗2‖ ≤ η‖ψ − z∗‖e−μt → 0, as t → ∞.

so, it is proved that any hull equation of system (1) has a
unique strictly positive solution.

Summarizing the inference above, we know that any hull
equation of system (1) has a unique strictly positive solution.
By Lemma 4.1 and Theorem 3.1, almost periodic system (1)
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has a unique strictly positive almost periodic solution which
is global exponentially stable. The proof is completed.

V. AN EXAMPLE

Consider the following BAM neural networks with time-
varying delays⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = −ai(t)xi(t) +

m∑
j=1

pji(t)fj(yj(t − τji(t)))

+Ii(t), i = 1, 2, · · · ,m,

y′
j(t) = −bj(t)yj(t) +

n∑
i=1

qij(t)gi(xi(t − ϑij(t)))

+Lj(t), j = 1, 2, · · · , n,

(10)

where Ii(t) = sin t+1, Lj(t) = cos t+1, gi(xi(t−ϑij(t))) =
1
2 sin(xi − τ(t)) + 1, fj(yj(t− τji(t))) = cos(yj − τ(t)) + 1,
t ∈ R, λi = 1

2 , ηj = 1, i = j = 1, 2. τ(t) = 3| cos t|+1, and

a1(t) = b2(t) = 3 − sin t, a2(t) = b1(t) = 3 − cos t,

then

a1 = a2 = b1 = b2 = 2, ā1 = ā2 = b̄1 = b̄2 = 4.

Let

p11(t) = 0.05 sin t + 1, p12(t) = 0.1 cos t + 1,

p21(t) = 0.15 cos t + 1, p22(t) = 0.05 sin t + 1.

q11(t) = 0.25 sin t + 1, q12(t) = 0.05 cos t + 1,

q21(t) = 0.05 cos t + 1, q22(t) = 0.5 sin t + 1.

Then

Υ =

⎡
⎢⎢⎣

2 0 −1.05 −1.1
0 2 −1.15 −1.05

−0.625 −0.525 2 0
−0.525 −0.75 0 2

⎤
⎥⎥⎦ .

It is easy to see that (H1) − (H3) hold and Υ is an M -
matrix. According to Theorems 3.1 and 4.1, system (10) has
exactly one positive almost periodic solution, which is globally
exponentially stable.
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