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Abstract—A new hybrid method to realise high-precision 

distortion determination for optical ultra-precision 3D measurement 
systems based on stereo cameras using active light projection is 
introduced. It consists of two phases: the basic distortion 
determination and the refinement. The refinement phase of the 
procedure uses a plane surface and projected fringe patterns as 
calibration tools to determine simultaneously the distortion of both 
cameras within an iterative procedure. The new technique may be 
performed in the state of the device “ready for measurement” which 
avoids errors by a later adjustment. A considerable reduction of 
distortion errors is achieved and leads to considerable improvements 
of the accuracy of 3D measurements, especially in the precise 
measurement of smooth surfaces. 
 

Keywords—3D Surface Measurement, Fringe Projection, Lens 
Distortion, Stereo. 

I. INTRODUCTION 
PTICAL high precision measurement systems based on 
active light projection and image observation using stereo 

camera pairs require high precision optical components 
including lenses showing a minimum of distortion effects. 
However, there are no really distortion free cameras. 
Especially compact systems which realize short distances 
between optical system and measurement object and relative 
large measurement volumes are reliant on the use of wide 
angle lenses usually suffering considerably on lens distortion. 
Additionally, these systems also show a distance dependent 
variation of the distortion. 

This fact has already been investigated by Magill [1] more 
than 50 years ago. He developed a formula for the description 
of the distance dependence of distortion which was refined by 
Brown [2], Fryer and Brown [3], Fraser and Shortis [4], and 
Shortis et al. [5]. Dold [6] introduces an own model for 
distance dependent distortion variation and Luhmann [7] gives 
an extensive survey over distance depending distortion 
variation.  

In order to realize high precision measurements distortion 
variation must not be neglected. However, the accuracy of the 
distortion determination for constant measurement distance 
has  
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to be as precise as the consideration of distance dependence 
becomes worth anyway. 

Here, recent works dealing with lens distortion 
determination and correction usually do not consider this fact, 
and, are appropriate not as precise as necessary for high 
precision measurement applications. Recently an enormous 
number of works treating the problem of lens distortion and 
correction has been published. Accordingly it is not possible 
to cite all relevant papers, but, nevertheless, some contributing 
and original papers should be cited here [8 to 13]. A step 
towards increasing measurement accuracy is gone by the work 
of Grompone et al. [14]. However, the achieved accuracy 
documented in [14] seems to be not sufficient for high-
precision 3D measurement tasks as the comparison with our 
experimental results will show. 

In this work a brief overview over existing distortion 
models together with an evaluating discussion is given. The 
importance of accuracy estimation and measurement error 
determination is outlined. A new hybrid methodology for 
ultra-precise distortion determination is introduced which is 
especially designed for optical 3D measurement systems based 
on active light production technique. 

II.  STATE OF THE ART 
As already mentioned lens distortion correction plays an 

important role in the field of photogrammetry. For the 
description of distortion several models are used. First let C be 
a camera system following the pinhole camera model [7] 
described by the intrinsic camera parameters principal distance 
c, and principal point p = (x0, y0). The position and orientation 
of camera C in a 3D world co-ordinate system is described by 
the three extrinsic camera parameters X, Y, Z (position of the 
projection center), and ω, φ, and κ (orientation angles). Using 
this camera model a 3D scene can be mapped onto an image in 
the image plane of our camera C by central projection of the 
3D points through the projection center (X, Y, Z). Distortion 
should be defined as the deviation of the actual mapping from 
the ideal central projection defined by the set of intrinsic and 
extrinsic camera parameters. The source of the distortion is the 
fact that lens systems usually do not exactly realize an ideal 
central projection mapping. The most typical distortion effect 
is radial symmetric lens distortion caused by the shape of the 
lenses. Additionally, deviations of the camera chip from the 
quadratic pixel size, pixel distance, or flatness are also sources 
of distortion effects. 

Hence distortion is a function of a 2D point in the camera 
image plane characterized by the picture co-ordinates (pixels) 
of the camera and can be described by a 2D vector Δ(x,y) = 
(Δx, Δy). This function is interesting for all image points 
(pixels) of the visible part of the image plane (the camera 
chip). 
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A. The Functional Representation 
Using the functional representation, or, as denoted by 

Grompone et al. [14] the parametric model, the distortion 
function will be approximated by a sum function F(x,y) 
including radial symmetric, decentering, affine, and other 
parts: 
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Let us, for example consider radial symmetric, decentering, 
and affine distortion. Then we obtain: 
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The functional description of the describing distortion 

function may be classified by certain characteristics into 
radial, division, FOV, polynomial and rational models. An 
example for the division model which is the inverse of the 
radial one is either 
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where r and r’ are the undistorted and the distorted distance to 
the symmetry point P=(x0, y0) of distortion and a0, a1, …, an or 
d0, d1 , …,  dn, respectively are the distortion coefficients. The 
FOV model (see Devernay & Faugeras [12]) describes the 
distortion usually by the first order parameter of the field of 
view.  An example for the FOV model is 
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The polynomial model is the description of the distortion as 

a polynomial in x and y (the undistorted image coordinates) 
and the rational model the extension of the polynomial model 
to a quotient of two polynomials (see Claus & Fitzgibbon 
[13]). An example for the rational model of third order is  
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Kruck [15] uses a set of up to 30 parameters for the 

description of the distortion. However, the more parameters 
are used the more correlation between these parameters 
occurs. Hence, numeric determination may be sensitive 
against errors. 

B. The Distortion Matrix Representation 
Another description of the distortion is a sampling point 

based on an explicit 2D distortion vector representation. 
Typically, this vector should be given for every pixel. For sub-
pixel exact processing, an interpolation rule must be defined. 
This may be e.g. a bilinear or spline interpolation. This 
representation leads to a distortion matrix D (in the 
dimensions of the image size). Distortion correction may be 
easily achieved by application of the distortion matrix D as a 
cumulative (or subtraction) operator. This representation is 
used e.g. by Grompone et al. [14], Bräuer-Burchardt et al. 
[16], and Hanning [17]. 

 

 
 

 
Fig. 1 Example of a radial symmetric distortion function according to 

radial distance to the symmetry point of distortion (above) and the 
same distortion function in matrix representation showing selected 

sampling points and distortion vector scaling (below) 

III. ACCURACY MODEL 
The camera distortion is usually determined within the 

context of camera calibration. Let us consider the typical case 
of using the pinhole camera model and an additional distortion 
model which can be either a functional model or a matrix 
representation. Depending on the type of the current distortion 
model, a correlation between the distortion and one or more of 
the camera parameters may be present. 

For all functional models it must be noticed that the model 
fits the actual distortion only until a certain accuracy 
threshold. The higher the number of distortion function 
parameters the closer the distortion description may be to the 
actual distortion. Additionally, the correlation between the 
parameters is also higher. 

Comparing the functional model with the matrix 
representation of the distortion two main aspects determine the 
advantages or disadvantages of the model choice. The main 
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advantage of the functional model F is the representation of 
the distortion at every point of the image plane by F. If the 
actual distortion is represented sufficiently by F the points for 
determination of F have not be necessarily distributed 
consistently over the image area. The main disadvantage is the 
fact that the model usually does not fit exactly the actual 
distortion. Conversely, the main advantage of the matrix 
model is the exact description of the distortion at every point 
of the image plane. The main disadvantage is, respectively, 
that the determination must be realized for all regions of the 
image plane by a consistent distribution of the calibration 
points. Outliers should be prevented because their influence is 
much bigger according to their local effect on the distortion. 

When distortion is analyzed and removed it is of essential 
interest how accurate the current correction compensates the 
actual distortion effects and how large is the remaining error 
due to distortion. Here, unfortunately, most work in the 
literature content a presentation of a remaining rms error of 
the corrected 2D image coordinates concerning straight lines 
or reference points. However, according to our experimental 
results, this is not sufficient for high precision 3D 
measurements. In order to perform a meaningful error analysis 
and description, there are given some error definitions in the 
following section. 

 
A. Distortion Error Description 
Let p=(x,y)i be the ideal coordinates of a set of reference 

points in the image with known coordinates or known 
linearity, respectively. Let p’=(x’,y’)i  be the distorted or 
corrected measured coordinates of the reference points. Then 
we define the 2D rms point error E2D as follows: 
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As the deviation from a straight line is often the only 

measure for the quality of distortion correction, we define the 
2D rms line error LE2D as  
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where pi

 L =(xi
 L, yi

 L) are those points on a fitted straight line 
with the shortest distance to the pi’=(xi’,yi’). Note that this 
error may be small although the distortion correction may be 
still erroneous. See fig. 2 for illustration of E2D and LE2D. In 
order to evaluate the quality in 3D measurements we define 
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as the root of squared 3D distances between measured points 
(x’,y’,z’) and their ideal 3D coordinates (x,y,z) and, 
analogously to the 2D case, the 3D rms plane error PE3D as 
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These errors (8) and (9) include all parts of the remaining 

error as noise and reference point uncertainty. Consequently, 
in order to describe the deviation from flatness, absolute 
deflection error DEabs is defined as the noise reduced height 

difference between the highest 
avZmax and the lowest 

avZmin  
measured 3D point concerning a fitted plane. The normalized 
deflection error DEn is defined describing the maximal 
deflection of a plane (with removed noise) normalized to the 
maximum measured distance diam on the plane. 

 
avav

abs ZZDE minmax −=  and  diamDEDE absn = .          (10) 
 

 
Fig. 2 Illustration of E2D and LE2D: rms of the length of black line 
segments (distortion vectors - strongly scaled) lead to E2D whereas 

rms of grey line segments length lead to LE2D  
 

B. Error Analysis 
Let us, first, consider the 2D case considering the image 

coordinates. In the ideal case the correction of a distorted 
image leads to error free image coordinates. If the correct 
coordinates of a set of certain reference points are known, the 
remaining error of a corrected point can be determined. 
However, usually neither the reference points are known 
exactly, nor the determination of the (corrected) points in the 
image can be obtained error free. Nevertheless, the measure of 
the deviation between the measured points and the reference 
points should be the E2D error as defined by (6). 

However, this error includes the remaining error Edc of the 
current distortion correction, the 2D reference point location 
error Eref, and the image coordinate determination error Edc, 
too. Assume a normal distribution of these three error 
amounts. Then the variances of the errors sum up. Hence we 
get 
 

22222 cdrefdcrms EEEDE ++=            (11) 
 

and thus for the distortion correction error  
 

2222 cdrefrmsdc EEDEE −−= .             (12) 

 
Usually, both the 2D reference point location error Eref and 

the image coordinate determination error Ecd can only be 
estimated by experimental analysis. 
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In the documentation of our experiments we will provide 
the E2D error, the LE2D error, the PE3D error, and the 
deflection error DE. 

IV. THE NEW METHODOLOGY 

A. Situation 
The newly developed methodology is designed for 

application in stereo systems for 3D reconstruction based on 
active pattern projection. However, as we will see later it can 
be generalized for any camera system. Nevertheless, we 
assume a sensor head consisting of a pair of stereo cameras 
and a projection unit in a fix arrangement. 

Our algorithm is separated into two parts. The first part 
contains the whole procedure of camera calibration including 
distortion determination using any arbitrary method. The 
second and novel part realizes a refinement of the distortion 
determination of the two cameras leading to an ultra-precise 
distortion description. 

We use the matrix representation of the distortion. Let D1 
and D2 the distortion matrices determined so far. Let all 
intrinsic and extrinsic camera parameters for both cameras be 
known. Notice, that only the relative orientation between the 
cameras is of interest.  

B.  The Approach 
For the initial distortion determination we used the 

following new method which is similar to the techniques as 
proposed by Grompone et al. [14] and Bräuer-Burchardt [16]. 
We used a plane grid pattern on an actual plane ceramic tile of 
the type as shown by fig. 3 (left). This pattern which is 
absolutely flat (bending is below 1 µm in the field of view) 
was recorded by each of the two cameras at least ten times 
with some rotation around the optical axis. The normal angle 
and the optical axis angle differ at most 15°. 

In the recorded images all detectable cross points of the 
grid were localized with sub-pixel accuracy. To these points a 
projective transform T from the set of original point co-
ordinates was estimated and applied such that the squared 
differences dvi = (dx, dy)i between the transformed original 
and the measured points are minimal. The differences dvi are 
defined as the distortion vectors which can be used as 
sampling points to produce a distortion matrix D. The matrix 
D is obtained by smoothing all produced sampling points by a 
suitable low pass filter operator. 

The refinement procedure used two criteria towards an 
improvement of the existing distortion representation: first, the 
2D residuals should be minimized and, second, the deflection 
error DE as defined previously must be minimized. If a 
refinement of the distortion description is achieved by the 
proposed method, the calibration has to be renewed, too, and 
the process should be performed iteratively.  

 
The input data of the algorithm are: 

• Complete calibration data including D1 and D2 
• A set of point correspondences PC = {(x1, y1, x2, y2)i} 

between the two camera images describing points of a 
really flat scene (we used a plane surface without texture, 

points are obtained by phase determination of a projected 
sinusoidal fringe pattern, see [18]) 

The corresponding points define together with the 
calibration data a set of reconstructed 3D points P = {pi =(xi , 
yi, zi} obtained by triangulation (see [7]). In order to reduce 
errors due to noise the phase values are suitably filtered by a 
mean or Gaussian operator. A plane E is fitted to P in the 3D 
space. The projection of the points pi to E in plane normal 
direction lead to corrected points pi’ = (xi’, yi’, zi’) which are 
assumed to be “correct”. Back-propagation from the corrected 
points pi’ lead to 2D vectors dvj = (dxj, dyj) corresponding to 
the image co-ordinates of the set PC. The vectors dvj are 
sampling points of the distortion correction matrices A1 and A2 
for the two cameras. An average or Gaussian operator should 
be applied to the vectors dvj in order to reduce noise. The 
complete matrices A1 and A2 are obtained by inter- and 
extrapolation. Finally, D1 and D2 are corrected by 
D1 := D1 + A1, D2 := D2 + A2. 

If the amount of the necessary correction (Ai) is 
considerable, calibration of the intrinsic camera parameters 
and the relative orientation between the cameras must be 
updated. The whole procedure will be repeated iteratively until 
A1 ~ A2 ~ 0 (zero matrix). 

 
C. The Algorithm 
The algorithm can be briefly summarized as follows: 

0. Realize image acquisition of a flat and not bended 
surface by projection of a sequence of structured light 
images, producing point correspondences between the 
images of the two cameras 

1. Perform 3D reconstruction using the corresponding 
points of the surface, fit a plane to the reconstructed 
surface, correct the measured 3D points into the fitted 
plane 

2. Determine the distortion correction matrices by corrected 
3D point back-propagation 

3. Check finishing criterion, go to 4 or 5 
4. Update calibration parameters using the corrected 

distortion matrices, go to 1 
5. End of algorithm 

D. Generalization of the Algorithm 
If only one camera should be considered and no active light 

projection unit is available, the method may be generalized as 
follows: instead of the surface without texture an arbitrary 
plane pattern with well-known exact position, data of the 
identified points may be used. This may be for example a grid 
pattern, a chessboard pattern or a dot pattern as shown by 
Fig.3. However, the accuracy of the point localization in the 
camera image is crucial for the accuracy of the distortion 
determination. Additionally, the number n of localized points 
should be as high as possible because the random error of the 
determination is proportional to n . 
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Fig. 3 Several plane patterns suitable for the described methodology: 

grid pattern (left), dot pattern (middle), and chess board (right) 
 

A higher number of points can be achieved e.g. by 
repetition of the procedure including a shift of the recorded 
grid pattern. 

In order to obtain a 3D measurement the camera should be 
calibrated (intrinsic parameters) in a preprocessing step and 
brought into two different positions observing the plane grid 
pattern with a meaningful triangulation angle. Here, the 
relative orientation between the two positions must be 
determined by a suitable calibration procedure (see e.g. [7]). 
After calibration the 3D reconstruction can be performed and 
the algorithm can be applied analogously. 

V.  EXPERIMENTS AND RESULTS 
In order to evaluate the presented methodology the 

following experiments were performed. The whole method 
was applied according to the description in the previous 
section. Our system is a sensor head consisting of two cameras 
(AVT Guppy, 1392 x 1040 pixels, pixel size 4.65 µm) with 
17mm lenses (self-designed and self-produced) and a 
projection unit in a fix arrangement. The calibration of the 
system including initial distortion determination was a-priori 
performed using the BINGO-Software [15]. Alternatively, the 
distortion was also determined according to the suggested 
method as described in the previous section. 

Distortion was determined using a plane grid pattern 
according our new methodology and for comparison by 
applying the BINGO-Software. 

For evaluation of the distortion correction first the several 
distortion matrices were applied to images of a grid pattern 
(similar as shown by fig. 3). The E2D error to the estimated 
“correct” points was determined as well as the LE2D error to 
the fitted straight lines. The dimension of the errors is given in 
pixels. Notice, that these errors contain not only the remaining 
distortion error but also the random error of pixel localization 
and the systematic error caused by deviations of the ideal 3D 
point co-ordinates. 

An absolute flat plane without bending (below 1µm) was 
the next measurement object. Active light projection was used 
in order to produce phase values leading to corresponding 
points arbitrarily close and well distributed over the whole 
images. 

Using the calibration data 3D reconstruction of the 
corresponding points was performed. A plane was fitted to the 
resulting points and the PE3D and the deflection error DEabs 
and DEn as defined in section 2 were determined. The results 
of the measurement are summarized in table 1. For 
comparison the errors (Reference[Gr]) documented by 
Grompone et al. [14] are listed, too. 

We guess that the amounts of the E2D and the LE2D errors 
are mainly influenced by the image coordinate determination 
error Ecd. The experimental estimation of Ecd yielded an 
amount of about Ecd ~ 0.04 pixel. Reference point error Eref 
was estimated by Eref ~ 0.02 pixel. Hence the estimated 
amount of our distortion correction error according to (12) is 
assumed to be not larger than 0.05 pixel. 

Although the 2D errors are similar for all methods, the 3D 
deflection error is considerably reduced by our new 
refinement method according to both BINGO correction and 
our initial correction method, too. That means that for high 
precision 3D measurements the 2D criterions of the remaining 
error are too weak. Comparing BINGO with our initial 
correction, our method shows a lower deflection but larger 
noise. Note, that in the uncorrected case the deflection error is 
considerable, although the absolute distortion is weak (mean 
distortion <0.4 pixel, maximal distortion <1.5 pixel). If high 
precision measurements are performed, we strongly 
recommend the application of our new methodology. 

Figures 4 and 5 show the determined distortion matrices for 
our two cameras compared to those obtained by the BINGO 
software, and fig. 6 illustrates the shape of the reconstructed 
surface. 

 
TABLE I 

REMAINING ERRORS AFTER DISTORTION CORRECTION ACCORDING TO 
FORMULAS (6) TO (9) 

Method \ Error E2D 
[pixel] 

LE2D 
[pixel] 

PE3D 
[µm] 

DEabs 
[µm] DEn[‰] 

Uncorrected 0.37 0.20 23.7 96 1.60 
BINGO 0.16 0.08 3.3 12 0.20 
Initial 0.14 0.07 5,0 10 0.16 
Refined 0.15 0.07 1.9 < 1 < 0.02 
Reference [Gr] - 0.08 - -  

 

  
Fig. 4 Distortion matrices by BINGO for C1 (left) and C2 (right) 

 

  
Fig. 5 Distortion matrices after refinement for C1 (left) and C2 (right) 

 
As described by several authors [1 to 7] a distortion 

variation occurs especially in the case of short measurement 
distances. Because our magnification m was about m = 1:13, 
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the distortion significantly changes depending on the distance 
of the object points. This effect could be proved clearly by our 
new method. We produced the distortion matrices for cameras 
C1 and C2 at three different distances between the plane and 
the cameras of 160 mm to 180 mm. 

 

 

 
Fig. 6 3D measurement of a plane without correction (left above), 

after distortion correction by BINGO (right above), using our initial 
distortion correction (left below), and after refinement (right below). 

Deflection error is about 100 µm (without), 15 µm (BINGO 
correction), 12 µm (initial correction), and < 1 µm (new method). 

Note different scaling of the graph left above 

VI. SUMMARY, DISCUSSION, AND OUTLOOK 
We presented a new hybrid method to realise high-precision 

distortion determination for optical ultra-precision 3D 
measurement systems based on stereo cameras using active 
light projection. 

As the results show the new methodology may provide a 
considerable improvement of the distortion correction of 3D 
measurement systems using active light projection or 
photogrammetric techniques. It could be shown that pure 
functional approach to distortion description may be 
insufficient for tasks of high precision measurement 
techniques. This is important if the flatness of the objects is 
the critical measurement quantity or if the shape of smooth 
objects (for example lenses) should be determined with high 
accuracy. 

The procedure is quite complex because of the possible 
necessity of iterations. However, this effort is invested 
profitably. If the proposed procedure is applied an extensive 
error analysis is necessary. 

With the achieved resulting accuracy the variation of the 
distortion concerning the distance to the measurement object 
may be analyzed adequately and applied subsequently in order 
to achieve a further improvement of 3D measurements. 

Compared to the results documented by the literature it is 
difficult to evaluate the method because most of the authors do 
not give such detailed results. Taking e.g. the results of 
Grompone et al. [14] or our previous results [16] it seems that  
taking into account only the deviation from a straight line in 
the 2D image (error LE2D) distortion correction cannot be 
evaluated adequately because error LE2D may be dominated 

by reference point location error and image co-ordinate 
determination error, respectively. 

Future work will be pointed towards a separated 
determination of the distortion refinement matrices A1 and A2. 
More experiments concerning distance depending variation of 
the distortion should be performed. 

VII. CONCLUSION 
If high-precision measurements have to be performed the 

flatness error should be considered in order to evaluate both 
the measurement quality and the excellence of the calibration 
including lens distortion correction.  The proposed 
methodology may be a step forward to the direction of 
achieving high-precision measurement results. 
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