International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:9, 2007

Data Annotation Models and Annotation Query
Language

Neerja Bhatnagar and Benjoe A. Juliano and Renee S. Renner

Abstract— This paper presents data annotation models at
five levels of granularity (database, relation, column, tuple, and
cell) of relational data to address the problem of unsuitability of
most relational databases to express annotations. These models
do not require any structural and schematic changes to the
underlying database. These models are also flexible, extensi-
ble, customizable, database-neutral, and platform-independent.
This paper also presents an SQL-like query language, named
Annotation Query Language (AnQL), to query annotation
documents. AnQL is simple to understand and exploits the
already-existent wide knowledge and skill set of SQL.

Keywords - annotation query language, data annotations,
data annotation models, semantic data annotations.

I. INTRODUCTION

Most relational databases (RDBMSs) utilize their
metadata schema to store statistical information for
constraint checking and query optimization. The meta-
data schema provided by most RDBMSs is unsuitable
for expressing data annotations. Data annotations are
semantically rich metadata applicable to a particular
application domain that help further clarify features of
interest. A feature of interest is a data item that a
user wants to annotate [1]. Types of data annotations
include comments, descriptions, definitions, notes, error
messages, among several others.

This paper addresses the problem of unsuitability
of most RDBMSs’ metadata schema by defining data
annotation models that allow the annotation of relational
data at five levels of granularity - database, relation,
column, tuple, and cell. These data annotation models are
structured using Extensible Markup Language (XML).
The most important feature of these models is that they
do not require any structural or schematic changes to the

underlying RDBMS.

Manuscript received October 31, 2006.

Neerja Bhatnagar (email: neerja@cs.ucsc.edu) received her
Master’s degree in Computer Science from California State
University, Chico. She is currently pursuing PhD at University of
California, Santa Cruz.

Dr. Benjoe A. Juliano (email: juliano@csuchico.edu) and Dr. Renee
S. Renner (email: renner@csuchico.edu) are Associate Professors in
the department of Computer Science at California State University,
Chico. Both lead research projects at the Institute for Research in
Intelligent Systems (IRIS) and the Intelligent Systems Laboratory
(ISL).

It is common knowledge that database administrators
(DBAS) are resistant to structural and schematic changes
to already deployed databases. Thus, these models stand
a greater chance of being adopted. In addition, these
models are easy to understand, flexible, customizable,
extensible, database-neutral, and platform-independent.
These models also allow users to cross-reference related
annotations. The ability to customize these models stems
from the flexibility given to users to define annotations
to serve their individual requirements. Specifically, users
can name the applicationDomainSpecificTag
according to their requirements.

This paper also presents an SQL-like query lan-
guage, Annotation Query Language (AnQL), to query
annotation documents based on these models. AnQL
is designed to take advantage of the already-abundant
knowledge and skill set of SQL. XQuery and XPath
are complex query languages. Learning these languages
might present a steep learning curve. SQL-XQuery
engines force RDBMSs to deal with semi-structured
data format. Simplicity and ease of understanding are
the main motivation factors for the design of the data
annotation models and the query language presented in
this paper.

Data annotations reduce communication and data ex-
change hassles and provide almost all database users
(scientists, customer service providers, banks, corpora-
tions) with a more collaborative environment. A scientist,
who wants to share the discovery he or she made
while investigating an image can utilize annotations to
annotate the image. He or she can also seamlessly share
these findings with other researchers. Due to its numeric
nature, it is often difficult to interpret the semantics
of scientific data, simply by looking at it. As an ex-
ample, it is difficult to interpret whether the data in
the TEMPERATURE column is expressed in Metric or
English units. Annotations can help scientists to annotate
the TEMPERATURE column with the appropriate unit.
If the column contains temperature in both Metric and
English units, the cell-level data annotation model can
be used to annotate each cell individually with its
unit. An alternative is to change the data type of the
TEMPERATURE column, from DECIMAL to VARCHAR,

2805

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:9, 2007

to accommodate the unit. This might not be desirable
since the scientists will lose the ability to manipulate
the data mathematically. Moreover, this also requires
a change to the underlying RDBMS. In some cases,
annotations might also help reduce costs, and save time
and effort. As an example, a customer can dispute a
charge on his or her bank statement using annotations.
The customer need not restrict himself or herself to the
customer service hours. A customer service provider can
also use annotations to update the customer.

Il. RELATED WORK

This section compares and contrasts the annotation
models presented in this paper with Annotea [2], DB-
Notes [3], MONDRIAN [4], SLIMPad [5], and with
those presented in [1] and [6]. Annotea allows users to
annotate documents identified by a URI with or without
the knowledge of the authors. Similar to the models pre-
sented in this paper, DBNotes and MONDRIAN annotate
relational data. The models presented in this paper allow
relational data to be annotated at five different levels
- database, relation, column, tuple, and cell. DBNotes
focuses on the where-provenance and annotation prop-
agation. MONDRIAN focuses on biological databases,
and allows users to annotate both single values and the
association between multiple values. SLIMPad annotates
data that resides in a variety of applications, such as
databases, spreadsheets, and documents, among several
others. SLIMPad addresses annotations in the domain
of physicians providing treatment to patients. The sys-
tem presented in [6] annotates audio-visual documents.
The system presented in [1] annotates neuroanatomical
images at various levels of granularity.

Annotea and SLIMPad utilize RDF to define anno-
tations. DBNotes and MONDRIAN utilize relational
data to express annotations. The annotation system in
[6] utilizes LEDA graph structure and XML Document
Object Model (DOM) to express annotations. The data
annotation models presented in this system also utilizes
XML to structure data annotations. The system presented
in [1] uses text-based annotations. All annotations, by
default, based on the data annotation models presented in
this paper, are accompanied with metadata information,
such as the author’s name and the creation time stamp.
This behavior is common with annotations in Annotea.
Both Annotea and the data annotation models presented
in this paper allow annotations to cross-reference related
annotations.

Annotations in Annotea reside in generic RDF data-
bases, accessible through HTTP servers. Annotations
presented in [1], [6], and in this paper reside outside
the underlying database whose data they annotate. Data

annotation documents based on the data annotation mod-
els presented in this paper reside on the file system of
a computer system. SLIMPad modifies the base layer
that it annotates in order to store annotations. DBNotes
and MONDRIAN store annotations within the RDBMS.
Columns may be added to relations in order to annotate
relational data. Annotations at column and tuples levels
can be expressed using this scheme. However, it is
difficult to express annotations at the database, relation,
and cell levels.

DBNotes extends SQL to pSQL, which specifies three
propagation schemes for annotation propagation. pSQL
can be used to query both data and annotations. MON-
DRIAN introduces color algebra that can also be used to
query both data and annotations. In contrast, AnQL can
only be used to query annotations. SQL must be used to
retrieve the data that the annotation documents annotate.
The query language presented in [1], similar to AnQL,
utilizes data annotation graphs to query annotations.
However, the semantics of nodes and edges in the data
annotation graphs utilized by [1] and AnQL are different.
AnQL queries annotations directly. The system presented
in [1] maps nodes and edges of an annotation graph
to relations stored in the underlying database, translates
annotation queries into equivalent SQL queries.

I11. DATA ANNOTATION MODELS

Fig. 1-5 present data annotation models that allow
users to annotate relational data at five different levels
of granularity - database, relation, column, tuple, and
cell. XML is used to structure these data annotation
models. XML was chosen because it provides several
advantages over other data formats, such as simple text,
e-mail, or electronic forms. XML is database-neutral
and platform-independent. Therefore, it can be used to
share annotations seamlessly regardless of the underlying
database and operating system that contains the relational
data to be annotated. Since XML supports Unicode,
the support for expressing data annotations in several
different languages is already built-in. [7].

Each of the data annotation models may be di-
vided into identification, level, annotation, annotation
metadata, and cross-reference modules. The identifica-
tion module uniquely identifies a data annotation docu-
ment via the documentName and documentId tags.
The level module (via the element hierarchy enclosed
within the tag annotationAttachedTo) represents
the level of the relational data (database, relation, col-
umn, tuple, or cell) that the data annotation document
annotates. The annotation module contains the actual
data annotation. The annotation metadata module (via

2806

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:9, 2007

<annotationDocument>
<documentName>uniqueName</documentName>
<documentId>uniqueld</documentId>
<annotationAttachedTo>
<database>databaseName</database>
</annotationAttachedTo>
<!--annotation and annotationMetadata may occur
multiple times in a single document -->
<annotation>
<applicationDomainSpecificMetatag>
dataAnnotation
</applicationDomainSpecificMetatag>
<annotationMetadata>
<author>someone</authors
<recorded>someDateAndTime</recordeds>
</annotationMetadata>
</annotation>
<referencedAnnotations>
<documentNameList>
<documentName>uniqueName</documentName>
<documentName>uniqueName</documentName>

</documentNameList>
</referencedAnnotations>
</annotationDocument >

Fig. 1. Database-Level Data Annotation Model

<annotationDocument >
<documentName >uniqueName</documentName >
<document Id>uniqueId</documentId>
<annotationAttachedTo>
<database>databaseName</database>
<relation>relationName</relation>
</annotationAttachedTo>
<!--annotation and annotationMetadata may occur
multiple times in a single document -->
<annotation>
<applicationDomainSpecificMetatag>
dataAnnotation
</applicationDomainSpecificMetatag>
<annotationMetadata>
<author>someone</author>
<recorded>someDateAndTime</recorded>
</annotationMetadata>
</annotations>
<referencedAnnotations>
<documentNameList>
<documentName>uniqueName</documentName>

</documentNameList>

</referencedAnnotations>
</annotationDocument>

Fig. 2. Relation-Level Data Annotation Model

the annotationMetadata tag) maintains bookkeep-
ing information (creation time stamp and author name)
on the actual annotation. The cross-reference module
allows annotations to cross-reference related annotations.
Annotations are in essence immutable i.e. an annotation
that overrides another annotation does not cause the
original annotation to be erased.

An alternative to using the data annotation models
presented in Fig. 1-5 is to keep notes in text documents.
However, this approach presents a few problems. First,
this alternative does not provide a uniform, consistent
mechanism to express annotations. The reason is that
each user would use his or her own personal format.
Second, sharing text documents across platforms is
difficult. Third, keeping annotations in text documents

<annotationDocument >
<documentName >uniqueName</documentName>
<documentId>uniqueld</documentIds>
<annotationAttachedTo>
<database>databaseName</database>
<relation>relationName</relations
<column>columnName</column>
</annotationAttachedTo>
<!--annotation and annotationMetadata may occur
multiple times in a single document -->
<annotation>
<applicationDomainSpecificMetatags>
dataAnnotation
</applicationDomainSpecificMetatag>
<annotationMetadata>
<author>someone</author>
<recorded>someDateAndTime</recorded>
</annotationMetadatas>
</annotations>
<referencedAnnotations>
<documentNameList>
<documentName>uniqueName</documentName>

</documentNameList>
</referencedAnnotationss>
</annotationDocument >

Fig. 3. Column-Level Data Annotation Model

<annotationDocument >
<documentName>uniqueName</documentName>
<documentId>uniqueId</documentId>
<annotationAttachedTo>
<database>databaseName</database>
<relationsrelationName</relations
<1--for composite primary keys, list values separated
by commas-->
<tuplesprimary key</tuples
</annotationAttachedTo>
<!--annotation and annotationMetadata may occur multiple
times in a single document -->
<annotation>
<applicationDomainSpecificMetatag>
dataAnnotation
</applicationDomainSpecificMetatag>
<annotationMetadata>
<author>someone</authors>
<recorded>someDateAndTime</recorded>
</annotationMetadatas>
</annotation>
<referencedAnnotations>
<documentNameList>
documentName>uniqueName</documentName

</documentNameList >
</referencedAnnotations>
</annotationDocument >

Fig. 4. Tuple-Level Data Annotation Model

<annotationDocument >
<documentName>uniqueName</documentName >
<document Id>uniqueId</documentId>
<annotationAttachedTo>
<database>databaseName</database>
<relation>relationName</relation>
<column>columnName</column>
<!--for composite primary keys, list
values separated by commas-->
<tuplesprimary key</tuples
</annotationAttachedTo>
<!--annotation and annotationMetadata may occur
multiple times in a single document -->
<annotation>
<applicationDomainSpecificMetatag>
dataAnnotation
</applicationDomainSpecificMetatag>
<annotationMetadata>
<author>someone</authors>
<recorded>someDateAndTime</recorded>
</annotationMetadatas
</annotation>
<referencedAnnotations>
<documentNameList>
<documentName >uniqueName</documentName >

</documentNameList>

</referencedannotations>
</annotationDocument >

Fig. 5. Cell-Level Data Annotation Model

2807

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:9, 2007

does not automatically maintain metadata information
on annotations. The data annotation models presented
in this paper not only address all of these problems, but
also present useful features, such as, cross-referencing
and annotation metadata.

Another alternative to using the data annotation mod-
els presented in Fig. 1-5 is to declare ANNOTATION
columns. An ANNOTATION column may be added for
each data column. A single ANNOTATION column can
express tuple-level annotations. However, this technique
requires the addition of columns to an already de-
ployed database. This might be problematic because it is
common knowledge that DBAs are resistant to making
any changes to already deployed databases. Secondly,
this technique is only effective for annotating data at
the column and tuple levels. The third problem with
this technique is that all queries with “select «”
must be modified to exclude ANNOTATION columns,
particularly, if the users want to view data only. Sim-
ilarly, all data insertion queries that use “insert
into relation wvalues ()” without specifying the
columns into which data has to be inserted must also
be modified. All applications that retrieve data from the
database, and manipulate and process this data must be
modified accordingly to accommodate the changes in
the underlying RDBMS. Such changes to the underlying
database, and applications that work in association with
the database, can prove to be particularly difficult for
production systems that are typically heavily used. An-
other major disadvantage of this technique is that it might
not be possible to cross-reference related annotations
since the annotations stored in database columns are no
longer uniquely distinguishable.

Although, it might be feasible to utilize ANNOTATION
columns to annotate relational data at the column and
tuple level, this technique cannot be used effectively
to annotate at the database, relation, and cell levels.
This is because it is hard to decide which relation
should host the column that annotates the entire database.
Similarly a column must be added to each relation to
store annotations at the relation and cell levels.

Data annotation documents based on the models pre-
sented above reside on the file system provided by a
computer system. When the number of data annotation
documents becomes prohibitively large, a smart indexing
scheme would become necessary to quickly locate and
retrieve annotations. An alternative is to store annotation
documents on disks that are being designed specifically
to store and efficiently retrieve semi-structured data [8].
Annotation documents may also be stored inside an
RDBMS. XML documents stored in their entirety inside

RDBMSs present the same problems as those presented
above. XML documents can be shredded and parsed in
order to convert them into tabular format suitable for
mapping on to relational data [9]. This defeats the whole
concept of semi-structured data format - the data to begin
with is not suitable for storage into an RDBMS. More-
over, putting shredded XML documents back together
is expensive since it requires the computation of several
joins. Annotation documents can also be stored in XML
native databases. However, retrieving these annotations
from XML native databases requires the knowledge of
XQuery. XQuery is a complex query language, and
might present users with a steep learning curve.

IV. ANNOTATION QUERY LANGUAGE (ANQL)

ANQL, an SQL-like query language, is used to query
data annotation documents based on the models pre-
sented in Fig. 1-5. AnQL is designed to take advantage
of the existent abundant SQL knowledge and skill set.
ANQL query operations include select, project, natural
join, and union. A naive, yet clever, storage scheme
is employed to facilitate AnQL query processing. All
annotation documents pertaining to one database are
kept in a separate directory. In other words, annotation
documents that pertain to say, an Actors database
are kept in separate directories. Within a directory,
annotations pertaining to each level are kept in separate
subdirectories. In other words, annotations at cell-level
and database-level reside in separate subdirectories. An
alternative is to use a tagged file format in which all
annotations are kept in a single file. Tags uniquely
identify the start and end of each annotation. Storing
annotations in a tagged file requires an additional access
to the index file for each query. Moreover, the index file
must be updated for each addition and deletion. Using
a tagged file would also make the annotations and their
querying system dependent.

ANnQL query engine utilizes data annotation graph
generation and data annotation graph traversal func-
tions to process AnQL queries. The data annotation
graph generation (@) function generates a data annota-
tion graph corresponding to a well-formed and validated
data annotation document provided as input. A data
annotation graph is a special graph structured especially
for AnQL query processing and is modeled in spirit of
the XQuery data model [10]. Its nodes correspond to
the elements of a data annotation document, and edges
depict the hierarchical relationship between the elements.
The data annotation graph traversal (X) function tra-
verses a data annotation graph in depth-first manner. The
function accepts as input a start node contained within
a well-formed and validated data annotation document,

2808

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:9, 2007

and returns a set of nodes directly connected to the start
node. The transitive closure (1) of the data annotation
graph traversal accepts the same input as the data
annotation graph traversal function, but outputs the set
of all nodes that are connected directly or indirectly to
the start node.

AnQL’s select (o) operation accepts as input a well-
formed and validated data annotation document and a
boolean predicate of the form element=value or
elementValue=value. It returns the node hierarchy
that satisfies the boolean predicate of the input docu-
ment. In order to process a select operation, the query
engine generates a data annotation graph, using the data
annotation graph generation function, corresponding to
the input data annotation document. The query engine
then traverses the data annotation graph, using the data
annotation graph traversal function, in order to find a
node that satisfies the boolean predicate. It returns as the
result set the node hierarchy that satisfies the boolean
predicate.

ANnQL’s project (1) operation accepts as input a non-
boolean constraint (a maximum of three keywords), and
a project criterion (the level - database, relation, column,
tuple, or cell). It returns the node hierarchy that satisfies
the non-boolean constraint (keywords joined by and
logic) and the project criterion. The processing of project
operation is similar to that of a select operation.

AnQL’s natural join (X) operation joins data annota-
tion documents at a specific level based on a natural
join criterion (author or creation time stamp). If the
natural join criterion is not specified, the operation
simply appends all the data annotation documents at
the specified level. The result set contains the hierarchy
within the annotation tag. AnQL’s definition of
natural join also includes the definition of an intersection
operation. AnQL’s query engine compares the value of
the corresponding nodes (either author or creation time
stamp) in data annotation graphs corresponding to all
documents at the specified level. If the values match,
the query engine includes the annotation in the result
set.

The union (U) operation generates a consolidated
report that groups annotations at a specified level i.e.
all data annotations pertaining to a particular cell. The
query engine browses through the relevant directory
(determined by the union criterion), and groups all data
annotations at one level into one large document to
provide the users with a comprehensive, consolidated
view of annotations at that level. The processing of union
operation is inefficient since no indexing mechanism
has been employed. Therefore, computation of a union

operation is done routinely during relatively non-busy
times. The result set for all operations, by default, returns
the element hierarchy within annotationMetadata
when the hierarchy within the annotation tag is
returned.

Select, project and natural join operations may be
combined to form Select-Project-Join (SPJ) queries, and
select, project, and union operations may be combined
to form Select-Project-Union (SPU) queries.

A Select-Project-Natural Join Query
Example. The example SPJ query -
Oclement=annotationMwater” MRudyCampos
(RealEstate/Features/Property Id/PI2)
is issued over an example RealEstate database
(presented below). Fig. 6 and 7 present example
data annotation documents that annotate data in the
RealEstate database. This query signifies the join
of cell-level annotations whose author is Rudy Campos.

Pptyld | MLS Street CITY ZIP

Listings| PI1 387811 | 2928 Leigh San Jose 95127
P12 401891 | Out of Area | Out of Area | 95148

Pptyld | LotSize | Bed | Bath | Age | Style
Features| PI1 - 4 2 47 Detached
P12 0.62 - - - Land

Ftrid | FtrName
Details | FI1 Fireplace
FI10 | L-Shaped Pool

Id Name
Agents| AG1 | Rudy Campos
AG2 | Carla Gallegos

Pptyld | FtrID
Contains [PIT | FI Sold PRyId
P12 2 [AGL [PIT |

AnQL’s query engine first processes the natural join
operation. Using the data annotation graph generation
function, it generates data annotation graphs correspond-
ing to the input documents. Next, using the data an-
notation graph traversal function, it traverses to the
author node and compares them. If the nodes match,
the query engine returns the node hierarchy within the
annotation tag. Next, the query engine processes the
project clause by searching for the keyword “water”,
in nodes of type elementValue and textValue,
within the intermediate result set returned by natural
join. The query engine, next, processes the select clause
by traversing through the nodes of type element within
the intermediate result set generated by the processing
of natural join and project clauses. Fig. 8 presents the
result set of the example query. [11] presents detailed
discussion of AnQL’s operations, along with several
examples.

V. CONCLUSIONS AND FUTURE WORK

This paper presented data annotation models that can
annotate relational data at five different levels - database,

2809

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:9, 2007

<annotationDocument>

<documentName>REFeaturesPropertyIdPI2</documentName>

<documentId>RE11</documentId>

<annotationAttachedTo>
<database>REAL_ESTATE</database>
<relation>FEATURES</relation>
<column>PROPERTY_ID</column>
<tuple>PI2</tuple>

</annotationAttachedTo>

<annotation><comment>
Build your dream home. Sunny and private. Water
and electricity at site. Plans and permits
approved and ready for a 2683+ sq. ft home. Septic
and geo approved. </comment>
<annotationMetadata>

<author>Rudy Campos</author>
<recorded>Apr 1, 2004 10:15:25 AM</recorded>

</annotationMetadata>

</annotation>

</annotationDocument>

Fig. 6. Example Data Annotation Document (REFeaturesProper-
tyldP12)

<annotationDocument>
<documentName>REFeaturesLotSizePI2</documentName>
<documentId>RE9</documentIds>
<annotationAttachedTo>
<database>REAL ESTATE</database>
<relation>FEATURES</relation>
<column>LOT SIZE</column>
<tuple>PI2</tuple>
</annotationAttachedTo>
<annotation>
<description>
Lot size is in acres.
</descriptions>
<annotationMetadata>
<author>Rudy Camposc</author>
<recorded>May 28, 2004 12:15:14 PM</recorded>
</annotationMetadata>
</annotation>
</annotationDocument >

Fig. 7. Example Data Annotation Document (REFeaturesLotSizeP12)

relation, column, tuple, and cell, along with an SQL-
like query language - AnQL. The motivation for the
models is the simplicity and ease of understanding. The
models are flexible, extensible, customizable, database-
neutral, and platform-independent. These models may
be extended for other data models, such as hierarchical
and object-oriented. AnQL is designed to exploit the
abundant knowledge and skill set of SQL. The anno-
tation system presented in this paper does not inflict
any strucutral or schematic changes to the underlying
database. AnQL’s project operation may be extended to
more keywords and or and not logic. Cross-referencing
can be enhanced with XLink or Xinclude. The union
operation can benefit from a smart indexing scheme. A

<result>
<annotationAttachedTo>
<database>REAL ESTATE</database>
<relation>FEATURES</relation>
<column>PROPERTY_ID</column>
<tuple>PI2</tuple>
</annotationAttachedTo>
<annotation>
<comment>
Build your dream home. Sunny and private.
Water and electricity at site. Plans
and permits approved and ready for a 2683+
sq. ft home. Septic and geo-approved.
</comment >
<annotationMetadata>
<author>Rudy Campos</author>
<recorded>May 28, 2004 12:15:14 PM</recorded>
</annotationMetadata>
</annotation>
</result>

Fig. 8. Result Set of Example SPJ Query

system, as a virtualization over the underlying RDBMS,
can be developed to incorporate these models and AnQL.

REFERENCES

[1] M. Gertz, K.-U. Sattler, F. Gorin, M. Hogarth, and J. Stone,
“Annotating scientific images: A concept-based approach,” in
SSDBM ’02: Proceedings of the 14th International Conference
on Scientific and Statistical Database Management, (Washington,
DC, USA), pp. 59-68, IEEE Computer Society, 2002.

J. Kahan and M.-R. Koivunen, “Annotea: an open rdf infrastruc-
ture for shared web annotations,” in WWW ’01: Proceedings
of the 10th international conference on World Wide Web, (New
York, NY, USA), pp. 623-632, ACM Press, 2001.

L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “DBNotes: a post-
it system for relational databases based on provenance,” in SIG-
MOD ’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, (New York, NY, USA),
pp. 942-944, ACM Press, 2005.

F. Geerts, A. Kementsietsidis, and D. Milano, “Mondrian: An-
notating and querying databases through colors and blocks,” in
ICDE °06: Proceedings of the 22nd International Conference on
Data Engineering (ICDE’06), (Washington, DC, USA), p. 82,
IEEE Computer Society, 2006.

[5] D. Lois, M. David, B. Shawn, D. Longxing, W. Mathew, G. Paul,
A. Joan, L. Mary, and L. J. A., “Bundles in captivity: An
application of superimposed information,” tech. rep., 2000.

E. Egyed-Szigmond, Y. Pri, A. Mille, and J. Pinon, “A graph-
based audiovisual document annotation and browsing system,” in
RIAO (CAIR), April 2000.

K. B.Sall, XML Family of Specifications A Practical Guide.
Boston MA: Addison Wesley, 2002.

M. Bhadkamkar, V. Hristidis, and R. Rangaswami, “Efficient
native XML storage,” tech. rep., Florida International University,
April 2005.

[91 A. H. Al-Azzawe, “IBM video online for e-business
- DB2 inbound XML data fragments,” http://www-
106.ibm.com/developerworks/db2/library, June 2004.

[10] D. Chamberlin, XQuery from the Experts A Guide to the W3C
XML Query Language. Boston, MA: Addison-Wesley, 2004.

[11] N. Bhatnagar, “Data annotation models and annotation query
language,” Master’s thesis, California State University, Chico,
May 2006.

[2

—_—

3

—

[4

—

6

—_

[7

—

8

—_—

2810

