
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:2, 2010

125

 

 

Aspect based Reusable Synchronization Schemes 
 

Nathar Shah 
 

 
 

Abstract—Concurrency and synchronization are becoming big 
issues as every new PC comes with multi-core processors. A major 
reason for Object-Oriented Programming originally was to enable 
easier reuse: encode your algorithm into a class and thoroughly 
debug it, then you can reuse the class again and again. However, 
when we get to concurrency and synchronization, this is often not 
possible. Thread-safety issues means that synchronization constructs 
need to be entangled into every class involved. We contributed a 
detailed literature review of issues and challenges in concurrent 
programming and present a methodology that uses the Aspect-
Oriented paradigm to address this problem. Aspects will allow us to 
extract the synchronization concerns as schemes to be “weaved in” 
later into the main code. This allows the aspects to be separately 
tested and verified. Hence, the functional components can be weaved 
with reusable synchronization schemes that are robust and scalable.   
 

Keywords—Aspect-orientation, development methodology 
software concurrency, synchronization.  

I. INTRODUCTION 

ESIGNING classes in object-oriented paradigm for 
concurrent applications require considerable effort to 

ensure they are thread-safe and yet safe from liveness hazards. 
In single threaded programs, performance improvements are 
made in various ways: the execution instructions can be 
reordered, and frequently used data cached in registers or 
processor-local caches [1]. These improvements, if applied to 
multi-threaded programs, however, will undermine safety and 
consistency of the applications. Different threads seeing 
different cached value for the updates done by other threads, 
for example, will result in a race condition. It is a condition 
where the correctness of an operation depends on the relative 
timing or interleaving of multiple threads at the run-time.  

The objective of this paper is to motivate readers on the 
need to develop a new methodology for concurrent 
programming. We also present a new methodology based on 
aspect-orientation to separate synchronization aspects from an 
object-based program into synchronization schemes, so that 
tested synchronization schemes can be reused by other objects 
that have the same patterns of synchronization, therefore 
contributing to robust programs. 

The paper is organized as follows: in section II, we focus 
on the issues and challenges in building Java concurrent 
applications and along the way set the foundations to separate 
synchronization aspects of the concurrency as a concern that 
can be reused; Section III presents the methodology that we 
propose; and section IV looks into some relevant related 
works.  

Nathar Shah is with the Faculty of Information Technology, Multimedia 
University, Cyberjaya, 63100 Selangor, Malaysia (phone: +603-8312-5230; e-
mail: nathar.packier@mmu.edu.my). 

II.   ISSUES AND CHALLENGES IN BUILDING CONCURRENT 
APPLICATIONS 

A. Deadlock 
Deadlock is a term given to a scenario of cyclic dependency 

between resources hold by the holder and the requester. In 
multi-threaded Java applications, deadlocks can be of two 
types: lock-ordering deadlock, and resource deadlock [1]. The 
commonality between them is that they occur when locks or 
resources are shared. When the shared locks or resources form 
cyclic dependency or infinitely blocked, deadlock occurs. 
Contributing factors in lock-ordering deadlock include 
operations with coarse grained synchronization that may 
invoke alien methods which consequently acquire separate 
locks, and also unregulated lock sharing. Noteworthy 
abstraction concepts like classes and interfaces enables 
dynamic binding of reference variables to an object at run-
time, therefore also enables dynamic lock order deadlock. 
Brian Goetz et al. highlighted two mechanisms to prevent 
deadlock: first, applications that need to acquire multiple locks 
need to observe a global locking order and second, using open 
calls - invoking methods with no lock held. 
 Currently no mechanism is available to enforce global 
locking order policy. Similarly restricting open calls requires 
careful design. However, both greatly improve the liveness 
analysis of a program. Clearly, at the outset, invoking alien 
methods that may acquire separate locks, unregulated lock 
sharing, global locking order, and open calls are related to the 
issue of locking and may contribute or prevent deadlocks. 
Hence, the key is in the ability to effect coordination in 
possessing and releasing of locks. 

Having a locking protocol to coordinate between the 
synchronization schemes and functional components will 
relieve programmers from human prone errors and result in a 
more reliable program. An optimistic solution to the problem 
is to have synchronization patterns that can be weaved to 
functional components programmed in a pseudo-standard 
way. On the other hand, compare-and-swap (CAS) atomic 
variables - used in non-blocking algorithms and lock-free 
algorithms - however, are an alternative to current  thread 
unsafe and liveness hazard prone lock-based algorithms. But, 
experiments have shown that at low contention, CAS 
performs better and at high contention, locking mechanism 
performs better [1]. Furthermore, although CAS based atomic 
variables have both atomicity and happens-before 
relationship, they are unable to account for invariants in the 
program. Therefore, thread-safety is still an issue with CAS 
based atomic variables.  

B. Starvation 
Avoiding starvation is another challenge in developing 

D 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:2, 2010

126

 

 

multi-threaded applications. Starvation occurs when a thread 
is perpetually denied access to resources it needs in order to 
make progress. In the worst case, when cyclic dependency 
between starving threads is formed, it leads to thread-
starvation deadlock [1]. Thread priorities and granularity of 
synchronization/locking are the main lead factors of 
starvation. Greedy higher priority threads will always pre-
empt and run on top of the lower ones leaving others starving 
to get CPU cycles to complete their processes. Whereas in 
coarse grained synchronization/locking, it prevents other 
threads waiting for the lock from progressing for the period of 
locking – lock starvation.  

CAS based atomic variable implementation fare better in 
this respect, however, still susceptible to starvation if the 
thread priority decides. The CAS atomic variables, on the 
other hand, are not compatible with coarse grained granularity 
in the presence of invariants. They result in thread-safety 
issues. But, coarse grained locking is good to protect the 
invariants. For independent state variables, a multiple lock 
guard will be able to improve the scalability – as a result of 
less thread contention. A combination of both CAS atomic 
variable and locking approach will give the most benefit.  

C.   Livelock 
Livelock also disrupts the progress of threads. However, the 

threads will not be blocked as in deadlock and starvation, but 
will strive to complete an operation that will always fail.  This 
case is prevalent in CAS based non-blocking-algorithms and 
lock-free- algorithms in a highly contentious environment. A 
CAS update to a variable is hoped to be successful and if not 
the detection mechanism will allow the caller to handle by 
retrying, backing off, or giving up. The retying may always 
fail if some other thread has done the required changes.  

D.   Thread Safety 
Thread safety is required when multiple threads access a 

shared mutable state. Brian Goetz[1] specified three base 
elements in the design of a thread-safe class: the variables that 
forms the object’s state, invariants that constraint the state 
variables, and the policy to manage concurrent access to the 
object’s state. Primary means to achieve thread safety are by 
using synchronization, locking, and atomic variables. In 
addition, immutable objects, and thread confined objects may 
also be used. A program composed of thread-safe classes may 
not necessarily be classified as thread-safe. Vice-versa, a 
thread-safe program may contain non thread-safe classes also. 
What matters is if the invariants in the program are protected. 
In the presence of invariants, however, synchronization and 
locking approaches are more suitable as they protect the 
coherence of the invariants. With either blocking or non-
blocking synchronization, race conditions can be prevented. A 
blocking synchronization will obtain an intrinsic lock and 
therefore serialize the execution. However, non-blocking 
synchronization relies on optimistic approach such as CAS in 
guaranteeing atomicity and happens-before relationship.   

Apart from the synchronization issue, there are also other 
concerns for thread safety such as safe publication. Publishing 

an object, an act of making it available to its enclosing 
environment (i.e. outside its scope) via means like returning a 
reference from a non-private method, passing objects as 
parameters to a method, publishing inner class instance, or 
storing reference in a public static field has the possibility of 
making visible semi constructed object states. The object is 
said to be escaped. An escaped object can compromise the 
thread safety in that it allows other threads to change its 
invariant and also states illegally. These are the minute issues 
a programmer hardly realize or remember. In essence, objects 
need to go through some form of pre-conditions and post-
conditions when its methods are called. A right mechanism is 
one that allows misconstruction to be checked during the pre-
test process and corrective action performed before executed.  

III. A METHODOLOGY FOR REUSABLE SYNCHRONIZATION 
SCHEMES 

Earlier, major challenges in building concurrent programs 
are stated. Among others, it defined the challenges, elaborated 
on the causes, examined approaches to solutions, and outlined 
issues to be considered for a reusable mechanism. The trend is 
a coordination mechanism between the functional components 
and the synchronization schemes/patterns via some protocol 
where the concurrency schemes' invariants are guarded via pre 
and post conditions. The protocol should define the 
configuration of the functional components such that the 
synchronization scheme can be weaved to the identified 
configuration points.  The pre and the post conditions in the 
general sense is a monitor for communication with the objects 
such that it will be able to enforce invariants, optimize 
implementation of invariants (e.g. by using CAS for non-
interfering conditional variables), and prevent escaping of 
objects. Current state-of-the-art in the field (Java Language), 
however, emphasize on providing concurrent APIs like for 
concurrent data structures – with taken care thread safety - and 
is expected to be used correctly with the functional 
components.    

Aspects [2] allow us to extract the synchronization 
concerns to be “weaved in” later into the main code. Hence, 
aspects can be separately tested and verified. The idea is 
depicted in Fig. 1 overleaf. In Fig. 1 (A), functional 
component and synchronization schemes are tangled. In the 
new model, as represented in Fig. 1(B), functional component 
and synchronization schemes are separated and are weaved in 
as per coordination protocol defined in the aspect by the 
aspect weaver.  
 The methodology to achieve the aspect based concurrent 
programming model is as follows:- 
 

1) Classify and generalize synchronization concurrency 
controls 

Patterns on how synchronization concurrency controls 
affect functional components need to be identified and 
generalized. These patterns will set requirements for the kinds 
of joint points and restructuring expected at the functional 
components. The join points together with the protocol to be 
defined will enable synchronization aspects to be weaved 
separately by using the AspectJ[2] weaver. Then, 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:2, 2010

127

 

 

classification of these patterns will allow implementation of 
simple synchronization concurrency control units which will 
enable reuse. These synchronization units will then be 
composed to form synchronization schemes.  

 
Fig. 1 (a) Represents current concurrent programming model and (b) 

Aspects based programming model 
 

2) Specify and design the coordination protocol 
In order for both the functional components and the 

synchronizing aspects to work in tandem and seamlessly, a 
protocol for their coordination are specified. In the earlier 
work of [3] and [4], protocols were developed for thread 
access to functional components concurrently. The protocol is 
developed by structuring the functional components so that 
appropriate join points for aspects can be made available for 
synchronization aspects to be weaved with the semantics 
provided by the protocol.  

 
3)Develop aspects for the synchronization schemes 
The implemented synchronization concurrency units are 

composed to form synchronization schemes which can be 
reused. The scheme are developed using AspectJ[2]. The 
pointcuts for the aspect are determined for the join points 
revealed earlier.  

IV. RELATED WORKS 
Two of the interesting views are: reforming how concurrent 

programs are developed by introducing new sets of language 
constructs and guarding objects against concurrency-related 
problems. The D Language Framework [4], for example, 
focuses on separating the synchronization aspects, the 

distribution aspects, and the functional components. In that 
framework, two languages – COOL and RIDL – were 
designed to tackle the first two aspects. They were glued 
together with the functional component of a class by an aspect 
interface contained by the class.  

Our interest was in the COOL language. It offers syntactic 
constructs to specify synchronization states, mutual exclusion 
of methods, self-exclusion of methods, and a method manager 
for guarded suspension and notification of threads. These 
language constructs are all contained in a construct called a 
coordinator which can reference to an instance of a class, or 
any class.  

Similarly, the Synchronization Patterns [5] approach also 
decouples synchronization from the functional code in a class 
definition. The approach specifies synchronization constraints 
using data structures, operations, locks, and synchronization 
schemes– specified in terms of mutual exclusion, pre and post 
conditions. From the definition of the synchronization patterns 
and the ‘normal’ class definition, code for the target language 
is generated using a rich meta-language.  

Other advocates of concurrency reuse suggested guard-
based approaches such as the Threaded Active Object (TAO) 
[6] model that allows specification of a guard at a method’s 
interface. The guard follows the same principle as the object-
oriented paradigm in that it can be overridden and extended at 
the new method if the base guard needs to be changed.  

Another closely related technique to the guard-based 
approach is the Composition Filter [7] approach. Input and 
output messages to and from an object go through a set of 
programmed input and output filters. A filter consists of three 
parts: a condition, a pattern, and a substitution. Also, the 
filters may change the semantic of the invoked object. 
Synchronization constrains are specified using a wait filter – 
essentially acting as a guard. The filter passes successful 
messages to the next filter, and the failed ones will be stored 
in a queue until they become acceptable. The behavior 
coordination between objects is done by the Abstract 
Communication Types (ACT). 

REFERENCES   

[1] G. Brian, Java Concurrency in Practice, Addison-Wesley, 2006. 
[2] AspectJ, http://www.eclipse.org/aspectj/ 
[3] David Holmes, James Noble, John Potter, “Aspects of Synchronization”, 

Proceedings of the Technology of Object-Oriented Languages and 
Systems, IEEE Computer Society, pp 2, 1997  

[4] Lopes C. V., “D: A Language Framework for Distributed 
Programming”, Ph.D Thesis, College of Computer Science, Northeastern 
University, November 1997 

[5] C.V. Lopez and K.J. Lieberherr., “Abstracting process-to-function 
relations in concurrent object-oriented applications”, Proceedings of the 
8th European Conference on Object-Oriented Programming (ECOOP), 
LNCS, 1994 

[6] Mitchell S. E., “TAO – A Model for the Integration of Concurrency and 
Synchronization in Object Oriented Programming”, Ph.D dissertation, 
Dept. of Computer Science, York University, UK, 1995 [4] L. 
Bergmans, “Composing Concurrent Objects”, PhD Thesis, University of 
Twente, 1994 

[7] L. Bergmans, “Composing Concurrent Objects”, PhD Thesis, University 
of Twente, 1994 


