
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3214

 
Abstract—In this paper test generation methods and appropriate 

fault models for testing and analysis of embedded systems described 
as (extended) finite state machines ((E)FSMs) are presented. 
Compared to simple FSMs, EFSMs specify not only the control flow 
but also the data flow. Thus, we define a two-level fault model to 
cover both aspects. The goal of this paper is to reuse well-known 
FSM-based test generation methods for automation of embedded 
system testing. These methods have been widely used in testing and 
validation of protocols and communicating systems. In particular, 
(E)FSMs-based specification and testing is more advantageous 
because (E)FSMs support the formal semantic of already 
standardised formal description techniques (FDTs) despite of their 
popularity in the design of hardware and software systems. 
 

Keywords—Formal methods, testing and validation, finite state 
machines, formal description techniques. 

I. INTRODUCTION 
N embedded computer system represents a part of a large 
system performing some of the requirements of that 

system, for example, a computer system used in a car or in an 
aircraft. Embedded systems cover a large number of computer 
systems ranging from small devices to large complex systems 
for monitoring and controlling. Nowadays, the most number 
of computer systems belong to embedded systems. They are 
mainly characterised by real-time and dependability 
properties. Dependability consists of several attributes such 
reliability, availability, integrity, safety, confidentiality and 
maintainability [11]. 

The development of competitive and efficient products 
implies more and more constraints to the design of embedded 
systems. Non-formal or semi-formal design procedures have 
demonstrated their limits to efficiently and industrially support 
the whole design process and thus to provide competitive 
products. On the other side, formal methods have been 
successfully used in other areas for both, software and 
hardware design and testing [9]. They are usually 
characterised by qualities like abstraction, understandability, 
analysis, scalability and non-ambiguity. 

In particular, formal description techniques (FDTs) [1] [2] 
and their semantic model are still to get more consideration at 
a high level of abstraction in the development life-cycle of 
embedded systems. In fact, formal description techniques have 
demonstrated their efficiency in the of analysis of complex 
systems like protocols and communicating systems [9][10]. 
They are based on ‘extended’ finite state machines (‘E’FSMs) 
and differ from conventional programming languages by 
providing not only a formal syntax but also a formal semantic. 

Moreover, the formal specification and testing increase the 
confidence in the deduced embedded system implementation. 
Especially in the area of safety-critical systems, for example, 
steer-by-wire or brake-by-wire in cars [8], the use of formal 
techniques is highly recommended [3]. 

In this paper, we present a testing approach and potential 
test generation methods that could be reused for embedded 
systems modelled as ‘extended’ finite state machines. The 
respective fault models which describe the appropriate error 
classes each method is able to detect are given.  

The rest of the paper is organized as follows. In Section 2 
we review the conventional finite state machines and the 
extended finite state machines and explain the difference 
between them. After that, the principle of a communication 
model for embedded systems using EFSMs and FDTs, 
respectively, is outlined. Section 3 presents the testing 
approach. First, the properties of an embedded system to be 
tested are identified. This is followed by the presentation of 
the test generation methods to be reused and the corresponding 
fault models. We give also a short comparison with other 
specification models commonly used in embedded systems. 
Finally, Section 4 concludes the paper. 

II. SPECIFICATION MODELS FOR EMBEDDED SYSTEMS 
In this section we first review the definition of FSMs and 

EFSMs on which the specification and testing approaches are 
based. Further, we give the basic structure of a communication 
model for embedded systems and then we demonstrate how 
this principally can be specified in (E)FSMs as intermediate 
model and in FDTs, respectively. We take Estelle as example 
of FDTs. 

A. Preliminaries 
FSMs are usually used to specify the control flow of a 

system, however, they are less appropriate for modelling the 
data flow. To overcome this inconvenient, FSMs are extended 
by using additional state variables and interaction parameters. 
Such variables are used in programming languages specifying 
conditions on transitions and calculations carried out during 
transitions. 

Definition: An extended finite state machine (EFSM) is 
defined as a 7-tuple <S, C, I, O, T, s0, c0> where S is a non-
empty set of main states, C=dom(v1) x … x dom(vn) a non 
empty countable set of contexts with vi∈V, V the non-empty 
finite set of variables and dom(vi) a non-empty countable set 
referred to as the domain of vi, I a non-empty finite set of 
inputs, O a non-empty set of outputs, T⊆ S x C x I x O x S x C 
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the set of transition relations, s0∈S the initial main state, and 
c0∈C the initial context of the EFSM. 

A main state may consist of sub-states. A context is a 
specific assignment of values to the variables. A transition t∈T 
of an EFSM is a 6-tuple <s, c, i, o, s’, c’> where s∈S is a 
current main state, c∈C a current context, i∈I an input, o∈O 
an output, s’∈S a next main state, and c’∈C a next context. 

Compared to FSMs, EFSMs provide a more generalized 
specification mean. Taking EFSMs as an intermediate 
specification model is more advantageous for using formal 
description techniques like Estelle or SDL [1] [2]. Indeed, 
EFSMs represent the formal semantic of these FDTs and thus 
the mapping of EFSMs on FDTs can easily take place 
regarding the behaviour part.  

Estelle is a standardised formal description technique 
(International Standard ISO 9074) based on concepts of 
structured communicating extended state automata and Pascal. 
It is oriented towards the specification of complex distributed 
systems, in particular communicating systems. A specified 
system is presented as a tree of tasks where each task has a 
fixed number of input/output access points (interaction 
points). Within a specified system it exists a fixed structure of 
subsystems (sub-trees of tasks) and communication links 
between subsystems. 

SDL (Specification and Description Language) is an object-
oriented, formal language defined by The International 
Telecommunications Union Telecommunications 
Standardization Sector (ITU) (formerly Comité Consultatif 
International Télégraphique et Téléphonique [CCITT]) as 
recommendation Z.100. The language is intended for the 
specification of complex event-driven real-time, and 
interactive applications involving many concurrent activities 
that communicate using discrete signals. 

B. Communication 
An embedded system is typically required to meet specific 

requirements. In an embedded mechatronic system, a 
microcontroller or computer system performs a dedicated 
function for an appliance or a gadget such as a car’s brake or a 
steering wheel [8]. 

The basic structure of an embedded system consists of an 
external process, sensors, actuators, and a controller: 

The external process is a process that can be of physical, 
mechanical, or electrical nature. Sensors provide information 
about the current state of the external process by means of so-
called monitoring events. They are communicated to the 
controller. For the controller, they represent input events. 
They are considered as stimuli for the controller. The 
controller must react to each received event, i.e. input event. 
Events originate usually from sensors. Depending on the 
received events from sensors, corresponding states of the 
external process will be determined. Actuators receive the 
results determined by the controller which are communicated 
to the external process by means of so-called controlling 
events. 

The external process is usually given in advance. In 
contrast, the controller is often implemented by real-time 

hardware and software. This should allow each modification 
of the controller algorithm in a straightforward way each time 
this is needed. The controller’s behaviour is depending on that 
of the external process. The controller commands the 
behaviour of the external process taking into consideration 
requirements on the process and its characteristics, such as 
physical laws, real time and other constraints. 

C. Specification 
From the point of view of communication an embedded 

system specification consists of the specification of its 
environment and its controller. We assume that the embedded 
system is state-transition based because the automata model is 
efficiently more appropriate. Thus, its behaviour description 
will be based on the EFSM model. This consists of a set of 
modules where each module describing a given function is 
modelled as one or many EFSMs. These modules are attached 
to each other by means of channels and interact with each 
other via broadcasting events. However, a sequence and an 
hierarchy have to be respected in this communication. For 
instance, the direct communication of a module of an actuator 
with a sensor is not allowed. 

The most important component of an embedded system 
consists of the controller which communicates with its 
environment, i.e. sensors and actors, via signals (i.e. events). 
To be recognized by all components, these events have to be 
declared as global variables for adjacent EFSMs. The events 
output from sensors represents input events for the controller. 
The events from the controller to the actuators are output 
events and represent input events for the actuators. They result 
from new computations performed by the controller that is 
triggered by the received input events. 

Depending on the nature of sensor events (e.g. indicating 
the power on/off state for an electrical unit, the speed of a 
mobile object such as a car, etc.) the corresponding EFSM of 
this component is triggered and the concerning transition(s) 
are performed. This triggers the EFSMs of the controller 
whose states change. Depending on the received events, 
transitions in the EFSMs are executed. Note, that transitions in 
the controller can spontaneously be triggered by other events, 
e.g. time out. The modelled subsequent state of the external 
process is computed and communicated as output events via 
the actuators. 

To provide an intermediate specification model which better 
fits the behaviour part of the considered FDT, i.e. Estelle, we 
introduce a new EFSM, called p-EFSM (p stands for 
‘predicated’). This is defined as follows: 

Definition: A predicated extended finite state machine (p-
EFSM) is an 8-tuple <S, C, I, P, O, T, s0, c0> where S is a non-
empty set of main states, C=dom(v1) x … x dom(vn) a non-
empty countable set of contexts with vi∈V, V a non-empty 
finite set of variables, and dom(vi) a non-empty countable set 
referred to as the domain of vi, P a countable set of predicates 
(possibly empty), I a non-empty finite set of inputs, O a non-
empty finite set of outputs, T⊆ S x C x I x P x O x S x C a set 
of transition relations, s0∈S the initial main state, and c0∈C the 
initial context of the p-EFSM. 

p-EFSM extends a bit the conventional EFSMs for FDT 
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mapping purposes as we will see later. p-EFSM is similar to 
EFSM except that in a p-EFSM the conditions on transitions 
are explicitly specified. This is just a notation facility and 
functionally and conceptually there is no difference between 
both models. In the rest of the paper, we indifferently address 
both models. 

Thus, a transition t∈T of a p-EFSM is a 7-tuple <s, c, I, p, o, 
s’, c’> where s∈S is a current main state, c∈C a current 
context, i∈I an input, p∈P a enabling predicate which depends 
on the context c, o∈O an output, s’∈S a next main state, and 
c’∈C a next context. 

We consider one or more p-EFSMs for each component of 
the system and denote them with indices s, c and a for sensors, 
controller, and actuators. 

Interdependencies between these components are described 
as follows: 

Let ts a transition: ts∈Ts: ts =<ss, cs, is, ps, os, s´s, c´s> with 
ss∈Ss, cs∈Cs, is∈Is, ps∈Ps, os∈Os, s´s∈Ss, c´s∈Cs ⇒ ∃ tc∈Tc | os 
≡ ic  

That is, each output event generated by sensors must trigger 
a transition of the controller. This event represents an input 
event for the triggered transition. We assume here that the 
predicates related to the transitions are satisfied by the actual 
context. 

Let tc a transition tc∈Tc with sc∈Sc, cc∈Cc, ic∈Ic, pc∈Pc, 
oc∈Oc, s´c∈Sc, c´c∈Cc, if ic∈Os ⇒ ∃ ts∈Ts and ic ≡ os. 

This means that, if there exists a transition of the controller 
whose input event belongs to the set of output events of the 
sensors then it must exist a transition of the sensors whose 
output event is identified with the given event. 

Let ta a transition ta∈Ta: ta =<sa, ca, ia, pa, oa, s´a, c´a> with 
sa∈Sa, ca∈Ca, ia∈Ia, pa∈Pa, oa∈Oa, s´a∈Sa, c´a∈Ca ⇒ ∃ tc∈Tc: 
tc=<sc, cc, ic, pc, oc, s´c, c´c> and oc ≡ ia. 

Each transition of actuators must be only triggered by the 
controller and must match the output event of the triggering 
transition of the controller. 

(p)-EFSMs describe thus system components that may be 
blocks or modules depending on the used formal description 
technique1 which are linked together by means of channels via 
interaction points (IP) to build the whole embedded system 
specification (s. Fig. 1). 

A specified embedded system is a tree of tasks ((p)-EFSMs) 
which can be categorized in three classes corresponding to 
controller, sensors and actuators modules. They are organized 
in a hierarchical structure (parent-son-relationship) w.r.t. the 
principal structuring concepts of Estelle2 (Fig. 1). 

Each task has a fixed number of Input/Output access points 
(interaction points) which can be associated to controller, 
sensors or actuator modules. Bidirectional communication 
links may exist between tasks (between their interaction 
points). 

Within a specified embedded system there exists a fixed 
structure of subsystems (sub-trees of tasks), corresponding to 

 
1 SDL uses the ‘block’ concept whereas Estelle ‘module’ 
2 In a similar way one can use SDL.  

controller, sensors or actuators, and of communications links 
(between them). Within a subsystem both structures (of tasks 
and communication links) may change dynamically. Tasks 
exchange interactions in the following way: 
• A task may send an interaction through its interaction 

point to a task linked to it, e.g. from C to A (controlling 
events) via the interaction points in C and A which are 
link to each other. 
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Fig. 1 ES specification based on Estelle 

 
• An interaction received by a task, as its interaction points, 

is appended to a FIFO queue associated to this interaction 
point. A FIFO queue may be either associated to one 
interaction point (individual queue) or to many interaction 
points (common queue). 

It is easy to map a p-EFSM specification on the behavioural 
part (transition part) of an Estelle module. The later has the 
following structure which is composed of two parts - condition 
clauses and actions: 

WHEN clause 
 when interaction_point_id.interaction_name 
FROM clause 
 from state 
PROVIDED clause 
 provided Boolean expression 
DELAY clause 
 delay (integer_expression) 
TO clause 
 to state 
 output 

To map a given (p)-EFSM on an Estelle module (behaviour 
part), one has to match each transition of the (p)-EFSM with 
the corresponding transition part of the given Estelle module. 
Thus, the when clause corresponds to an input event in p-
EFSM (for a given transition), from to edge state, provided to 
the condition on the transition (predicate), possibly delay to a 
timing special input event, to to the tail state and output to 
output event. 

III. FAULT MODELS AND TEST GENERATION METHODS 
The main validation techniques that can be used in or 

adapted to the embedded system engineering are of two kinds: 
verification and conformance testing. The verification 
approach deals with system specification and tries to prove its 
correctness based on the so-called white box. In this case, the 
user properties are specified by another formalism as temporal 
logic and verified by commonly using model-checkers. The 
second approach, the conformance testing, deals with a system 
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implementation and tires to find incorrectness on it without 
considering its intern structure, a so-called black-box testing. 
Test sequences (called test cases) are derived from the 
specification and are executed on the implementation (called 
IUT: implementation under test). According to the test 
purposes of the executed test cases and the analysis of the 
verdict of the test execution, it will be stated whether the 
implementation is conform to the specification or not. A test 
case is composed of a test preamble (a sequence of actions 
leading to a given state or action), test body (actions to test), 
and of a test postamble (sequence of action allowing to go 
back to the initial state). 

The present work is based on the second validation 
technique and thus we want to adopt the conformance testing 
approach for the validation of embedded systems. This 
conducts us to define what an error is and how test sequences 
can be extracted from a specification assuming ‘E’FSMs as 
intermediate specification models for embedded systems. 

A. Fault Models 
Analysis and Testing of embedded systems have to prove 

correctness, completeness and consistency in early phases of 
system development. Correctness means the fulfilment of the 
required services and its providing within a given time period. 
Completeness is its act of reaction to all possible events and 
carrying out all services. Consistency relates to the interior 
contradiction freeness of the specification. 

There are two kinds of testing, general and special. The first 
one consists of testing of properties that must be held 
independently of special semantics of the developed system 
(consistency), such as livelock and deadlock-freeness, 
limitedness and resynchronization. The second aims at 
properties that are determined by the semantics of the 
designed system. 

Properties that are commonly addressed by analysis and 
testing are summarized as follows: 
 The non-existence of non-executable actions: The system 

comprises no actions that cannot be executable under 
normal conditions. 

 Liveliness: Each state of the system is reachable from the 
initial state. 

 Deadlock-freeness: The system reaches no state that does 
not allow to interact with the environment and never 
leaves it. 

 Livelock-freeness: The system comprises no non-
productive cycles. 

 Error tolerance and resynchronization: The system 
reaches a normal state within a limited time period after 
an error leading to an abnormal state has been occurred. 

 Safety: The system comprises no unspecified events. 
 Partial correctness: The system provides a special service 

when it terminates. 
 Termination: The system reaches each time the final 

state(s), or the initial state for cyclic systems. 
 Error behaviour freeness: This is performed by testing 

the implementation and comparing the result behaviour 
with the specification. 

Precise specifications are essential to allow the analysis of 

embedded systems. The use of formal methods enables the 
automation of most aspects. In this work we are particularly 
interested in the problem of detecting erroneous behaviour in 
embedded system implementations which are state-transition-
based. This problem is defined as follows: 

Definition A: The problem of erroneous behaviours 
detection in an embedded system implementation is the 
problem for deciding whether the corresponding (E)FSMs 
contains errors by means of testing based on an the appropriate 
fault models. 

The large number and the complexity of embedded systems 
failures requires from a practical testing approach to avoid 
working directly with failure cases. Indeed, in most cases, one 
is most concerned with detecting the presence or absence of 
any failure. Many failures may very well cause the same error 
for a given test or set of tests. One method to resolve this 
problem is the use of fault models to describe the effects of 
failures at some higher level of abstraction. If the fault model 
describes the faults accurately, then one needs only to derive 
tests to detect all the faults in the fault model. This approach 
has several possible advantages. A higher-level fault describes 
many physical and software faults, thus reducing the number 
of possibilities to be considered in the generation of tests. 

For a state transition-based embedded system, an 
appropriate fault model can be defined. We consider a two-
level fault model which corresponds to the control flow and 
the data flow, respectively. The first level of the fault model 
deals with systems specified as simple FSMs whereas the 
second level the extension of FSMs, i.e. with (p)-EFSM 
specifications.  

In the first level of the fault model, the following fault 
classes are defined for faulty implementations. To explain the 
principal we consider a very simplified example of the 
controller behaviour model as FSM (only the control flow) 
consisting of three states: lp (low pressure), hp (high pressure) 
and mp (middle power) (s. Fig. 3). These correspond to the 
reaction of the controller through commanding an actuator 
depending on the pressure measured by sensors. 
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Fig. 2 Output Errors class 

 
 Output errors class: A transition has an output fault if, for 

the corresponding state and input received, the machine 
provides an output different from the one specified (Fig. 
2). 

 Transfer errors class: A transition has a transfer fault if, 
for the corresponding state and input received, the 
machine enters a different state than expected (Fig. 3). 
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Fig. 3 Transfer errors class 

 
 Transfer errors with additional states class: here it is 

supposed there is more states as specified with possible 
transfer faults (Fig. 4). 

 Missing states errors class: In this case there are less 
states as specified. This is usually due to non-
deterministic behaviours and/or incompleteness. 

In the second level of the fault model (for extended FSMs), 
the above error classes (of the first level) are extended by 
including other error classes which mostly are similar to those 
of software: 
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Fig. 4 Transfer errors with additional states class 

 
Specific behavioural error classes: -Interaction point 

errors: A different interaction point should be used for a given 
transition. -Context errors: Either the number and/or types of 
the parameters of a given transition is not correct or parameter 
value should be different -Predicate errors: In the case that a 
Boolean expression is associated with a transition, the Boolean 
expression is evaluated to false in the specification and/or the 
variables of the Boolean expression are erroneous -Delay 
errors: The corresponding interaction should occur before 
occurring the timeout. 

General data flow-related error classes: -Sequencing 
errors -Arithmetic and manipulative errors -Calling functions 
errors class (wrong calls) -Data types specification errors -
Value errors (wrong values) -Variables number errors -
Operator errors 

B. Test Sequences Generation Methods 
There exist many test generation methods that are based on 

FSMs. Some of them are able to detect only certain errors 
classes of the fault model given above, whereas other allow to 
cover all errors classes. 
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Fig. 5 Test generation based on TT method 

 

All test generation methods based on FSMs have a common 
basic idea. A test sequence is preferably short sequence of 
consecutive transitions that contains every transition of the 
FSM at least once and allows to check whether every 
transition is implemented as defined. To test a transition, one 
has to apply the input for the transition in the starting state of 
the transition, to check whether the correct output occurs, and 
to check whether the correct next state has been reached after 
the transition. Checking the next state might be omitted 
(transition tour method) or be carried out by means of 
distinguishing sequences (checking experiments method), 
characterizing sequences (W-method), or unique input/output 
sequences (UIO methods). Some of these methods were also 
extended to nondeterministic FSMs [7]. 
 The transition tour method (TT): This method is able to 

detect any set of output faults in the absence of transfer 
faults. A transition tour of a FSM is a path (test sequence) 
starting at the initial state, traverse every transition at least 
once, and returns to the initial state (Fig. 5). From a 
transition tour, one can identify a test suite consisting of 
an input sequence and its expected output sequence based 
on the specification: the input sequence a1a2a1a2a1a2 and 
its expected output sequence 011100. The transition tour 
can find all output faults, e.g. the faulty observed output 
sequence 111100 is detected when executing the input 
sequence a1a2a1a2a1a2 on the implementation. However, 
the TT-method is not able to detect transfer errors (Fig. 
6). 
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Fig. 6 TT-method cannot detect transfer faults 

 
 The DS-method (Distinguishing Sequence) and the UIO-

method (Unique Input/Output Sequence) detect any set of 
output and transfer faults, assuming that the number of 
states is still the same as in the specification. An input 
sequence is a distinguishing sequence if after applying the 
input sequence, one can determine the source state by 
observing the output sequence (Fig. 7). Let s be a state; an 
input sequence is a UIO sequence for s if after applying 
the input sequence, on can state whether the source state s 
is or not by observing the output sequence. 

 The W-methods (Characterising Set) detect in addition 
transfer faults with additional and missing states. A set of 
input sequences is a characterising set if after applying all 
input sequences in the set, one van determine the source 
state by observing the output sequences.  
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Fig. 7 DS-Method 

 
DS-Method, UIO-Method and W-method have the following 
main idea: Generate a test suite that, for every transition (s, i, 
o, s’): (1) Puts the implementation into state s (setup) (2) 
Applies input i and check whether the actual output is o 
(output error) (3) Determines whether the target state of the 
implementation is s’ (transfer fault) 

C. Test Sequence Generation based on EFSMs 
The main problem of the test sequences generation methods 

is that FSMs can only specify the control flow of an embedded 
system. To specify both the control and the data flow, EFSMs, 
which are based on FSMs extended by variables, should be 
applied. As seen in the previous sections, EFSM models form 
the basis of the standardized formal description techniques. In 
order to apply FSM based methods, the EFSM should be 
transformed into an equivalent FSM. 

Theoretically, provided that all variables of an EFSM have 
a finite, countable domain, an EFSM can be transformed into 
an equivalent FSM. The transformation leads to the removal 
of variables from the state machine and an increase in the 
number of states. In fact, an EFSM can be viewed as a 
compressed notation of an FSM. It is possible to unfold it into 
a pure FSM by expanding the values of variables. But, their 
domain have to be reduced in order to avoid the state and input 
explosion problem. In this case, the FSM-based methods cover 
not only the control flow but also the data flow. 

An approach to bridge that gap between an EFSM and an 
FSM avoiding inordinate increase in the number of states has 
been discussed in [8]. The aim is to make FSM-based methods 
for test generation applicable to EFSM. The approach is 
discussed on the basis of one-module Estelle normal form 
specification representing an EFSM. An expanded EFSM that 
is equivalent to the original EFSM can be generated by 
applying a transformation algorithm without loss of important 
information. The expanded EFSM can be then interpreted in 
terms of FSM. 

Such a transformation is based generally on the 
classification of state and input variables and taking into 
account only the variables that effectively influence the 
control flow. If their domains are originally small (which is 
usually the case for the most real-life systems) or reasonably 
reduced, then the state explosion problem can be alleviated. 
Furthermore, the minimization of the obtained FSM will lead 
to more reduce the number of states and makes the state 
explosion problem less severe. This takes place through 
eliminating all equivalent states of the FSM by applying a 
well-known minimization algorithm. 

For the resulted FSM, classic test sequences generation 

methods, such the transition tour method, W-method, UIO 
method, etc. can be applied. This allows to generate test 
sequences that cover the control and data flows of the original 
(predicated) EFSM. 

D. Related Models 
Statecharts as a semi-formal model is actually the mostly 

used formalism to specify requirements for embedded systems 
[4]. Although Statecharts provide graphical facilities, they 
might lack formal and unambiguous semantics. Therefore, 
detecting bugs, incompleteness and inconsistencies becomes a 
difficult task. Furthermore, they are only used to describe 
behavioural requirements. To alleviate these lacks many 
authors try to combine formal notations like Z with state-
transition models [5]. Z is based on set theory and first order 
predicate logic and used for data structuring and abstracting. 
Petri Nets have been also used as specification models for 
embedded systems to deal with their verification, e.g. [12]. 
However, approaches developed around this model do not 
clearly address formal test data generation methods, e.g. for 
testing purposes. In addition, they don’t relate to standardised 
formal description techniques. Further, the readability and 
understandability of a Petri Net specification becomes difficult 
with the growing complexity of a system. On the other side, 
formal description techniques provide clear specifications 
because the combination of the single EFSMs to build the 
whole specification takes place just by linking (attaching) 
them (EFSMs). Thus, a formal syntax and a formal semantic 
are well supported by FDTs. 

IV. CONCLUSION 
In this work we have presented the principle of a validation 

approach based on conformance testing that can be reused for 
embedded systems described as (extended) finite state 
machines. This implied appropriate test generation methods 
and related fault models. An appropriate communication 
model for embedded systems and its mapping on EFSMs and 
on the FDT Estelle have been also discussed. We have 
identified the different analysis and testing issues and 
especially dealt with checking erroneous behaviour of 
embedded system implementations against the specification. 
The FDTs as specification languages are characterized not 
only by a formal syntax but also a formal semantic and have 
been successfully used in the formal design of many 
communication protocols and communicating systems.  

We are refining the here proposed validation approach by 
particularly defining an appropriate testing architecture. We 
are also developing a knowledge-based diagnosis system to 
explain the reasons of errors in faulty implementations after 
test suites execution (sets of test cases). In addition, we plan to 
investigate real-life embedded systems especially from the 
automotive area to study the extent of the application of the 
analysis and testing approach. 
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