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On modified numerical schemes in vortex element
method for 2D flow simulation around airfoils

Ilia Marchevsky, and Victoriya Moreva

Abstract—The problem of incompressible steady flow simulation
around an airfoil is discussed. For some simplest airfoils (circular,
elliptical, Zhukovsky airfoils) the exact solution is known from
complex analysis. It allows to compute the intensity of vortex layer
which simulates the airfoil. Some modifications of the vortex element
method are proposed and test computations are carried out. It’s shown
that the these approaches are much more effective in comparison with
the classical numerical scheme.

Keywords—Vortex element method, vortex layer, integral equation,
ill-conditioned matrix.

I. INTRODUCTION

FLOW simulation around an airfoil is a very important
problem for number of engineering applications. Different

numerical methods have been developed for its solving, most
of them presuppose mesh generation in flow region. But there
are also the so-called ‘meshfree’, or ‘lagrangian’ numerical
methods which don’t need mesh in flow region at all. Vortex
element method [1]–[5] is one of these methods and it is es-
pecially effective for flow simulating in aeroelastical problems
when the airfoil can be not rigid or it can be elastically fixed.
When using vortex element method the airfoil is simulated
with vortex layer on airfoil’s surface. Its intensity depends on
time, so it should be computed at every time step. Accuracy
of vortex layer intensity computation defines the accuracy of
boundary condition satisfaction on the airfoil’s surface and
consequently the accuracy of vortex wake simulation near the
airfoil. However, the existing well-known numerical schemes,
normally being used in vortex element method, sometimes lead
to significant errors, especially when simulating flow around
airfoils with angular points or sharp edges (wing airfoils). The
aim of this paper is to develop some numerical schemes for
vortex element method which allow to compute vortex layer
intensity on airfoil surface more accurately in comparison with
‘classical’ schemes.

II. GOVERNING EQUATIONS

Viscous incompressible media movement is described by
the equation of continuity

∇ · V = 0

and Navier-Stokes equations

∂V

∂t
+ (V · ∇)V = νΔV −∇

(
p

ρ

)
,
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where V (r, t) — flow velocity, p(r, t) — pressure, ρ = const

— density of the media, ν — kinematic viscosity coefficient.
No-slip boundary condition on the airfoil surface

V (r, t) = 0, r ∈ K,

and boundary conditions of perturbation decay on infinity

V (r, t) → V ∞, p(r, t) → p∞, |r| → ∞,

should be satisfied.
Navier-Stokes equations could be written down in

Helmholtz form using vorticity vector Ω(r, t) = ∇×V (r, t):

∂Ω

∂t
+∇× (Ω×U) = 0. (1)

Here U(r, t) = V (r, t) + W (r, t), W (r, t) is the so-
called diffusive velocity, which is proportional to viscosity
coefficient:

W (r, t) = ν
(∇×Ω)×Ω

|Ω|2 .

If vorticity distribution is known, flow velocity can be
computed using Biot-Savart law:

V (r, t) = V ∞ +
1

2π

∫
S

Ω(ξ, t)× (r − ξ)

|r − ξ|2 dS.

Equation (1) means that vorticity which exists in the flow
moves and its velocity is U . ‘New’ vorticity is being generated
only on airfoil surface. This vortex layer influence on the flow
is equivalent to streamlined airfoil influence, so vortex layer
intensity can be found from boundary condition on airfoil
surface. We assume that there is no vorticity in the flow and
we need to compute vortex layer intensity on airfoil surface.
From mathematical point of view this problem is equivalent to
ideal incompressible steady flow simulation around the airfoil.
In real unsteady viscous flow similar problem should be solved
at every time step.

III. EXACT SOLUTION FOR SIMPLEST AIRFOILS

Using methods of complex analysis, exact solutions for
vortex layer intensity in ideal incompressible steady flow
could be found for some simplest airfoils (circular, elliptical,
Zhukovsky airfoils) [6]. Vortex layer intensity is equal to
tangent projection of velocity on airfoil surface. Complex
value of flow velocity on airfoil surface can be found using
the following formula:

V ∗
(p) =

R |V ∞| sin(φ+ β − p) +
G

2π
iR ei(p−φ)

2

(
1− a2

(Rei(p−φ) +H)2

) .
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Here V ∗ means complex conjugate quantity to velocity V ,
p ∈ [0, 2π) defines the point on airfoil surface, β — angle of
incidence.

For elliptical airfoil

a =

√
a2
1
− b2

1
, R = a1 + b1, φ = 0, H = 0,

a1 and b1 are major and minor semiaxes of the ellipse.
For Zhukovsky airfoil

R =
√

(a+ d cosφ)2 + (h+ d sinφ)2,

φ = arctan
h

a
, H = ih− de−iφ,

a, d and h are arbitrary parameters, which correspond to
length, width and curvature of the airfoil.

G is flow velocity circulation; for elliptical airfoil it can
be chosen arbitrarily (from mathematical point of view), we
assume it to be equal to zero independently on angle of
incidence, while for Zhukovsky airfoil it is proportional to
uniform flow velocity and depends on the airfoil shape and its
angle of incidence:

G = −2π|V ∞| sin(β + φ)(
√
h2 + a2 + d).

Using the previous formulae we can obtain the exact solu-
tion for vortex layer intensity. These exact solutions will be
used for numerical schemes comparison and their accuracy
estimation.

IV. VORTEX ELEMENT METHOD

We consider model problem of ideal incompressible flow
simulation around an airfoil. Vorticity is equal to zero ev-
erywhere in flow region and the airfoil is simulated with thin
vortex layer with intensity γ(p0) = γ(x0, y0) on airfoil surface
K. In this problem velocity vector V = (vx, vy, 0)

T can be
determined in every point r = (x, y, 0)T in flow region using
Biot-Savart law (point r0 = (x0, y0, 0)

T lies on the airfoil
surface K, γ(r0) = γ(r0)k is vortex layer intensity vector,
k = (0, 0, 1)T ):

V (r) = V ∞ +

∮
K

γ(r0)× (r − r0)

2π|r − r0|2 dlr0 .

Limit values of flow velocity on the airfoil surface are equal
to

V ±(r) = V ∞ +

∮
K

γ(r0)× (r − r0)

2π|r − r0|2 dlr0 ±

±
(
γ(r)

2
× n(r)

)
.

Here n(r) is unit normal vector on airfoil surface in point r,
V +(r) corresponds to limit value of velocity from flow side,
V −(r) corresponds to limit value of velocity from airfoil side.

In order to determine vortex layer intensity γ we should
solve equation V −(r) = 0 on the airfoil surface. It can be
easily shown [3] that we can solve scalar equation

n(r) · V −(r) = 0

or scalar equation

τ (r) · V −(r) = 0

instead of vector equation V −(r) = 0. From mathematical
point of view there is no difference between solutions of
these equations, but from computational point of view these
approaches are very different.

A. Classical numerical scheme for vortex element method
In ‘classical’ approach [1], [5] vortex layer intensity on

airfoil surface is assumed to be piecewise constant function
and it satisfies equation n · V − = 0, which corresponds to
zero velocity normal component on airfoil surface and leads
to singular integral equation∮

K

n(r) · [k × (r − r0)]

2π|r − r0|2 γ(r0) dlr0 = −n(r) · V ∞. (2)

It should be noted that solution of (2) certainly exists due
to form of right side of this equation, but it is not unique.
In order to select unique solution additional integral condition
should be added: ∮

K

γ(r)dlr = G. (3)

Kernel of equation (2) is unbounded and it has nonintegrable
singularity when |r−r0| → 0, and special numerical schemes
are used for Cauchy principal value computation. They allow
to obtain the solution of linear system approximating (2) with
high accuracy when number of collocating points on the airfoil
is large and its surface is smooth curve. It is proved [1] that
numerical solution converges to exact one in some integral
norm. This ‘classical’ method we will call ‘NVEM’ (Vortex
element method with normal components of velocity on airfoil
surface).

At the same time if we simulate flow around the airfoil
with angular points or sharp edges using NVEM, difference
between numerical and exact solutions (in uniform norm)
becomes significant and it increases proportionally to number
of collocating points on airfoil surface. So it is impossible
to determine vortex layer intensity with high accuracy. So
well-known numerical schemes, which are effective in vortex
element method for inviscous fluids, can be generalized for
viscous case for smooth airfoils, but they can’t be applied for
2D Navier-Stockes equations solution for airfoils with angular
points and sharp edges. The main problem is that in viscous
case all vortex elements generated on airfoil surface become
part of vortex wake near the airfoil.

It also should be noted that linear algebraic system cor-
responding to (2) becomes ill-conditioned for airfoils with
angular points or sharp edges.

B. Modified numerical schemes for vortex element method
In this paper some other approaches are developed which

are equal to previous one from analytical point of view. Vortex
layer intensity will be determined from solution of equation
τ ·V − = 0, corresponding to zero tangent component of flow
velocity limit value [2]. It leads to Fredholm integral equation
with bounded (in case of smooth airfoils) kernel:∮

K

τ (r) · [k × (r − r0)]

2π|r − r0|2 γ(r0)dlr0 −
γ(r)

2
=

= −τ (r) · V ∞. (4)
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Here τ (r) is unit tangent vector on airfoil surface.
Solution of equation (4) is also non-unique, so the same

additional condition (3) as in classical method is used. This
method we will call ‘TVEM’ (Vortex element method with
tangent components of velocity on airfoil surface).

Equation (4) also can be approximated with linear algebraic
system which is well-conditioned both for smooth and non-
smooth airfoils. Due to equation kernel boundness an arbitrary
quadrature formula can be used for integral approximation in
(4). In the simplest case we also can consider vortex layer
intensity to be piecewise constant function.

Results of numerical experiments show that errors are
sufficiently big, but they could be significantly decreased if we
consider some ‘weak’ formulation of (4): integral equation (4)
in discrete numerical scheme will be satisfied not in separate
collocation points rj , j = 1, . . . , N , of airfoil surface, but on
an average on airfoil surface parts (panels) Kp whose lengths
are Lp, p = 1, . . . , N :

1

Lp

∫
Kp

[∮
K

τ (r) · [k × (r − r0)]

2π|r − r0|2 γ(r0)dlr0

]
dlr −

− 1

Lp

∫
Kp

γ(r)

2
dlr = − 1

Lp

∫
Kp

[
τ (r) · V ∞

]
dlr,

p = 1, . . . , N. (5)

The other modification consists of uniform vorticity dis-
tribution on airfoil surface. In ‘classical’ NVEM method
intensity of vortex layer is assumed to be constant on every
part (every panel) of the airfoil, but then all the vorticity
from every panel concentrates in one point on the panel and
integral in (2) transforms into a sum of influences of discrete
(point) vortex elements. In suggested modified method TVEM
vorticity is assumed to be uniformly distributed over every
panel. Each panel on the airfoil is rectilinear segment, so the
internal integral in the first term in (5) transforms into a sum
of influences of panels with distributed vorticity (it should
be noticed that in this case every panel doesn’t influence on
itself):

N∑
q=1

q �=p

1

Lp

∫
Kp

[∫
Kq

τ (r) · [k × (r − r0)]

2π|r − r0|2 γ(r0)dlr0

]
dlr −

− 1

Lp

∫
Kp

γ(r)

2
dlr = − 1

Lp

∫
Kp

[
τ (r) · V ∞

]
dlr,

p = 1, . . . , N. (6)

As it was mentioned, vorticity is uniformly distributed over
every panel, so unknown function γ(r) is constant on every
panel and (6) becomes linear algebraic system:

N∑
j=1

(
Aij(1− δij)− 1

2
δij

)
γj = −Bi,

i = 1, . . . , N. (7)

Here Aij is matrix coefficient, δij is Kronecker delta, Bi is
stream influence on i-th panel, unknown variable γj is vortex
layer intensity on j-th panel. Because of all the panels are

rectilinear, τ (r) is constant vector on i-th panel and we denote
it τ i:

Aij =
1

Li

∫
Ki

[∫
Kj

τ i · [k × (r − r0)]

2π|r − r0|2 dlr0

]
dlr,

Bi = τ i · V ∞.

In order to write down final formula for matrix coefficient
Aij , we note that this coefficient is average tangent velocity on
i-th panel, which is induced by j-th panel in assumption that
j-th panel has unit vortex layer intensity. In order to compute
it we firstly derive formula for average velocity vector on i-th
panel, which is induced by j-th panel

V ij =
1

Li

∫
Ki

[∫
Kj

k × (r − r0)

2π|r − r0|2 dlr0

]
dlr,

then
Aij = τ i · V ij .

On fig. 1 some auxiliary vectors are introduced: vectors d and
d0 are codirectional with i-th and j-th panels, their lengths
are Li and Lj correspondingly; vectors s1 and s2 join the
beginning of j-th with the beginning and the ending of i-th
panel; vectors p

1
and p

2
join the ending of j-th with the

beginning and the ending of i-th panel.

Fig. 1. Two panels from airfoil surface and auxiliary vectors

After some transformations we can obtain the following
formula:

V ij =
1

2π|d0||d |2
[
q
(1)

1
c1 + q

(1)

2
c2 + q

(1)

3
c3 +

+

(
q
(2)

1
c1 + q

(2)

2
c2 + q

(2)

3
c3

)
× k

]
.

Here we denote:
c1 = (d0 · p1

)d+ (d · s1)d0 − (d · d0)s1,
c2 = (d0 · s1)d+ (d · s1)d0 − (d · d0)s1 =

= c1 + (d0 · d0)d,
c3 = (d · d)d0.

q
(1)

1
= arctan

d · p
1

z1
− arctan

d · p
2

z1
,

q
(1)

2
= arctan

d · s2
z2

− arctan
d · s1
z2

,

q
(1)

3
= arctan

d0 · p2

z3
− arctan

d0 · s2
z3

;

z1 = (p
1
× p

2
)z, z2 = (s1 × s2)z, z3 = (s2 × p

2
)z;

q
(2)

1
= ln

|p
2
|

|p
1
| , q

(2)

2
= ln

|s1|
|s2| , q

(2)

3
= ln

|p
2
|

|s2| ;
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For neighboring panels when p
1
= 0, s2 �= 0, coefficients

q
(1)

1
and q

(2)

1
vanish. For neighboring panels when s2 = 0,

p
1
�= 0 vectors d0 and d should be replaced with (−d0) and

(−d) correspondingly; then we obtain the previous case when
p
1
= 0, s2 �= 0. If s1 = 0 or p

2
= 0 only one of vectors d0

or d should be replaced with its opposite in order to obtain
the first case.

The developed approach can also be generalized for non-
stationary problems and for viscous incompressible flow sim-
ulation. It should be noticed, that in case of viscous flow
the only difference is vortex elements motion equation [4],
while vortex layer intensity computation procedure remains.
When solving nonstationary aerodynamics problems (both for
viscous and inviscid cases) vortex wake is simulated by a set
of vortex elements with known intensities Γw and positions
rw, w = 1, . . . , Nwake. It’s necessary to take into account
vortex wake influence on vortex layer intensity computation.
Additional terms corresponding to tangent velocity on i-th
panel, which is induced by w-th vortex element of the wake,
should be added to right side of equation (7):

Bwake
i = τ i ·

Nwake∑
w=1

V wake
w ,

where
V wake

w =
Γw

Li

∫
Ki

[
k × (r − rw)

2π|r − rw|2
]
dlr. (8)

On fig. 2 by analogy with fig. 1 some auxiliary vectors are
introduced for velocity V wake

w computation: vectors s0 and
s join the beginning and the ending of i-th panel with w-th
vortex element placed in point rw.

Fig. 2. i-th panel on airfoil surface, w-th vortex element in vortex wake and
auxiliary vectors

Using these vectors after some transformations we can write
down term (8) in the following form:

V wake
w = − Γw

2π|d|2 [αd+ β(d× k) ] . (9)

Here we denote

α = arctan
s · d
z0

− arctan
s0 · d
z0

,

β = ln
|s|
|s0| , z0 = (d× s0)z.

(10)

An important feature of methods based on integral equations
(2), (4) and (5), is that the result of solving corresponding in-
tegral equation is the average value of vorticity layer intensity
on every panel. If we need ‘local’ values of vorticity layer
intensity, we can interpolate average values in some way, but

results of test problems solving show that difference between
obtained values and exact solution is sufficiently big, while
average values are much closer.

We also developed another variant of numerical scheme
for vortex element method which allows to find local values
of vortex layer intensity more accurately in comparison with
TVEM. Main idea of this modification (we call it LinTVEM)
is the following. Vorticity distribution on the airfoil surface
is assumed to be piecewise linear on every panel and it is
continuous on the whole airfoil. At the ends of every panel
vortex layer intensity is assumed to be equal to local values
of vortex layer intensity. These values become unknown vari-
ables in linear algebraic system which approximates integral
equation (5). This numerical scheme differs from the previous
schemes, corresponding linear algebraic systems have some
specific features, but from computational point of view this
method is very similar to method TVEM. The main difference
is that internal integral in first term in (5) consists of two parts:
first part corresponds to half-sum of vortex layer intensities at
the ends of panels, so this integral is absolutely the same as
the internal integral in TVEM. The second part of the integral
corresponds to linear distribution of vorticity with zero average
value and this integral also can be calculated analytically.
External integral in LinTVEM scheme also can be calculated
analytically as in TVEM, but corresponding formulae become
much more complicated even in comparison with TVEM,
so in practice the most reasonable way is to use Gaussian
quadrature formulae for numerical approximate computation
of this integral.

We only note one significant feature of LinTVEM discrete
schemes: if number of panels is even, corresponding linear
system is singular, while for odd number of panels the matrix
is well-conditioned and obtained accuracy is higher then in
TVEM schemes (both for average values and especially for
local values of vortex layer intensity). So in the examples
which are shown below number of panels for LinTVEM
schemes is always equal to (N + 1) if N is even.

V. NUMERICAL RESULTS

Now we investigate results which can be obtained using
classical scheme NVEM and developed in this paper numerical
schemes TVEM and LinTVEM. We consider some test prob-
lems for elliptical airfoils and Zhukovsky airfoils for which
we know exact analytical solution for vortex layer intensity.

A. Flow around an elliptical airfoil

If we simulate flow around circular airfoil we obtain nearly
the same results both for NVEM and TVEM numerical
schemes.

Results of vortex layer intensity computation for steady flow
around elliptical airfoil with major and minor semiaxes equal
to a1 = 1,0 and b1 = 0,1 for angle of incidence β = π

6
with

N = 200 panels on airfoil surface are shown on fig. 3. We can
see that there is significant difference between exact solution
and NVEM scheme solution near ends of ellipse major axis
while TVEM scheme solution is much closer to exact solution
for the same number of panels on the airfoil.
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Fig. 3. Vortex layer intensity on elliptical airfoil with semiaxes ratio 10,0
at angle of incidence β = π

6
computed using NVEM (a) and TVEM (b)

If we now investigate thinner airfoil with semiaxes equal to
a1 = 1,0 and b1 = 0,05 (axes ratio is 20) even without angle
of incidence (β = 0) for N = 200 we find that NVEM allows
to obtain solution with significant error along all the airfoil
while TVEM scheme gives the solution which is very close
to exact solution (fig. 4).

Fig. 4. Vortex layer intensity on elliptical airfoil with semiaxes ratio 20,0
at zero angle of incidence computed using NVEM (a) and TVEM (b)

B. Flow around Zhukovsky airfoil

Results of vortex layer intensity computation for steady
flow around symmetrical Zhukovsky airfoil with relative width
equal to 20 % (airfoil geometrical parameters are the follow-
ing: a = 1,0, d = 0,2, h = 0,0) for angle of incidence β = π

6

using mentioned approaches (NVEM and TVEM numerical
schemes) are shown on fig. 5. Number of panels on the airfoil
N = 50.

Fig. 5. Vortex layer intensity on symmetrical Zhukovsky airfoil computed
using NVEM (a) and TVEM (b)

For greater values of N error in uniform norm becomes
much bigger for ‘classical’ NVEM scheme, at the same time
it vanishes in TVEM method developed in this paper.

Results for non-symmetrical Zhukovsky airfoil with relative
width equal to 10 % (airfoil geometrical parameters: a = 1,0,
d = 0,1, h = 0,1) for angle of incidence β = π

6
are nearly the

same: NVEM scheme leads to significant errors near airfoil
sharp edge while TVEM scheme gives solution very close to
exact one (fig. 6).

Now we compare condition numbers for matrices of linear
algebraic systems which are being solved in NVEM and
TVEM methods. In table I condition number values are shown
which were obtained in the same test problems for elliptical
airfoils and Zhukovsky airfoils. Three variants for number
of panels on the airfoil surfaces (N = 50, N = 200 and
N = 500) have been considered for all cases.

So for smooth airfoils condition number for matrices in
NVEM and TVEM are close and matrices are well-conditioned
for both variants of vortex element method. But if we simulate
flow around an airfoil with angular point or with sharp edge,
matrices in TVEM are much better conditioned in comparison
with NVEM.
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TABLE I
CONDITION NUMBER FOR MATRICES IN NVEM AND TVEM

CondA N = 50 N = 200 N = 500

NVEM TVEM NVEM TVEM NVEM TVEM

Elliptical airfoil

Semiaxes ratio 10,0 26 115 107 242 258 384

Semiaxes ratio 20,0 88 265 172 633 364 1012

Zhukovsky airfoil

Symmetrical airfoil 1.1 · 104 3.0 · 102 3.4 · 105 2.0 · 103 3.4 · 106 7.0 · 103
Non-symmetrical airfoil 9.0 · 105 4.9 · 102 1.7 · 107 3.4 · 103 1.5 · 108 1.2 · 104

Fig. 6. Vortex layer intensity on non-symmetrical Zhukovsky airfoil
computed using NVEM (a) and TVEM (b)

In order to compare different methods accuracy we firstly
calculate 1-norm and ∞-norm of the errors for NVEM and
TVEM numerical schemes. Results are shown on table II.

TABLE II
ERROR IN TEST PROBLEMS FOR NVEM AND TVEM

N = 50 N = 200 N = 500

NVEM TVEM NVEM TVEM NVEM TVEM
Elliptical airfoil with semiaxes ratio 10,0

‖Δ‖1 0.2594 0.0274 0.0681 0.0018 0.0275 0.0003

‖Δ‖∞ 0.5841 0.3769 0.1678 0.0387 0.0633 0.0059

Elliptical airfoil with semiaxes ratio 20,0

‖Δ‖1 0.2659 0.0010 0.0655 0.0001 0.0263 0.0000

‖Δ‖∞ 0.9526 0.0084 0.3269 0.0060 0.1319 0.0011

Symmetrical Zhukovsky airfoil
‖Δ‖1 1.3000 0.0149 0.4650 0.0010 0.2201 0.0002

‖Δ‖∞ 27.21 0.0563 113.70 0.0245 288.92 0.0141

Non-symmetrical Zhukovsky airfoil
‖Δ‖1 27.60 0.0282 2.742 0.0020 0.5918 0.0003

‖Δ‖∞ 822.5 0.1809 1268.9 0.0641 1105.4 0.0384

Here ‖ · ‖1 is a discrete analogue of norm in Banach space L1

and ‖ · ‖∞ is a discrete analogue of uniform norm in Banach
space C:

‖Δ‖1 =

N∑
i=1

|γ0

i − γi|Li,

‖Δ‖∞ = max
i

|γ0

i − γi|,

γ0

i is exact solution (average vortex layer intensity on i-th
panel), γi is computed value for it, Li is i-th panel length.

If we analyze obtained results, we notice that for smooth
airfoils errors of both numerical schemes become smaller
when number of panels N increases, but error of TVEM
scheme is many times smaller then error of NVEM scheme. At
the same time for Zhukovsky airfoil error in NVEM method
vanishes only in 1-norm while in ∞-norm error becomes larger
when N increases. Error in TVEM schemes vanishes in both
1-norm and ∞-norm.

At last we compare TVEM scheme with LinTVEM scheme.
In table III 1-norm and ∞-norm of error are shown for
LinTVEM method. However, as opposed to table II here we
can see error not for average values of vortex layer intensities
but for local values of intensities on end points of panels
on airfoil surface. It should be noted that LinTVEM allows
also to calculate average values of vortex layer intensities on
panels and they are very close to average values obtained using
TVEM.

TABLE III
LOCAL ERRORS IN TEST PROBLEMS FOR LINTVEM

N = 50 N = 100 N = 200 N = 500

Elliptical airfoil with semiaxes ratio 10,0

‖Δ‖1 2.2083 0.2605 0.0046 0.0007

‖Δ‖∞ 0.8693 0.1489 0.0181 0.0038

Elliptical airfoil with semiaxes ratio 20,0

‖Δ‖1 1.6062 0.6127 0.0638 0.0001

‖Δ‖∞ 0.5160 0.1848 0.0395 0.0038

We can see that for small number of panels N local errors
are very big, but when N becomes equal to 200 and bigger,
accuracy of LinTVEM for local values becomes approximately
the same as accuracy of TVEM for average values. This result
is very important for correct boundary condition satisfaction.
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VI. CONCLUSION

The problem of 2D flow numerical simulation around
airfoils is considered. For its solution two approaches are
proposed: NVEM (Vortex element method with normal com-
ponents of velocity on airfoil surface) and TVEM (Vortex
element method with tangent components of velocity on airfoil
surface). To compare effects of these methods vortex layer
intensities are computed for some simplest airfoils with known
exact solution (circular, elliptical and Zhukovsky airfoils).
In method TVEM piecewise constant and piecewise linear
functions are used to approximate intensity on the airfoil
panels. Results for smooth airfoils (circular and elliptical) are
qualitatively close in both methods (errors in TVEM much
smaller then in NVEM), at the same time LinTVEM scheme
is more effective in comparison with TVEM when number of
panels N is more then 200.

Also for airfoils with sharp edge (Zhukovsky airfoil) for
greater values of N error in ∞-norm becomes much bigger
for NVEM scheme, while it vanishes in TVEM and LinTVEM
methods developed in this paper. In 1-norm for airfoils with
sharp edge numerical errors in TVEM method are smaller
than in ‘classical’ NVEM method, however for both methods
numerical error in 1-norm vanishes when N becomes bigger.

Developed method can be used for unsteady flow simulation
and also for solving complicated aeroelastic problems.
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