
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1078

Software Architecture Recovery

Ghulam Rasool, and Nadim Asif

Abstract—The advent of modern technology shadows its impetus

repercussions on successful Legacy systems making them obsolete
with time. These systems have evolved the large organizations in
major problems in terms of new business requirements, response
time, financial depreciation and maintenance. Major difficulty is due
to constant system evolution and incomplete, inconsistent and
obsolete documents which a legacy system tends to have. The myriad
dimensions of these systems can only be explored by incorporating
reverse engineering, in this context, is the best method to extract
useful artifacts and by exploring these artifacts for reengineering
existing legacy systems to meet new requirements of organizations. A
case study is conducted on six different type of software systems
having source code in different programming languages using the
architectural recovery framework.

Keywords—Reverse Engineering, Architecture recovery,

Architecture artifacts, Reengineering.

I. INTRODUCTION TO ARCHITECTURE RECOVERY
HE software architecture of a program or computing
system is the structure or structures of the system, which

comprise software elements, the externally visible properties
of those elements, and the relationships among them[1].
Software architecture design is concerned with gross
organization and global control structure of a system.
Architecture bridges the gap between the requirements and
implementation of the system. Software architecture is very
important concern due to understanding, analysis, reusability,
evolution and management of legacy systems.

We define architecture recovery as a process of identifying
and extracting higher level of abstractions from existing
software systems [2]. Architecture recovery and reengineering
to handle legacy code is critical for large and complex
systems. Architecture recovery deals with the issues of
recovering the past design decisions that has been taken by the
experts during the development of a system [3]. These are
decisions that has been lost due to some reasons; not
documented, document revisions or developer have left or
unknown (i.e. assumptions not initially taken in account). In
architecture recovery the research is continue on issues of
interoperability: techniques for detecting component mismatch
and bridging them [4]. The recovery process can be assisted
by different tools available in the market like Dali [5],

Ghulam Rasool is with the COMSATS Institute of Information

Technology, Lahore. 1-Km, Defense Road, off Raiwand Road, Lahore,
Pakistan (corresponding author, phone: 0092-333-4520196; fax: 0092-42-
9203100; e-mail: ghrasool@hotmail.com).

Prof. Dr. Nadeem Asif, is with The University of Lahore, 1-Km Raiwand
Road, Lahore, Pakistan (e-mail: nasif@ulhr.edu.pk).

PBS[6], Imagix4D[7] and Bauhaus[8]. No one tool can
perform all the tasks required for architecture recovery. So we
used our custom built tool DRT having excellent features.

II. ARCHITECTURE REPRESENTATION/PROPERTIES
An architecture has different stakeholders with different

concerns. Architectural representations enable software
developers to explicitly describe, access and manage the
architecture of software systems. Architecture representation
consist of structural and non-structural information about
software architecture. Structural information are components
and connectors describing the configuration of a system and
non structural information are architectural properties[5].
Architectural properties are for example, safety patterns,
communications patterns, behavioral patterns ,structural
patterns and creational patterns. The recognition of different
type of similar patterns is very important knowledge for
understanding the existing legacy systems and architecture
recovery. The user understand the conceptual and concrete
architecture of the system through architectural documents ,
design patterns , source code and architectural properties. The
architecture properties can not be ignored during the recovery
of different architecture artifacts.

A. Architectural Descriptions
The language for specifying an architecture should ideally

be expressive, well-defined, abstract, concise and compact
For example ADL [9] for specifying an architecture recovery
results is used that permits formal reasoning and supported by
tools. Most ADL are formally defined but their actual use in
industry is very limited. It is still interesting to evaluate
whether formality is of importance to architecture extraction.
A lexical based regular extraction technique is used as a
specification language to extract different artifacts from source
code of different programming languages. It allow the user to
use the specifications according to the requirements based on
action and analysis in the regular expressions for task at hand.

B. Related Approaches
There are different approaches for reverse engineering,

which can be attempted at different level of abstractions [10] .
These approaches are related to our work. The structural
recovery techniques are mostly used for components recovery.
The Murphy’s Reflection model [11] allow the user to test the
high level conceptual model of the system against the existing
high level relations between the components of the system.
The recovery approaches are classified as follows according to
type of information they provide:

 Data Flow based approaches [12].

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1079

 Knowledge based approaches [13].
 Design patter based approaches [14].
 Program slicing based approaches [15].
 Formal method based approaches [16].
 Program comprehension based approaches [17].
 Domain based approaches [18].
 Clustering based approaches [19].
 Concept analysis approaches [20].
 Machine Learning approaches [21].
 Metrics Based approaches [22].
 Structural Based approaches[23]

We used the unification of best approaches for extraction of

different artifacts from the source code and documents. The
best features of domain based, program comprehension based,
design pattern based and clustering based recovery approaches
are used to recover the architecture of software systems under
study. Regular expressions are used to write different pattern
specifications to extract desired artifact at different levels of
abstractions.

III. FRAMEWORK FOR ARCHITECTURE RECOVERY
The Proposed Framework integrates the existing

architecture recovery tools to support architecture recovery
process. In many cases, architectural information is available
as block-line diagrams [9]. However, most architecture
information is inherent and hidden in different styles and
views of source code and design documentation. The
extraction of architectural information is required using
different techniques and tools.

Fig. 1 sketches an overview of the proposed framework for
an architecture recovery. The input of the recovery process is
the source code, design documentation, domain knowledge,
artifacts recovered from pattern based, clustering techniques
and expert knowledge if any experts or rational exists. Finally
results are represented in different formats and styles.

The recovery of design documentation and domain
knowledge delivers additional information into already
existing abstractions such as data flow diagrams and support
the generation of additional software views, for example state
transition diagrams, component diagrams and architecture
descriptions.

Source code and required artifacts can be extracted with the
help of reverse engineering tools. Reverse engineering tools
perform static analysis on the code and extract information
like call graphs, cross-reference tables, data flow diagrams,
quality metrics, hierarchies in classes, relationship and other
useful information.

 Reverse engineering tools provide a higher level of
abstraction since information that is not of interest for the
specific view is excluded. The results of reverse engineering
tools are analyzed and verified with some of the available
source of information (documents, source code and comments
available in the source code). User knowledge is incorporated
in the tool to write different lexical specifications. RE tool
generate different views which can be used to recover the
architecture of the system. Similarly we can use the bottom up
approach and can take artifacts as an input and can generate
different software views.

Based on our experience and knowledge we determined the
following strategy for architecture recovery:

1. Study the different architecture recovery approaches
(such as Domain based, Design patter based, clustering
based etc).

2. Develop architecture conceptual model and formed
architecture hypothesis regarding the system and its
structure.

RE Tools

User Knowledge

Recovery
Approaches

Pattern based
Clustring based
…………..
…………….

Fig. 1 Framework for architecture recovery

Call Graphs

Table/Report

Control Flows

Metrics

State machine

S/W Views

C1

C2 C3

C5 C6

C4

Architcture/Architecture
Artifacts

Data Flows

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1080

3. Analyze, verify and refine the architecture hypothesis
against the software system under study.

4. Generate different software views and architecture styles
of the examined system.

5. Iterative Use of architecture recovery Process.
6. Use the reverse engineering tools.
7. Conducted a case study on the code of five different

programming languages software.
8. Used existing documents for understanding of system

structure and its components.

IV. RECOVERY PROCESS
The selection of architecture recovery process is the key

concern for extracting the artifacts from the legacy system
architecture. Different research groups define the process
according to the nature of the system. Recovery Process
adopted in our study consists of following Phases [3].

1) Architecture concepts

2) Legacy architecture analysis

3) Extraction

4) Abstraction

5) Evaluation

6) Presentation.
In first step we built the hypothesis about the architecture of

the existing system. In second phase we analyze the
hypothesis developed in the first phase with the help of tools.
The next phase extracts the different artifacts from the system
using extraction techniques and Reverse Engineering tools.
Abstraction process produces architecture styles and views at
different level of abstractions. In evaluation stage, the results
are evaluated and compared with existing sources of
information. Finally the recovered architecture is represented
in different formats, styles, and UML notations.

V. TOOL SUPPORT
The artifacts from the legacy systems can be extracted by

using different tools available in the market like Imagix 4D,
Rigi [24] and Refine/C[5]. These tools have certain limitations
like language dependency and compiled code. Due to these
reasons we used custom built DRT [25,26] which supports the
limitations mentioned above. The results of extracted artifacts
from different programming languages source code are shown
in Table I. Our custom-oriented tool supports the following
features.

1) It is language independent and used in a study of source
code and documents of five different programming
languages to extract different required artifacts.

2) It take source code as input which may be incomplete ,
uncompilied or have errors.

3) User can write specification of similar types to extract
artifacts from code and documents of different
programming languages software’s.

4) Artifacts can be presented in different formats and styles.
5) Internal/External knowledge can be included in the tool to

extract the desired artifacts.
6) The matched patterns may be further analyzed to extract

further relationships between the patterns and may be
represented in different formats.

7) The vocabulary of the tool can be extended according to
nature of maintenance task at hand and requirement of the
source code.

8) The hierarchal and abstract pattern specifications may be
used to extract the required artifacts.

9) It can filter out the false matches by action pattern
specifications.

TABLE I

EXTRACTED ARTIFACTS
 Files Software Size on

disk
Lines of
Source
code in
KLOC

Total
Files

Code
files

Include
files

Functions Blank lines Lines of Comments

Alligance
Game/C++

823MB 450 7629

1341 3463 612 71964 74679

Elm/C++ 8.05MB 35 479

455 905 422 6566 7686

Tac_Plus/C 592KB 20 50

50

153 310 3181 2600

Mining/Java 150KB 6 6 6 11 126 684 1088

Monica/VB 2.50MB 18 50 33 - 621 5 50
Drawing
Editor/Pascal

1.53MB 8 45 10 - 252 847 524

Client
Messaging/Cobol

1.40
MB

20 47

23 - - 194 7000

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1081

In addition to above artifacts extracted in the Table I, the
specifications can be used to extract further artifacts required
for architecture recovery. The technique has been used to
extract classes, inheritance, Cobol files, Record formats,
functions, function calls and the relations between different
entities. For example the following specification is used to
extract different procedure names from a Source code of
Pascal program(Quartz Demo 2.1) as shown in table2.

 Pattern: (\procedure|Procedure)((\s+\w+\d+)|(.*))

Similarly we can write different specification to extract our
required artifacts from source code of different programming
language. Expressions allow us to attach actions and analysis
when expression match with desired pattern. The few
constraints can also be placed on the condition of system
artifacts. Different pattern specification can be written even to
extract artifacts from text file having associations in different
data attributes. The nested specifications can also be used to
extract the required artifacts.

The regular expression patterns designed by the other
programmers become difficult by the novice users to
understand. So we can use comments in the regular expression
syntax to explain the specification of patterns as shown in the
following pattern specification.

Pattern (?#comments)\{(.*)\}.

TABLE II
EXTRACTED FROM PASCAL CODE

.+commandhandling.pas 20 procedure
HandleNewCommand;
** 22 procedure InstallAppCommands;
** 28 procedure andleAbout(theWindow
: WindowRef);
** 34 procedure HandleNewCommand;
** 130 procedure InstallAppCommand

In our case study our concentrated on Cobol legacy code
because still industry is converting the legacy systems of
Cobol into new software applications. The following pattern
specification is used to extract the Cobol file name from
Source code of (Human Resource Program) developed in
Cobol.

Pattern: FD\s+\w+

We can also extract the complete file and record structures
from the source code of COBOL by different pattern
specifications. These specifications further may be used for
recovering the ERD model of COBOL applications.

Fig. 2 Screen Snapshot of DRT

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1082

We use the regular expression specifications at different
abstraction levels to extract the desired artifacts. For example
the following pattern specifications are used to extract Java
classes from the source code of Java applications.

Pattern1: ((class)\s*(\w)+\s*\{)

Pattern1 will extract only classes without extends and

implements functions of Java classes. We use the above
pattern specification to further extract the derived classes with
extends and implements arguments in pattern 2.

Pattern2:
(JClasModifiers)?\s*((Class)((extends)\s*(\w)+)?\s*((imp

lements)\s*(\w)+)?(\s*(,)\s*(\w+))*\s*\{)
In pattern2 the definition of JClasModifiers is abstracted.

Similarly we can use lower to higher level of abstractions to
extract our desired artifacts. The specifications are also
designed to represent the relationships between the extracted
artifacts which are further used for recovering architecture of
different software systems.

Similarly we can write following pattern specification to
extract all procedures, functions and property procedure from
source code of Visual basic (Monica database application) as
shown in Fig 3.

Pattern: (VBproc|VBfun|VBprop)

The pattern specifications of VBproc, Vbfun, Vbprop are as
given below in Pattern 1a, Patten 1b and Pattern 1c.

Pattern1a : ((Private|Public)\s*)?\s*(Static)?\bSub\b\s*(\w+)

Pattern1b:
((Private|Public)\s*)?\s*(Static)?\bFunction\b\s*(\w+)

Pattern1c:
((Private|Public)\s*)?\s*(Static)?\s*Property\s*(Get|Let|Set)\s*
(\w+).

The legacy systems may have source code of million lines.
The artifacts extraction speed is concerned while extracting
artifacts from large systems. The Table III shows the time
taken by our tool for extracting artifacts from Tacacs source
code[27].

TABLE III
SCANNING TIME

Tacacs Source Code Time Taken No of artifacts
Extracted

Scanning complete
code

:57 19987

Include Files 0:0 153
Function calls 0:0 242
Comments 0:1 1708

Fig. 3 Extracted procedures

IV. CONCLUSION
Reverse Engineering will always be necessary and play

important role for recovery of knowledge from legacy
systems. The proposed Architecture Recovery Framework is
an attempt to combine application domain knowledge,
architecture recovery approaches and tools in order to recover
the software architecture of legacy systems. The Recovery
framework is used on code and document of five different
programming language and has successfully recovered
different desired artifacts with the help of recovery process
and tools. The regular extraction technique is used to extract
the artifacts at various abstraction levels.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1083

V. FUTURE WORK
 Future work consist of building the tools for process

automation, application of process and framework to large and
complex software systems and refinement of process and
framework based on experiences and integration with
different development processes. The proposed framework
will be tested with different large and complex software
systems using different recovery approaches and tools.

REFERENCES
[1] Bass, Clements, Kazman, Software Architecture in Practice, 2nd ed.

Addison-Wesley, 2003.
[2] Gall H., Jazayeri M, Klosch R, Lugmayr W., Trausmuth G.,

“Architecture Recovery in ARES”, in Proc. of the 2nd International
Software Architecture Workshop (ISAW-2), San Francisco, 1996.

[3] Nadim Asif, “Architecture Recovery”, In the Proc. of International
Conference of Information and Knowledge Engineering (IKE’02), las
Vegas, 2002.

[4] David Garlin, “Research directions in software architecture” ACM
Computing surveys, Vol. 27. No. 2, 1995. pp. 257 – 261.

[5] O’Brien, L., “Dali: A Software Architecture Reconstruction
Workbench”, Software Engineering Institute, Carnegie Mellon
University, May 2001.

[6] P.J. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, et al. The
software bookshelf. IBM Systems Journal, 36(4):564–593, November
1997.

[7] Imagix4D,UR=http://www.imagix.comImagix Corp. [Accessed 10th
march, 2007].

[8] Bauhaus group, “Tour de Bauhaus”, http://www.Bauhaus-
stuttgart.de/demo/index.html, version 4.7.2, December 2003.

[9] Wolfgang Eixelsberger ReneKlosch, “A Framework for Software
Architecture Recovery”,
http://www.sei.cmu.edu/productlines/splc/las_navas/14eixelsberger.pdf.
[Accessed on March, 2007].

[10] Nadim Asif, Mark Dixon, Janet Finlay, George Coxhead,”Recovering
the Design artifacts”, In Proc. of International Conference of
Information and Knowledge Engineering (IKE’02), Las Vegas, 2002.

[11] Burnstein and K. Roberson, “Automated Chunking to support program
comprehension”, in the Proceeding of IWPC’ 97, Michigan, 1997, pp.
40-49 .

[12] K. Erdos, H.M Sneed, “Partial Comprehension of Complex Programs” I
in Proc. of 6th International Workshop on Program Comprehension,
Ischia, Italy, 1998.

[13] Jahnke J.H, Walenstein A., “Reverse Engineering tools as media for
Imperfect Knowledge” in Proc. of Working conference on Reverse
Engineering (WCRE00),Queensland, Australia, 2000.

[14] R.Keller, R.Schauer, S.Robitaille, P.Page, “Pattern Based Reverse-
Engineering of Design Components”. In Proc. 21st International
Conference on Software Engineering, 1999.

[15] Jianjun Zhao, "Slicing Concurrent Java Programs", in Proc. of IEEE –
7th International Workshop on Program Comprehension, 1999, pp. 126-
133.

[16] Gannod G.C, Cheng B.H.C, "As Formal Approach for Reverse
Engineering," in Proc. of IEEE Proceedings of Working Conference on
Reverse Engineering, 1999.

[17] A. Von MayrHauser and A.M. Vans, “Program Comprehension during
Software Maintenance and Evolution”, IEEE Computer, Vol. 28. pp 44-
55, August 1995.

[18] J.M. DeBaud, B. Moopen, S. Rugaber, "Domain Analysis and Reverse
Engineering," http://www.cc.gatech.edu / reverse/papers.html [accessed
on March, 2007]

[19] Kamran Sartipi “Software architecture recovery based on pattern
matching”, PhD Dissertation, University of Waterloo Canada, 2002.

[20] Hongji Yang, Software evolution with UML and XML Idea Group
Publishing, 2005, page 58, 2004.

[21] Onaiza Maqbool, “Architecture recovery of legacy systems”, PhD thesis,
univerisity of lahore pakistan, September 2006.

[22] Rainer Koschke, Gerardo Canfora, Jörg Czeranski, “Revisiting the ΔIC
approach to component recovery”, Science of Computer Programming,
Volume 60, Issue 2 (ISSN:0167-6423), Pages: 171 - 188 , April 2006.

[23] Rainer Koschke, Gerardo Canfora, Jörg Czeranski, “Revisiting the ΔIC
approach to component recovery”, Science of Computer Programming,
Volume 60, Issue 2 (ISSN:0167-6423), Pages: 171 - 188 , (April 2006).

[24] Rigi,URL=http://www.rigi.csc.univ.ca/rigi/rigiindex.htm .l [Accessed
5th march, 2007].

[25] Nadim Asif , Reverse Engineering Methdology to Recover the Design
Artifacts: A Case study, In Proceedings of International Conference of
Software Engineering Research and Practices (SERP’03), 23rd-26th
June 2003, Las Vegas, USA, CSREA Press, pp.932-938.

[26] Nadim Asif, Recover the Use Case Models, In proceedings of
International Conference of Software Engineering research and Practice
(SERP05), 27th-30th June, 2005 Las Vegas, USA, CSREA Press.

[27] http://www.gazi.edu.tr/tacacs/ [Accessed 10th June 2007].

Ghulam Rasool, is a faculty member at a prestigious public sector (state
owned) institute, COMSATS Institute of Information Technology, Lahore.
For a number of years Mr Rasool is delivering his valuable knowledge in the
field of Software Engineering. He did his Masters in Computer Science from
Bahauddin Zakariya University, (A public sector University) in Multan,
Pakistan. Currently, he is conducting extensive research for his Masters of
Science Thesis in the area of Software Engineering, under the supervision of
Prof. Dr. Nadeem Asif. Rasool has been heavily involved in a number of
projects and in teaching for the subjects of MIS, Software Engineering and
Data Structures For the last eight years.

Dr. Nadeem Asif, is a Professor in Software Engineering at Department of
Computer Science, The University of Lahore, Pakistan. He is also heading the
department for some years. Prof. Asif completed his Ph. D from University of
Leeds, UK. His work has been published in a number of re-known
conferences and journals. Beside research, he has worked as Co-Editor,
Editor, Associate-Editor and Program Committee Member of a number of
International Conferences. Nevertheless he is the Editor-in-Chief of a highly
reputed journal on software engineering. At University of Lahore he has
organized international conference/s.

Prior to joining he has worked, as head of department at Department of
Computer Science, National College of Business Administration and
Education (NCBA&E), Lahore. Currently, at University of Lahore, Dr Asif is
supervising a number of Master’s of Science Students for their Master’s
thesis.

