
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2127

Abstract—This paper aims at improving web server performance

by establishing a middleware layer between web and database

servers, which minimizes the overload on the database server. A

middleware system has been developed as a service mainly to

improve the performance. This system manages connection accesses

in a way that would result in reducing the overload on the database

server. In addition to the connection management, this system acts as

an object-oriented model for best utilization of operating system

resources. A web developer can use this Service Broker to improve

web server performance.

Keywords—Database server, Improve performance, Middleware,

Web server.

I. INTRODUCTION

URRENT web servers use various Application

Programming Interfaces (API) sets to access backend

services. As a result, they do not support overload control,

service differentiation, and caching of contents generated by

backend servers [1].

Additionally, as a request rate increases beyond the server

capacity, the server response-time and connection error rate

will increase, and therefore, web servers today tend to offer

poor performance under overload [2] [4] [10].

A typical web server environment generally consists of two

parts: front-end web server and backend servers. Backend

servers are used for dynamic pages, not for static ones [11].

A static page contains embedded objects and has no access

to a database server. As a result, all clients receive the same

page with the same content.

Current dynamic web applications are formulated as a

Common Gateway Interface (CGI) that runs in a separate

process. Alternatively, they can be formed as scripting

language codes, like JSP and PHP that usually runs in web

server processes. These dynamic applications access backend

servers through specific APIs such as sockets, Open DataBase

Connectivity (ODBC) or modules like Common (Component)

Object Model (COM). These APIs reside in the application

process' space and share no information with other processes

[1].

Huamin and Prasant paper [1] provides suggestions

regarding the capability of using one connection for each

dynamic application in order to access backend servers such

as database, mail and file system. This system becomes

overloaded because it uses one connection for each dynamic

application, and hence, there is no connections' management.

In addition the response time is decreased at the expense of

data credibility, and request will be dropped when the number

of requests exceeded a specific threshold.

.NET framework develops a connection management and a

connection pooling. This framework showed that by utilizing

a specified set of connections and pooling them between

multiple sessions or clients, developers will be able to increase

the scalability and extensibility of their applications [15].

.NET framework uses the pool technique for connection

management, but Service Broker uses the pool technique for

request management (thread management). The number of

connections is limited for each application and increased

according to the load with reusability, so while one

application is running, all of its limited number of

connections, are going to be running too.

II. THE PROBLEM'S DEFINITION

The major problems can be addressed are managing

accesses to the database backend server. Some strategies and

organizations are implemented for a web server in a way that

would lead to improving the performance.

The Application Programming Interfaces currently used in

web applications, reside in the application process' space and

share no information with other processes. Hence, the

drawbacks of this paradigm are [1]:

Backend servers become overloaded due to the entire

request handling process.

Access is isolated and not globally optimized.

The overhead induced by contexts switching.

Therefore, for each dynamic request from clients, the web

server does the following:

Receives the request from the client.

Establishes a separate connection to the database server

that shares nothing with other connections.

Sends queries to the database server and receives a

response.

Closes the connection and returns the result back to the

client.

Nevertheless, connections reside in the web server even if it

closed, until the garbage collector deletes them from the

memory.

Mohammad H. Abu-Arqoub, Ihab S. Serhed, Waheeb A. Abu-Dawwas, and Rashid M. Al-Azzeh

A Middleware System between WEB and

Database Servers

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2128

In our solution, for each request to the database, the web

server will:

Receives the request from the client.

Forwards this request to our Service Broker system, and

then the Server Broker will assign it to one of the running

threads that follow a parent class to let all running threads

be shared for a specific application.

III. TYPICAL WEB SERVER PARADIGM

Web server environment typically consists of two parts:

front-end and backend. Fig. 1 shows these two parts. In front-

end, there is a set of dynamic applications that usually run at

known ports. These dynamic applications are used as

connectors between clients and backend servers. Front-end

waits for requests from clients at specific ports. Once a

request arrives, it uses a set of APIs to access backend servers

such as database or mail server.

Fig. 1 Typical web server paradigm

The structure in Fig. 2 illustrates the stages of the request

process in a typical web server; as shown in this Figure,

requests arrive at the front-end web server. Once the request

arrives, it will be redirected to the appropriate dynamic

application that assigns a thread to handle it.

A Thread is specialized in checking the validity of the

requests, besides it uses a database API to access the database

server. However, if the request is for a mail server then the

thread in dynamic application will use the mail API instead.

The overload on the database server is obviously clear.

Moreover, each connection to the database server is

completely separated from other connections; the worst case is

to have each request, requiring information from the database

server, being created another connection. This means that for

each request, there is a connection establishment. After

serving the request, the connection will be released. In

addition, it resides in a system memory for a long time

because the operating system does not monitor each

connection release. The operating system gathers a collection

of released connections and frees them when the system lacks

memory.

Fig. 2 Stages of request process in typical web server

IV. WEB SERVER PARADIGM USING SERVICE BROKER

SYSTEM

Service Broker uses a limited number of open connections

to the database server, to be used without repeatedly

establishing connections, and without shutting down. Fig. 3

illustrates the architecture of a web server using Service

Broker. In this Figure, the request arrives to HTTP front-end

server. After that, the request is examined and forwarded to

the appropriate dynamic application. The dynamic application,

in turn, would forward this request to the Service Broker

system. Instead of using the current set of APIs, the Service

Broker system receives the request on a specific port by the

Service Broker listener and makes thread to this request. This

thread passes through many stages from authentication to

analyzing, and finally to the active application that follows the

Service Broker connector.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2129

Fig. 3 System Architecture using Service Broker

V. THE PROPOSED SERVICE BROKER SYSTEM

Today's users still expect real-time software that can

process data at very high speed. Users have grown by the time

and expect to receive responds in seconds regardless of how

much data is requested and how much data is handled by the

server [4]. The simplest way to improve a website's

performance is by scaling up the hardware. However, scaling

the hardware does not work in all cases, and costs money as

well. Our Service Broker system improves the performance

without extra costs for the hardware by providing some

recommendations that were shown to be helpful in improving

the performance.

Service Broker system is used as a middleware or as an

intermediate process between a front-end web server and a

backend server instead of API that have to access a database

server. It receives messages from a front-end web server, and

then it sorts and rewrites these messages and produces a

query. After receiving replies from the backend server,

Service Broker sends the results to the front-end and makes a

local copy to serve similar requests if possible. Instead of

making a separate connection for each request, a limited

number of connections will be used that can be established in

advance to reduce the overhead.

The Service Broker system is implemented as a real time

program using Java and results in a Service Broker package as

an open source that can be uses and modifies.

Fig. 4 illustrates the Service Broker architecture as an

object oriented model. The system consists of the following

components:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2130

Fig. 4: Service Broker Architecture

A. Database Connection Management

Each web application has one object from the

ServiceBrokerDBConnector class that contains one object

from the ServiceBrokerOpenedConns class.

ServiceBrokerOpenedConns contains five connections to

the database, so for each application system, there are only

five connections to the database that are always open. These

connections are used whenever one of the

ServiceBrokerActive applications needs to access the

database.

These five connections are used to insert, update, delete,

select, etc. The following list describes each connection's task:

The first connection is used for a workspace

operation:

This connection is used for inserting, updating and

deleting instructions. There is no real commit at this

connection because it is used as a testing connection.

The commit is only applied to the workspace, which is

an image from the early database. This connection's

job is to prevent the contradiction between the several

requests.

The second connection is used for query instruction:

This connection is only used with SELECT

statements; there is no need to commit in this

connection, and this is why it can be easily shared by

all requests.

Three more connections are used in the commit

operations:

These three connections are used because every commit

instruction holds many SQL statements that need to be

executed at a live database. These SQL statements were

previously tested in the workspace connection not at a live

database. Once this connection sends a commit packet,

Service Broker occupies one of these three connections. Each

one of these connections has a synchronized access, which

implies that only one thread can access this connection at

once. A synchronized access has been used because the

transaction is atomic, so each bundle of transactions which

follow a commit for a specific web server's connection must

be committed as one unit; if not possible, and then none of

them would be committed.

Fig. 5 illustrates a database connection management for two

applications. In this Figure, there are five connections for each

application. Each five connections are completely separated

from other applications. Each workspace connection from

each application has access to the same workspace database,

which indicates that the use of workspace prevents

contradiction between all applications.

In addition there are pools where each pool contains a set of

threads. Fig. 7 illustrates both pools and pool collector to

satisfy the factor of reusability of resources.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2131

Fig. 5 Connection Management for two running applications

Fig. 6 Pools and Pool Collector

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2132

B. Query Optimization

One of the active applications may sometimes try to

perform the Select statement while the same Select statement

is in progress. In this case, if the system performs the same

query, then the system will slow down because of redundant

execution.

Therefore, if one of the active applications wishes to

perform a Select statement, it uses the parent reference to

ServiceBrokerDBConnector to check whether this instruction

exists in the object-cache framework. If this instruction does

not exist in cache, the system checks if one of the current

executing queries has the same demand. If another active

application has sent the same query and is waiting for the

result, then the query goes to the waiting state and waits for a

wakeup. After the Select connection returns the result to the

active application's object, it checks if there is any request

which is waiting to get the same result. If it finds one, then it

calls a Notify function to wake all the waiting threads up.

Finally, all waiting threads wake up and get the result from the

cache.

Note that the searching process did not consume a lot of

time to find whether the same query has been executed twice

by two requests simultaneously. So if neither a valid nor a

binding query were found in cache, then the time for

searching is considered to be wasted. Hence, by using this

paradigm, an optimized query can be produced.

VI. RESULTS AND EXPERIMENTS

This section illustrates the results obtained from real-system

implementation. First, the proposed system has been applied

to Apache web server, and then experiments were made using

two phases. The first of which is when the web server does

not use a database Service Broker, and the second is when the

web server uses a database Service Broker.

A. Experiment's Description

The experiment is supposed to retrieve nearly 64,000

distinct records, by using one of the powerful web servers.

These records are retrieved from a schema that holds various

tables, which represent the department of an employee issue

for the Balqa Applied University. All records in this schema

will be retrieved from web server; firstly without using

Service Broker and secondly by using Service Broker.

Load balancing and clustering techniques were not applied;

[5] [6] [8]. In both phases, the 64,000 distinct records

retrieved from 24 queries. Table I illustrates each query with

its size.

B. Experiment's Environment

Web Server: Jakarta [3] (one of Apache projects).

This web server applied in Oracle project called

(Oracle 9i JDeveloper v.9.0.3.2).

Database Server: Oracle 9i database [14].

Operating System :

o Microsoft Windows XP Professional /

Version 2002 / Service Pack 2

o Intel (R) Pentium (R) M / Processor 1.60

GHz, 1.60 GHz

o 736 MB of RAM

o Full cache

C. Experiment's Goal

The experiment's goal is mainly to find out whether the

Service Broker improves the web server performance or not.

In the first phase, the 64,000 records have been retrieved

without using the Service Broker. This phase has been

performed 10 times with the same conditions and calculated

the average total time. In the second phase, the 64,000 records

have been retrieved using the Service Broker. This phase has

been performed 10 times with the same conditions, and

calculated the average total time. While performing any of the

two phases, a set of data manipulation languages has been

applied to assure data consistency and concurrency control.

D. Experiment Results without Using Service Broker

System

Using BC4J in JDeveloper 9.0.3.2 instead of using the

Service Broker system. The average total time needed to

retrieve nearly 64,000 distinct records from oracle 9i database

is 7 minutes and 15 seconds. The Table II shows the result of

an experiment without using Service Broker.

E. Experiment's Result Using Service Broker System

The same previous experiment was performed within the

same conditions but using the Service Broker system between

front and backend servers this time. The average total time

needed to retrieve nearly 64,000 distinct records from oracle9i

database using the Database Service Broker was 28 seconds.

The Table III shows the results of an experiment using Service

Broker.

VII. CONCLUSION AND FUTURE WORK

A possible way to improve the performance of a web server

is by using a database Service Broker for decreasing the

overload on the database backend server was developed. This

Service Broker system can be used as a middleware between a

front-end web server and a backend server in dynamic pages

instead of using APIs to access a database server.

This paper presents a foundation for a middleware that uses

a limited number of open connections to a database server. It

receives messages from a front-end web server, then it sorts

and rewrites these messages and produces a query. After

receiving replies from the backend server, the Service Broker

sends the results to the front-end and makes a local copy to

serve similar requests if possible. Moreover, an object-

oriented module for thread management and connection

management techniques, that improved the performance of the

application by managing memory allocation, thread control,

and connection optimization, was designed.

Service Broker defines a strategy for sharing among

connections. It also minimizes the context switching, general

judgment, a small start up – shut down connection operations

and memory management.

An important direction for future work is to apply Multi

Query Optimization on the system in order to relief the

database server from some of the database management

overhead. This requires employing the metadata perspective

and query parsing, but consumes a higher processing time.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2133

TABLE I

THE 24 QUERIES THAT HOLD THE 64.000 DISTINCT RECORDS

Query
Number of records in

each query
Query

Number of records in

each query

1 175 13 3

2 2276 14 26

3 16 15 21

4 33 16 175

5 62 17 64

6 2 18 39

7 7 19 86

8 19 20 2

9 8 21 0

10 2 22 0

11 22 23 60907

12 3 24 254

TABLE II

EXAMPLE OF AN EXPERIMENT RESULTS WITHOUT USING SERVICE BROKER

Query
Time consumed for

each query /ms

Total time

counter /ms
Query

Time consumed for

each query /ms

Total time

counter /ms

1 210 9373 13 30 20469

2 10886 20269 14 0 20469

3 10 20279 15 30 20499

4 10 20289 16 10 20509

5 10 20299 17 10 20519

6 10 20309 18 60 20579

7 10 20319 19 81 20660

8 10 20329 20 20 20680

9 10 20339 21 20 20700

10 10 20349 22 10 20710

11 10 20359 23 416498 437208

12 10 20439 24 31 437239

TABLE III

EXAMPLE OF AN EXPERIMENT RESULTS USING SERVICE BROKER

Query
Time consumed for

each query /ms

 Total time

counter /ms
Query

Time consumed for

each query /ms

Total time

counter /ms

1 241 962 13 220 2644

2 1001 1963 14 10 2654

3 0 1963 15 10 2664

4 10 1973 16 130 2794

5 180 2153 17 10 2804

6 9 2164 18 30 2834

7 10 2174 19 141 2975

8 230 2404 20 10 2985

9 10 2414 21 0 2985

10 0 2414 22 0 2985

11 10 2424 23 24936 27921

12 0 2424 24 10 27931

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2134

REFERENCES

[1] Huamin Chen,Prasant Mohapatra, "Using Service Brokers for

Accessing Backend Servers for Web Applications",IEEE,the National

Science Foundation through the grants CCR-0296070 and ANI-

0296034, 2003.

[2] T. Abdelzaher, N. Bhatti, "Web Content Adaption to Improve Server

Overload Behavior", in international World Wide Web conference, May

1999.

[3] Apache HTTP Server Project, http://www.apache.org, Mar 2005.

[4] D.M. Dias, W. Kish, R. Mukherjee, R. Tewari, "A scalable and highly

available Web server", IEEE Computer Society Int. Conf. Feb. 1996.

[5] X. Zhang, M. Barrientos, J. Chen, and M. Seltzer, “HACC: An

Architecture for Cluster-Based Web Servers”, in Proceedings of the

Third USENIX Windows NT Symposium. July 1999.

[6] V. Cardellini, M. Colajanni, and P. S. Yu, “Load Balancing on Web-

server Systems”, IEEE Internet Computing, May/June 1999.

[7] R. S. Engelshall, "Balancing your web site. Practical approaches for

distributing http traffic", WEB-Techniques, May 1998.

[8] A. lyengar, E. MacNair, T. Nguyen, "An analysis of web server

performance", in GLOBECOM, Nov 1997.

[9] D. Mosberger and T. Jin, "httpref: A tool for measuring web server

performance", in WISP, ACM, June 1998.

[10] M. Crovella, A. Bestavros, "Self-similarity in World Wide Web traffic:

Evidence and possible causes", IEEE/ACM Trans. On Networking, Dec.

1997.

[11] M.F Arlitt, C.L Williamson, "Web server workload characterization: The

search for invariants", IEEE/ACM Trans. On Networking, OCTOBER

1997.

[12] K. F. Eustice, T. J. Lehman, A. Morales, M. C. Munson, S. Edlund, and

M. Guillen, “A Universal Information Appliance” IBM Systems Journal

38, No. 4, 575–601 (1999).

[13] F. Kitayama, S. Hirose, and K. Kuse, “Dharma: A Framework for

Development of WebApplications for Pervasive Terminals—Systems

Overview and Application Objects” IPSJ 57th Annual Convention, in

Japanese (1998).

[14] http://www.oracle.com, Mar, 2005.

[15] http://msdn.microsoft.com, Mar, 2005.

