
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3214

Abstract—In this paper test generation methods and appropriate

fault models for testing and analysis of embedded systems described
as (extended) finite state machines ((E)FSMs) are presented.
Compared to simple FSMs, EFSMs specify not only the control flow
but also the data flow. Thus, we define a two-level fault model to
cover both aspects. The goal of this paper is to reuse well-known
FSM-based test generation methods for automation of embedded
system testing. These methods have been widely used in testing and
validation of protocols and communicating systems. In particular,
(E)FSMs-based specification and testing is more advantageous
because (E)FSMs support the formal semantic of already
standardised formal description techniques (FDTs) despite of their
popularity in the design of hardware and software systems.

Keywords—Formal methods, testing and validation, finite state
machines, formal description techniques.

I. INTRODUCTION
N embedded computer system represents a part of a large
system performing some of the requirements of that

system, for example, a computer system used in a car or in an
aircraft. Embedded systems cover a large number of computer
systems ranging from small devices to large complex systems
for monitoring and controlling. Nowadays, the most number
of computer systems belong to embedded systems. They are
mainly characterised by real-time and dependability
properties. Dependability consists of several attributes such
reliability, availability, integrity, safety, confidentiality and
maintainability [11].

The development of competitive and efficient products
implies more and more constraints to the design of embedded
systems. Non-formal or semi-formal design procedures have
demonstrated their limits to efficiently and industrially support
the whole design process and thus to provide competitive
products. On the other side, formal methods have been
successfully used in other areas for both, software and
hardware design and testing [9]. They are usually
characterised by qualities like abstraction, understandability,
analysis, scalability and non-ambiguity.

In particular, formal description techniques (FDTs) [1] [2]
and their semantic model are still to get more consideration at
a high level of abstraction in the development life-cycle of
embedded systems. In fact, formal description techniques have
demonstrated their efficiency in the of analysis of complex
systems like protocols and communicating systems [9][10].
They are based on ‘extended’ finite state machines (‘E’FSMs)
and differ from conventional programming languages by
providing not only a formal syntax but also a formal semantic.

Moreover, the formal specification and testing increase the
confidence in the deduced embedded system implementation.
Especially in the area of safety-critical systems, for example,
steer-by-wire or brake-by-wire in cars [8], the use of formal
techniques is highly recommended [3].

In this paper, we present a testing approach and potential
test generation methods that could be reused for embedded
systems modelled as ‘extended’ finite state machines. The
respective fault models which describe the appropriate error
classes each method is able to detect are given.

The rest of the paper is organized as follows. In Section 2
we review the conventional finite state machines and the
extended finite state machines and explain the difference
between them. After that, the principle of a communication
model for embedded systems using EFSMs and FDTs,
respectively, is outlined. Section 3 presents the testing
approach. First, the properties of an embedded system to be
tested are identified. This is followed by the presentation of
the test generation methods to be reused and the corresponding
fault models. We give also a short comparison with other
specification models commonly used in embedded systems.
Finally, Section 4 concludes the paper.

II. SPECIFICATION MODELS FOR EMBEDDED SYSTEMS
In this section we first review the definition of FSMs and

EFSMs on which the specification and testing approaches are
based. Further, we give the basic structure of a communication
model for embedded systems and then we demonstrate how
this principally can be specified in (E)FSMs as intermediate
model and in FDTs, respectively. We take Estelle as example
of FDTs.

A. Preliminaries
FSMs are usually used to specify the control flow of a

system, however, they are less appropriate for modelling the
data flow. To overcome this inconvenient, FSMs are extended
by using additional state variables and interaction parameters.
Such variables are used in programming languages specifying
conditions on transitions and calculations carried out during
transitions.

Definition: An extended finite state machine (EFSM) is
defined as a 7-tuple <S, C, I, O, T, s0, c0> where S is a non-
empty set of main states, C=dom(v1) x … x dom(vn) a non
empty countable set of contexts with vi∈V, V the non-empty
finite set of variables and dom(vi) a non-empty countable set
referred to as the domain of vi, I a non-empty finite set of
inputs, O a non-empty set of outputs, T⊆ S x C x I x O x S x C

Adaptation of State/Transition-Based Methods
for Embedded System Testing

Abdelaziz Guerrouat, and Harald Richter

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3215

the set of transition relations, s0∈S the initial main state, and
c0∈C the initial context of the EFSM.

A main state may consist of sub-states. A context is a
specific assignment of values to the variables. A transition t∈T
of an EFSM is a 6-tuple <s, c, i, o, s’, c’> where s∈S is a
current main state, c∈C a current context, i∈I an input, o∈O
an output, s’∈S a next main state, and c’∈C a next context.

Compared to FSMs, EFSMs provide a more generalized
specification mean. Taking EFSMs as an intermediate
specification model is more advantageous for using formal
description techniques like Estelle or SDL [1] [2]. Indeed,
EFSMs represent the formal semantic of these FDTs and thus
the mapping of EFSMs on FDTs can easily take place
regarding the behaviour part.

Estelle is a standardised formal description technique
(International Standard ISO 9074) based on concepts of
structured communicating extended state automata and Pascal.
It is oriented towards the specification of complex distributed
systems, in particular communicating systems. A specified
system is presented as a tree of tasks where each task has a
fixed number of input/output access points (interaction
points). Within a specified system it exists a fixed structure of
subsystems (sub-trees of tasks) and communication links
between subsystems.

SDL (Specification and Description Language) is an object-
oriented, formal language defined by The International
Telecommunications Union Telecommunications
Standardization Sector (ITU) (formerly Comité Consultatif
International Télégraphique et Téléphonique [CCITT]) as
recommendation Z.100. The language is intended for the
specification of complex event-driven real-time, and
interactive applications involving many concurrent activities
that communicate using discrete signals.

B. Communication
An embedded system is typically required to meet specific

requirements. In an embedded mechatronic system, a
microcontroller or computer system performs a dedicated
function for an appliance or a gadget such as a car’s brake or a
steering wheel [8].

The basic structure of an embedded system consists of an
external process, sensors, actuators, and a controller:

The external process is a process that can be of physical,
mechanical, or electrical nature. Sensors provide information
about the current state of the external process by means of so-
called monitoring events. They are communicated to the
controller. For the controller, they represent input events.
They are considered as stimuli for the controller. The
controller must react to each received event, i.e. input event.
Events originate usually from sensors. Depending on the
received events from sensors, corresponding states of the
external process will be determined. Actuators receive the
results determined by the controller which are communicated
to the external process by means of so-called controlling
events.

The external process is usually given in advance. In
contrast, the controller is often implemented by real-time

hardware and software. This should allow each modification
of the controller algorithm in a straightforward way each time
this is needed. The controller’s behaviour is depending on that
of the external process. The controller commands the
behaviour of the external process taking into consideration
requirements on the process and its characteristics, such as
physical laws, real time and other constraints.

C. Specification
From the point of view of communication an embedded

system specification consists of the specification of its
environment and its controller. We assume that the embedded
system is state-transition based because the automata model is
efficiently more appropriate. Thus, its behaviour description
will be based on the EFSM model. This consists of a set of
modules where each module describing a given function is
modelled as one or many EFSMs. These modules are attached
to each other by means of channels and interact with each
other via broadcasting events. However, a sequence and an
hierarchy have to be respected in this communication. For
instance, the direct communication of a module of an actuator
with a sensor is not allowed.

The most important component of an embedded system
consists of the controller which communicates with its
environment, i.e. sensors and actors, via signals (i.e. events).
To be recognized by all components, these events have to be
declared as global variables for adjacent EFSMs. The events
output from sensors represents input events for the controller.
The events from the controller to the actuators are output
events and represent input events for the actuators. They result
from new computations performed by the controller that is
triggered by the received input events.

Depending on the nature of sensor events (e.g. indicating
the power on/off state for an electrical unit, the speed of a
mobile object such as a car, etc.) the corresponding EFSM of
this component is triggered and the concerning transition(s)
are performed. This triggers the EFSMs of the controller
whose states change. Depending on the received events,
transitions in the EFSMs are executed. Note, that transitions in
the controller can spontaneously be triggered by other events,
e.g. time out. The modelled subsequent state of the external
process is computed and communicated as output events via
the actuators.

To provide an intermediate specification model which better
fits the behaviour part of the considered FDT, i.e. Estelle, we
introduce a new EFSM, called p-EFSM (p stands for
‘predicated’). This is defined as follows:

Definition: A predicated extended finite state machine (p-
EFSM) is an 8-tuple <S, C, I, P, O, T, s0, c0> where S is a non-
empty set of main states, C=dom(v1) x … x dom(vn) a non-
empty countable set of contexts with vi∈V, V a non-empty
finite set of variables, and dom(vi) a non-empty countable set
referred to as the domain of vi, P a countable set of predicates
(possibly empty), I a non-empty finite set of inputs, O a non-
empty finite set of outputs, T⊆ S x C x I x P x O x S x C a set
of transition relations, s0∈S the initial main state, and c0∈C the
initial context of the p-EFSM.

p-EFSM extends a bit the conventional EFSMs for FDT

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3216

mapping purposes as we will see later. p-EFSM is similar to
EFSM except that in a p-EFSM the conditions on transitions
are explicitly specified. This is just a notation facility and
functionally and conceptually there is no difference between
both models. In the rest of the paper, we indifferently address
both models.

Thus, a transition t∈T of a p-EFSM is a 7-tuple <s, c, I, p, o,
s’, c’> where s∈S is a current main state, c∈C a current
context, i∈I an input, p∈P a enabling predicate which depends
on the context c, o∈O an output, s’∈S a next main state, and
c’∈C a next context.

We consider one or more p-EFSMs for each component of
the system and denote them with indices s, c and a for sensors,
controller, and actuators.

Interdependencies between these components are described
as follows:

Let ts a transition: ts∈Ts: ts =<ss, cs, is, ps, os, s´s, c´s> with
ss∈Ss, cs∈Cs, is∈Is, ps∈Ps, os∈Os, s´s∈Ss, c´s∈Cs ⇒ ∃ tc∈Tc | os
≡ ic

That is, each output event generated by sensors must trigger
a transition of the controller. This event represents an input
event for the triggered transition. We assume here that the
predicates related to the transitions are satisfied by the actual
context.

Let tc a transition tc∈Tc with sc∈Sc, cc∈Cc, ic∈Ic, pc∈Pc,
oc∈Oc, s´c∈Sc, c´c∈Cc, if ic∈Os ⇒ ∃ ts∈Ts and ic ≡ os.

This means that, if there exists a transition of the controller
whose input event belongs to the set of output events of the
sensors then it must exist a transition of the sensors whose
output event is identified with the given event.

Let ta a transition ta∈Ta: ta =<sa, ca, ia, pa, oa, s´a, c´a> with
sa∈Sa, ca∈Ca, ia∈Ia, pa∈Pa, oa∈Oa, s´a∈Sa, c´a∈Ca ⇒ ∃ tc∈Tc:
tc=<sc, cc, ic, pc, oc, s´c, c´c> and oc ≡ ia.

Each transition of actuators must be only triggered by the
controller and must match the output event of the triggering
transition of the controller.

(p)-EFSMs describe thus system components that may be
blocks or modules depending on the used formal description
technique1 which are linked together by means of channels via
interaction points (IP) to build the whole embedded system
specification (s. Fig. 1).

A specified embedded system is a tree of tasks ((p)-EFSMs)
which can be categorized in three classes corresponding to
controller, sensors and actuators modules. They are organized
in a hierarchical structure (parent-son-relationship) w.r.t. the
principal structuring concepts of Estelle2 (Fig. 1).

Each task has a fixed number of Input/Output access points
(interaction points) which can be associated to controller,
sensors or actuator modules. Bidirectional communication
links may exist between tasks (between their interaction
points).

Within a specified embedded system there exists a fixed
structure of subsystems (sub-trees of tasks), corresponding to

1 SDL uses the ‘block’ concept whereas Estelle ‘module’
2 In a similar way one can use SDL.

controller, sensors or actuators, and of communications links
(between them). Within a subsystem both structures (of tasks
and communication links) may change dynamically. Tasks
exchange interactions in the following way:
• A task may send an interaction through its interaction

point to a task linked to it, e.g. from C to A (controlling
events) via the interaction points in C and A which are
link to each other.

 ES

S
Sn

E
F
S
M

C

E
F
S
M

E
F
S
M

A

A1

E
F
S
M

Am

E
F
S
M

C: Controller A: Actuator
S: Sensor IP: Interaction Point

IP

Channel

S1

E
F
S
M

common
queue

indiv.
queue

FIFO

Fig. 1 ES specification based on Estelle

• An interaction received by a task, as its interaction points,

is appended to a FIFO queue associated to this interaction
point. A FIFO queue may be either associated to one
interaction point (individual queue) or to many interaction
points (common queue).

It is easy to map a p-EFSM specification on the behavioural
part (transition part) of an Estelle module. The later has the
following structure which is composed of two parts - condition
clauses and actions:

WHEN clause
 when interaction_point_id.interaction_name
FROM clause
 from state
PROVIDED clause
 provided Boolean expression
DELAY clause
 delay (integer_expression)
TO clause
 to state
 output

To map a given (p)-EFSM on an Estelle module (behaviour
part), one has to match each transition of the (p)-EFSM with
the corresponding transition part of the given Estelle module.
Thus, the when clause corresponds to an input event in p-
EFSM (for a given transition), from to edge state, provided to
the condition on the transition (predicate), possibly delay to a
timing special input event, to to the tail state and output to
output event.

III. FAULT MODELS AND TEST GENERATION METHODS
The main validation techniques that can be used in or

adapted to the embedded system engineering are of two kinds:
verification and conformance testing. The verification
approach deals with system specification and tries to prove its
correctness based on the so-called white box. In this case, the
user properties are specified by another formalism as temporal
logic and verified by commonly using model-checkers. The
second approach, the conformance testing, deals with a system

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3217

implementation and tires to find incorrectness on it without
considering its intern structure, a so-called black-box testing.
Test sequences (called test cases) are derived from the
specification and are executed on the implementation (called
IUT: implementation under test). According to the test
purposes of the executed test cases and the analysis of the
verdict of the test execution, it will be stated whether the
implementation is conform to the specification or not. A test
case is composed of a test preamble (a sequence of actions
leading to a given state or action), test body (actions to test),
and of a test postamble (sequence of action allowing to go
back to the initial state).

The present work is based on the second validation
technique and thus we want to adopt the conformance testing
approach for the validation of embedded systems. This
conducts us to define what an error is and how test sequences
can be extracted from a specification assuming ‘E’FSMs as
intermediate specification models for embedded systems.

A. Fault Models
Analysis and Testing of embedded systems have to prove

correctness, completeness and consistency in early phases of
system development. Correctness means the fulfilment of the
required services and its providing within a given time period.
Completeness is its act of reaction to all possible events and
carrying out all services. Consistency relates to the interior
contradiction freeness of the specification.

There are two kinds of testing, general and special. The first
one consists of testing of properties that must be held
independently of special semantics of the developed system
(consistency), such as livelock and deadlock-freeness,
limitedness and resynchronization. The second aims at
properties that are determined by the semantics of the
designed system.

Properties that are commonly addressed by analysis and
testing are summarized as follows:
 The non-existence of non-executable actions: The system

comprises no actions that cannot be executable under
normal conditions.

 Liveliness: Each state of the system is reachable from the
initial state.

 Deadlock-freeness: The system reaches no state that does
not allow to interact with the environment and never
leaves it.

 Livelock-freeness: The system comprises no non-
productive cycles.

 Error tolerance and resynchronization: The system
reaches a normal state within a limited time period after
an error leading to an abnormal state has been occurred.

 Safety: The system comprises no unspecified events.
 Partial correctness: The system provides a special service

when it terminates.
 Termination: The system reaches each time the final

state(s), or the initial state for cyclic systems.
 Error behaviour freeness: This is performed by testing

the implementation and comparing the result behaviour
with the specification.

Precise specifications are essential to allow the analysis of

embedded systems. The use of formal methods enables the
automation of most aspects. In this work we are particularly
interested in the problem of detecting erroneous behaviour in
embedded system implementations which are state-transition-
based. This problem is defined as follows:

Definition A: The problem of erroneous behaviours
detection in an embedded system implementation is the
problem for deciding whether the corresponding (E)FSMs
contains errors by means of testing based on an the appropriate
fault models.

The large number and the complexity of embedded systems
failures requires from a practical testing approach to avoid
working directly with failure cases. Indeed, in most cases, one
is most concerned with detecting the presence or absence of
any failure. Many failures may very well cause the same error
for a given test or set of tests. One method to resolve this
problem is the use of fault models to describe the effects of
failures at some higher level of abstraction. If the fault model
describes the faults accurately, then one needs only to derive
tests to detect all the faults in the fault model. This approach
has several possible advantages. A higher-level fault describes
many physical and software faults, thus reducing the number
of possibilities to be considered in the generation of tests.

For a state transition-based embedded system, an
appropriate fault model can be defined. We consider a two-
level fault model which corresponds to the control flow and
the data flow, respectively. The first level of the fault model
deals with systems specified as simple FSMs whereas the
second level the extension of FSMs, i.e. with (p)-EFSM
specifications.

In the first level of the fault model, the following fault
classes are defined for faulty implementations. To explain the
principal we consider a very simplified example of the
controller behaviour model as FSM (only the control flow)
consisting of three states: lp (low pressure), hp (high pressure)
and mp (middle power) (s. Fig. 3). These correspond to the
reaction of the controller through commanding an actuator
depending on the pressure measured by sensors.

specification

lp

hp mp

a1/0

a2/0

a1/0a1/1

a2/1

a2/1

implementation

lp

hp mp

a1/0

a2/0

a1/0a1/0

a2/1

a2/1

Fig. 2 Output Errors class

 Output errors class: A transition has an output fault if, for

the corresponding state and input received, the machine
provides an output different from the one specified (Fig.
2).

 Transfer errors class: A transition has a transfer fault if,
for the corresponding state and input received, the
machine enters a different state than expected (Fig. 3).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3218

specification

lp

hp mp

a1/0

a2/0

a1/0 a1/1

a2/1

a2/1

implementation

lp

hp mp

a2/0

a1/0 a1/1

a2/1

a2/1

a1/0

Fig. 3 Transfer errors class

 Transfer errors with additional states class: here it is

supposed there is more states as specified with possible
transfer faults (Fig. 4).

 Missing states errors class: In this case there are less
states as specified. This is usually due to non-
deterministic behaviours and/or incompleteness.

In the second level of the fault model (for extended FSMs),
the above error classes (of the first level) are extended by
including other error classes which mostly are similar to those
of software:

specification

lp

hp mp

a1/0

a2/0

a1/0 a1/1

a2/1

a2/1

implementation

lp

hp mp

a2/0

a1/0 a1/1

a2/1

a2/1

a1/0
hw

hw: high power

Fig. 4 Transfer errors with additional states class

Specific behavioural error classes: -Interaction point

errors: A different interaction point should be used for a given
transition. -Context errors: Either the number and/or types of
the parameters of a given transition is not correct or parameter
value should be different -Predicate errors: In the case that a
Boolean expression is associated with a transition, the Boolean
expression is evaluated to false in the specification and/or the
variables of the Boolean expression are erroneous -Delay
errors: The corresponding interaction should occur before
occurring the timeout.

General data flow-related error classes: -Sequencing
errors -Arithmetic and manipulative errors -Calling functions
errors class (wrong calls) -Data types specification errors -
Value errors (wrong values) -Variables number errors -
Operator errors

B. Test Sequences Generation Methods
There exist many test generation methods that are based on

FSMs. Some of them are able to detect only certain errors
classes of the fault model given above, whereas other allow to
cover all errors classes.

specification

lp

hp mp

a1/0

a2/0

a1/0 a1/1

a2/1

a2/1

Fig. 5 Test generation based on TT method

All test generation methods based on FSMs have a common
basic idea. A test sequence is preferably short sequence of
consecutive transitions that contains every transition of the
FSM at least once and allows to check whether every
transition is implemented as defined. To test a transition, one
has to apply the input for the transition in the starting state of
the transition, to check whether the correct output occurs, and
to check whether the correct next state has been reached after
the transition. Checking the next state might be omitted
(transition tour method) or be carried out by means of
distinguishing sequences (checking experiments method),
characterizing sequences (W-method), or unique input/output
sequences (UIO methods). Some of these methods were also
extended to nondeterministic FSMs [7].
 The transition tour method (TT): This method is able to

detect any set of output faults in the absence of transfer
faults. A transition tour of a FSM is a path (test sequence)
starting at the initial state, traverse every transition at least
once, and returns to the initial state (Fig. 5). From a
transition tour, one can identify a test suite consisting of
an input sequence and its expected output sequence based
on the specification: the input sequence a1a2a1a2a1a2 and
its expected output sequence 011100. The transition tour
can find all output faults, e.g. the faulty observed output
sequence 111100 is detected when executing the input
sequence a1a2a1a2a1a2 on the implementation. However,
the TT-method is not able to detect transfer errors (Fig.
6).

specification

lp

hp mp

a1/0

a2/0

a1/0a1/1

a2/1

a2/1

implementation

lp

hp s2

a2/0

a1/0a1/1

a2/1

a2/1

a1/0

Input sequence: a1a2a1a2a1a2
Expected output sequence: 011100

Input sequence: a1a2a1a2a1a2
Expected output sequence: 010001

Fig. 6 TT-method cannot detect transfer faults

 The DS-method (Distinguishing Sequence) and the UIO-

method (Unique Input/Output Sequence) detect any set of
output and transfer faults, assuming that the number of
states is still the same as in the specification. An input
sequence is a distinguishing sequence if after applying the
input sequence, one can determine the source state by
observing the output sequence (Fig. 7). Let s be a state; an
input sequence is a UIO sequence for s if after applying
the input sequence, on can state whether the source state s
is or not by observing the output sequence.

 The W-methods (Characterising Set) detect in addition
transfer faults with additional and missing states. A set of
input sequences is a characterising set if after applying all
input sequences in the set, one van determine the source
state by observing the output sequences.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3219

specification

lp

hp mp

a1/0

a2/0

a1/0 a1/1

a2/1

a2/1

‚a1’ is not a distinguishing sequence
initial
state

input
seq.

output
seq.

final
state

lp a1 0 lp
hp a1 1 hp
mp a1 0 mp

‚a1a2’ is a distinguishing sequence

initial
state

input
seq.

output
seq.

final
state

lp a1a2 01 lp
hp a1a2 11 hp
mp a1a2 00 mp

Fig. 7 DS-Method

DS-Method, UIO-Method and W-method have the following
main idea: Generate a test suite that, for every transition (s, i,
o, s’): (1) Puts the implementation into state s (setup) (2)
Applies input i and check whether the actual output is o
(output error) (3) Determines whether the target state of the
implementation is s’ (transfer fault)

C. Test Sequence Generation based on EFSMs
The main problem of the test sequences generation methods

is that FSMs can only specify the control flow of an embedded
system. To specify both the control and the data flow, EFSMs,
which are based on FSMs extended by variables, should be
applied. As seen in the previous sections, EFSM models form
the basis of the standardized formal description techniques. In
order to apply FSM based methods, the EFSM should be
transformed into an equivalent FSM.

Theoretically, provided that all variables of an EFSM have
a finite, countable domain, an EFSM can be transformed into
an equivalent FSM. The transformation leads to the removal
of variables from the state machine and an increase in the
number of states. In fact, an EFSM can be viewed as a
compressed notation of an FSM. It is possible to unfold it into
a pure FSM by expanding the values of variables. But, their
domain have to be reduced in order to avoid the state and input
explosion problem. In this case, the FSM-based methods cover
not only the control flow but also the data flow.

An approach to bridge that gap between an EFSM and an
FSM avoiding inordinate increase in the number of states has
been discussed in [8]. The aim is to make FSM-based methods
for test generation applicable to EFSM. The approach is
discussed on the basis of one-module Estelle normal form
specification representing an EFSM. An expanded EFSM that
is equivalent to the original EFSM can be generated by
applying a transformation algorithm without loss of important
information. The expanded EFSM can be then interpreted in
terms of FSM.

Such a transformation is based generally on the
classification of state and input variables and taking into
account only the variables that effectively influence the
control flow. If their domains are originally small (which is
usually the case for the most real-life systems) or reasonably
reduced, then the state explosion problem can be alleviated.
Furthermore, the minimization of the obtained FSM will lead
to more reduce the number of states and makes the state
explosion problem less severe. This takes place through
eliminating all equivalent states of the FSM by applying a
well-known minimization algorithm.

For the resulted FSM, classic test sequences generation

methods, such the transition tour method, W-method, UIO
method, etc. can be applied. This allows to generate test
sequences that cover the control and data flows of the original
(predicated) EFSM.

D. Related Models
Statecharts as a semi-formal model is actually the mostly

used formalism to specify requirements for embedded systems
[4]. Although Statecharts provide graphical facilities, they
might lack formal and unambiguous semantics. Therefore,
detecting bugs, incompleteness and inconsistencies becomes a
difficult task. Furthermore, they are only used to describe
behavioural requirements. To alleviate these lacks many
authors try to combine formal notations like Z with state-
transition models [5]. Z is based on set theory and first order
predicate logic and used for data structuring and abstracting.
Petri Nets have been also used as specification models for
embedded systems to deal with their verification, e.g. [12].
However, approaches developed around this model do not
clearly address formal test data generation methods, e.g. for
testing purposes. In addition, they don’t relate to standardised
formal description techniques. Further, the readability and
understandability of a Petri Net specification becomes difficult
with the growing complexity of a system. On the other side,
formal description techniques provide clear specifications
because the combination of the single EFSMs to build the
whole specification takes place just by linking (attaching)
them (EFSMs). Thus, a formal syntax and a formal semantic
are well supported by FDTs.

IV. CONCLUSION
In this work we have presented the principle of a validation

approach based on conformance testing that can be reused for
embedded systems described as (extended) finite state
machines. This implied appropriate test generation methods
and related fault models. An appropriate communication
model for embedded systems and its mapping on EFSMs and
on the FDT Estelle have been also discussed. We have
identified the different analysis and testing issues and
especially dealt with checking erroneous behaviour of
embedded system implementations against the specification.
The FDTs as specification languages are characterized not
only by a formal syntax but also a formal semantic and have
been successfully used in the formal design of many
communication protocols and communicating systems.

We are refining the here proposed validation approach by
particularly defining an appropriate testing architecture. We
are also developing a knowledge-based diagnosis system to
explain the reasons of errors in faulty implementations after
test suites execution (sets of test cases). In addition, we plan to
investigate real-life embedded systems especially from the
automotive area to study the extent of the application of the
analysis and testing approach.

REFERENCES
[1] Specification and Description Language SDL’92, ITU-T

Recommendation Z.100, 1992.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3220

[2] Information processing systems – Open Systems Interconnection –
Estelle: A formal description technique based on an extended state
transition model, International Standard ISO 9074, 1989.

[3] R. Buessow, R. Geisler, and M. Klar, “Specifying safety-critical
embedded systems with statecharts and Z: A case study”, In Proceedings
of Fundamental Approaches to Software Engineering (FASE’98),
Lisbon, 1998.

[4] M. Mendler, G. Luettgen. Statecharts, “From Visual Syntax to Model-
Theoretic Semantics”, In K. Bauknecht, W. Brauer, and Th. Mück
(editors), Workshop on Integrating Diagrammatic and Formal
Specification Techniques (IDFST 2001), pages 615-621, Vienna, 2001.

[5] B. Potter, J. Sinclair, and D. Till, “Introduction to Formal Specification
and Z (2nd Edition)”, Prentice Hall PTR; 1996.

[6] A. V. Aho et al., “An optimisation technique for protocol conformance
test generation based on UIO sequences and Rural Chinese Postman
Tours”, In S. Aggarwal and K. Sabnani, editors, Protocol Specification,
Testing, and Verification, New Jersey, 1988.

[7] S. Fujiwara, et al., “Test selection based on finite state models”, IEEE
transaction on Software Engineering 17(6): 591-603, 1991.

[8] H. Richter et al., “A Concept For a Reliable, Cost-Effective, Real-Time
Local-Area Network for Automobiles”, In Proceedings of Joint
conference Embedded in Munich and Embedded Systems, Munich,
2004.

[9] O. Henniger, A. Ulrich, and H. König, “Transformation of Estelle
modules aiming at test case derivation”, Chapmann & Hall, 1995.

[10] H. Fouchal, et al., “Generation of timed automata from Estelle
specifications”, In International Workshop on the Formal Technique
ESTELLE, Evry, France, 1998.

[11] A. Avizienis, J-C. Laprie, and B. Randell, “Fundamental Concepts of
Computer System Dependability”, IARP/IEEE-RAS Workshop on
Robot Dependability: Technological Challenge of Dependable, Robots
in Human Environments, 2001.

[12] L. A. Corts, P. Eles, and Z. Peng, “Verification of embedded systems
using a petri net based representation”, In Proceedings of the 13th
international symposium on System synthesis, Madrid, 2000.

