
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

864

Abstract—Software reuse can be considered as the most realistic

and promising way to improve software engineering productivity and
quality. Automated assistance for software reuse involves the
representation, classification, retrieval and adaptation of components.
The representation and retrieval of components are important to
software reuse in Component-Based on Software Development
(CBSD). However, current industrial component models mainly focus
on the implement techniques and ignore the semantic information
about component, so it is difficult to retrieve the components that
satisfy user’s requirements. This paper presents a method of business
component retrieval based on specification matching to solve the
software reuse of enterprise information system. First, a business
component model oriented reuse is proposed. In our model, the
business data type is represented as sign data type based on XML,
which can express the variable business data type that can describe the
variety of business operations. Based on this model, we propose
specification match relationships in two levels: business operation
level and business component level. In business operation level, we
use input business data types, output business data types and the
taxonomy of business operations evaluate the similarity between
business operations. In the business component level, we propose five
specification matches between business components. To retrieval
reusable business components, we propose the measure of similarity
degrees to calculate the similarities between business components.
Finally, a business component retrieval command like SQL is
proposed to help user to retrieve approximate business components
from component repository.

Keywords—Business component, business operation, business
data type, specification matching.

I. INTRODUCTION
OMPONENT-BASED Software Development (CBSD) is a
key technology to tackling rapid development and

Manuscript received July 2, 2006. This work was supported in part by the

National Natural Science Foundation of China under Grant No.60573086 and
Research Foundation for the Doctoral Program of Higher Education of China
under Grant No.20030213027

Meng Fanchao is with the school of computer science and technology,
Harbin institute of technology, Harbin, CO150001 China (corresponding
author to provide phone: 86-41-86412664; fax: 86-0451-86412664; e-mail:
mengfanchao74@ 163.com).

Zhan Dechen is with the school of computer science and technology, Harbin
institute of technology, Harbin, CO150001 China (corresponding author to
provide phone: 86-41-86412664; fax: 86-0451-86412664; e-mail:
Denchen@hit.edu.cn).

Xu Xiaofei is with the school of computer science and technology, Harbin
institute of technology, Harbin, CO150001 China.

software reuse of Enterprise Information System. CBSD is
different from traditional methodology of software
development, it emphasis much on retrieving reusable
components from components repository, and these
components retrieved are assembled to realize the functions of
application system. However, current industrial component
models such as CORBA, EJB and COM/DCOM mainly focus
on the implement techniques and ignore component semantic
information, so it is difficult to retrieve reusable components
according to the representation provided by these component
models. The main reason is that the information useful in reuse
process is either implicitly represented, which requires
extensive program analysis, or not formally represented, which
hinders the possibility of formal analysis [1].

Component retrieval involves component representation,
component classification and component searches. Currently,
many component retrieval methods have been proposed,
including text retrieval, facet-based retrieval and
specification-based matching retrieval.

Text retrieval method use one or more key words represent
components[2][3]. This approach is easy to understand and is
well defined. However, it has no ability to describe complex
semantic information[4]. Aim to the problem, some researchers
use fuzzy mathematics and rough-fuzzy sets to retrieve
components [5][6][7].

Facet-based retrieval method is a reuse approach that is
widely accepted [8]. In this approach, a component is classified
and searched using facets, and each facet includes some terms
that describe component semantic information. In the faced
scheme, a thesaurus provides vocabulary control, and a
conceptual distance graph is used to evaluate the similarities
between terms[9]. The main problems of facet-based retrieval
are that system with large number of facets can’t be used
efficiently, and constructing a thesaurus and conceptual
distance graph is labor-intensive. In addition, facet scheme is
still not formalized so that can’t effectively guide components
retrieval and assembly[10].

Specification matching retrievals focus on the type
information about the interface of a software component, they
take advantage of formal techniques to describe components.
Currently, a lot of research on Specification matching for
software reuse has been proposed [11][12][13][14][15][16].
Formal techniques have a good mathematical basic for
component specification. They emphasize on the completeness,
preciseness and consistency, which are suitable to component
retrieval and assembly. However, specification matching

Meng Fanchao, Zhan Dechen, and Xu Xiaofei

A Specification-Based Approach for Retrieval of
Reusable Business Component for Software

Reuse

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

865

retrievals require users know deeply about the problem
domains[17].

In this paper, we propose a component retrieval approach
based on approximate specification matching. The application
background is a large-scale business component repository of
enterprise information system. A business component is used in
the context of an information system as a part of the system’s
architecture. Business components can satisfy the functional
requirements of information systems by providing services
[18].

The remainder of this paper is organized as follows. Section
2 discusses related works. Section 3 describes a business
component model that mainly focuses on the business
operations provided by business components. In section 4, we
propose a business data type based on XML, give three matches,
they are business data types match based on paternity, business
operations match based on function specification, and business
components match based on five specifications. Section 5
proposes a method of business component retrieval based on
specification. In this section, we propose signature and action
similarity degrees to calculate the similarities between business
components, and present a business component query
command that has the similar semantic as the conventional
SQL. Finally, section 6 describes conclusion and future work.

II. RELATED WORK
Specification matching methods for component retrieval

have been frequently addressed in the software engineering
literature.

B.H.C.Cheng etc[18] propose a two-tiered hierarchy of the
repository based on formal specification using OSPL. The
lower level is based on generality relationships, and the higher
one is based on similarity relationships, which are assessed by a
clustering algorithm.

In [19][20], approximate retrieval of incomplete and formal
specifications is proposed. The classification and retrieval are
based on functional similarities according to structural and
semantic closeness. This paper defines four partial orderings
among reusable components and different measures to quantify
functional differences among them.

Hai Zhuge[21] presents a model retrieval approach based on
a quantified similar signature matching. The application
background is a mathematical model repository which is
divided into two specification levels: a fundamental function
level and a higher model level. By defining a multi-valued
model specification relationship and a function specification
relationship at two levels, the similarity between repository
models is characterized.

In [22], propose an XML-based software component
specification, the component retrieval method and a system can
deal with exact, partial and reference matching.

Mili et al[23] presented a software library approach based on
relational specification of components and queries as well as on
an ordering of library components, done by a refinement
ordering relation. Zaremski and Wing[24][25] applied
specification matching to retrieval system. Queries and
components are represented with pre-condition and
post-condition pairs.

III. BUSINESS COMPONENT MODEL ORIENTED REUSE

A. Business Component
Component based software development should be based on

Software Architecture (SA). Currently, Hierarchical Software
Architectures are used broad in Enterprise Information System.
Oliver Sims [26] proposed four-layer architectures; they are
user layer, workshop layer, enterprise layer and resource layer.
A larger-grained component called business component can
span this four layers. Business components can provide
services that satisfy the business requests of enterprise
information systems. In this paper, we are interested in these
business components that lie in enterprise layer.

Definition 1: Business components can be defined as bc=(n,

PS, RS, AS), where
(1) n is the name of business component.
(2) PS={PI1,PI2,…,PIm} is the set of provide interfaces, each

PIi (i=1,2,…,m) is composed of a set of provide business
operations.

(3) RS={RI1,RI2,…,RIn} is the set of require interfaces, each
RIj (j=1,2,…,n) is composed of a set of require business
operations.

(4) AS is action semantic of the business component [27]. It
can be represented as a event partial-order multi-sets, denoted
as AS=[(V, BOP, p ,μ)], where, V is the set of events that
represent activation of each business operations implemented
by the business component or an external call from the business
component; BOP=PI1 ∪ PI2 ∪ … ∪ PIm ∪ RI1 ∪ RI2
∪ … ∪ RIn is the set of business operations in the business
component’s interfaces; p is an irreflexive transitive binary
relation on E; μ :E→BOP is a mapping function, it assign
business operations to events, each element of the event set
represents an occurrence of business operation labeling it, with
the events possibly having multiple occurrences, that is, μ
need not be injective. AS can be expressed as a concurrent
regular expression on BOP.

Definition 2: A business operation can be defined as

bop=(n,t,In,Out), where, n is the name of business operation, t
is the type of business operation, In is the set of input business
data type, Out is the set of output business data type.

In this paper, we adopt an approximate method to describe a
business component. It mainly focuses on the input and output
business data types of business operations in the interfaces of
business components. Business data types are abstracted from
business objects in domain business model. It can be
represented as an extended DTD that can express the variable
business data that can describe variety of business operations.

B. Business Data Type based on XML
Current most component models adopt still traditional data

structure used in program language to represent business data
type. However, this method will suffer the influence of weak
interfaces with the increase of complexity of information
systems. An approach to solve this problem is utilizing XML
represent business data. Today XML has been used generally to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

866

represent all kinds of data type. This paper uses a set of XML to
represent business data.

When business components deal with business data, they
need to check the syntax of business data, and then abstract data
item according to their names. In general, the order of data
items should be ignored. In addition, the business operations in
business component’s interfaces should have the ability to deal
with the variability of input and out parameters of business
operations, however current most component models don’t
consider this aspect.

In this paper, we use DTD to represent the business data
type. Here, we only consider elements (that can have a nested
structure) ignoring attributes. The variability of business data
Type can be described by the operators in DTD such as “?”, “+”
and “*” etc. To standardize the representation of DTD
describing business data type, compound operators need be
predigested, for example, ((a*) +) = a*. Because DTD
describing business data type doesn’t distinguish the sequence
of elements, this is different from stander DTD criterion. To
express this requirement, we use symbol DTD+ represent
business data type, and use symbol XML+ represent business
data.

Definition 2: Let D be a DTD+, X be a XML+, if X satisfy the

format of D, then X is called as an instance of D, denoted as X
∈Instance(D), where Instance(D) is the set of instance of D.

An example of DTD+ and XML+ is shown as Fig. 1. Fig. 1(a)
is a DTD+ that describes business data type of a check order.
Fig. 1(b) is a XML+ that satisfies the format of DTD+ in fig1(a),
and Fig. 1(c) is also a XML+ that satisfies the format of DTD+
in Fig. 1(a). According to the definition 2, the XML1+ and
XML2+ in Fig. 2(b) and Fig. 1(c) are the instances of DTD+ in
Fig. 1(a), but that have different structure.

.

(a) DCheckorder

(b) XCheckorder1

(c) XCheckorder2

Fig. 1 An example of DTD+ and XML+

C. Business Component Model
Business components can be identified and created from

domain business model that can be represented as UML class
diagrams. A business component can implement the functions
of one or more business objects which are represented by
classes. For example, Fig. 2 shows a domain business model
that includes five business objects.

CheckItem

Item : String
Unit : String
value : Double

DeleteCheckItem()
DeleteCheckItems()
UpdateCheckItem()
UpdateCheckItems()

Requisition
RequisitionNunmber : String

Instock
InstockNumber : String

Material Checkorder
InstockNumber : String
QualityRate : String 0..11

R4

Checkorder
Number : String
Stander : String
Object : String
Checker : String
RequisitionNumber : String

QueryCheckorder()
UpdataCheckorder()
DeleteCheckorder()

R1

1 0..*

R3

0..1

1
R2

0..1

1

1 0..1

1 0..*

Fig. 2 Domain Business Model

Base on domain business model, we can identify reusable

business components for across systems. Here, we give a
business component (CCheckorder) which provides four

<Check order>
 <Number> ZJ001 </Number>
 <Standard> GB-2000 </Standard>
 <Object> coal </Object>
 < Requisition > 05001 </ Requisition >
 <Checker> Tom </Checker>
 <CheckItems>
 <Item> water </Item>
 <Unit> % </Unit>
 <Value> 10 </Value>
 </CheckItems>
</Check o

<! ELEMENT Check order (Number, Standard, Object,
(Requisition?|Instockbill?), QualityRate?, Checker*,
CheckItems*)>
<! ELEMENT Number (#PCDATA)>
<! ELEMENT Standard (#PCDATA)>
<! ELEMENT Object (#PCDATA)>
<! ELEMENT Requisition (#PCDATA)>
<! ATTLIST Requisition DataType CDATA “String”>
<! ELEMENT Instockbill (#PCDATA)>
<! ELEMENT QualityRate (#PCDATA)>
<! ELEMENT Checker (#PCDATA)>
<! ELEMENT CheckItems (Item, Unit, Value)>
<! ELEMENT Item (#PCDATA)>
<! ELEMENT Unit (#PCDATA)>
<! ELEMENT Value (#PCDATA)>

<Check order>
 <Number> ZJ002 </Number>
 <Standard> GB-2000 </Standard>
 <Object> coal </Object>
 < Requisition > 05001 </ Requisition >

<QualityRate>2</QualityRate>
 <Checker> Tom </Checker>
 <CheckItems>
 <Item> water </Item>
 <Unit> % </Unit>
 <Value> 10 </Value>
 </CheckItems>
</Check order>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

867

business operations, they are QueryCheckorder,
UpdateCheckorder, RequsitiontoCheckorder and
UpdateCheckorderItems. The business component
specification is shown as follows:

Business Component CCheckorder
 Provide Interfaces
 Interface ICheckorder
 Business Operation GetCheckorder
 Type=”Query”;
 Input
 DQuery;
 End Input
 Output
 DResult;
 End Output
 End Business Operation;
 Business Operation UpdateCheckorder

Type=”Update”;
 Input
 DCheckOrder;
 End Input
 Output
 End Output
 End Business Operation;
 Business Operation RequsitiontoCheckorder
 Type=”Transformation”;
 Input
 DRequsition;
 End Input
 Output
 DCheckOrder;
 End Output
 End Business Operation;
 Business Operation UpdateCheckorderItems
 Type=”Update”;
 Input
 DCheckOrderItem;
 End Input
 Output
 End Output
 End Business Operation;
 End Interface
 End Interfaces
 Action
 [(GetCheckorder)&(UpdateCheckord p

UpdateCheckorderItems)&(RequsitiontoCheckorder)]
 End Action
End

In the above action semantic specification, the symbol “ p ”
represents sequence relationship between business operations,
and the symbol “&” represents concurrent relationship between
business operations. The input and output business data type of
every business operation can be abstracted from domain
business model. Here, we give an example of business data type
to explain the difference between business data type based on
XML and traditional data type.

The business operation QueryCheckorder can be represented
as GetCheckorder(String Number, String Stander):
Checkorder in current most component models. In our
approach, the input parameters of business operation can be
transformed into DTD+ shown as in Fig. 3(a), and the output
parameters of business operation can be transformed into
DTD+ shown as in Fig. 3(b). Comparing with current
component models, our approach has some advantages as
follows:

 It can describe the variability of input and out parameters
of business operations, which can not be represented in
many component models.

 It can not only describe static structure of a business
component, but also describe dynamic action feature..

 It is independent to implement platform and development
language.

(a) DQuery

(b) DResult

(c) DCheckorder’

Fig. 3 Example of Business Data Type

IV. BUSINESS COMPONENT RETRIEVAL BASED ON
SPECIFICATION MATCHING

Evaluation of business component similarity is based on the
specification match relationships in two levels: business
operation level and business component level. In business
operation level, we use input business data types, output
business data types and the taxonomy of business operations

<! ELEMENT Check order (Number, Standard >
<! ELEMENT Number (#PCDATA)>
<! ELEMENT Object (#PCDATA)>

<! ELEMENT Check order (Number, Standard, Object,
(Requisition | Instockbill), QualityRate, Checker*>
<! ELEMENT Number (#PCDATA)>
<! ELEMENT Standard (#PCDATA)>
<! ELEMENT Object (#PCDATA)>
<! ELEMENT Requisition (#PCDATA)>
<! ELEMENT Instockbill (#PCDATA)>
<! ELEMENT QualityRate (#PCDATA)>
<! ELEMENT Checker (#PCDATA)>

<! ELEMENT Check order (Number, Standard, Object,
Requisition?, Checker*, CheckItems*)>
<! ELEMENT Number (#PCDATA)>
<! ELEMENT Standard (#PCDATA)>
<! ELEMENT Object (#PCDATA)>
<! ELEMENT Requisition (#PCDATA)>
<! ELEMENT Checker (#PCDATA)>
<! ELEMENT CheckItems (Item, Unit, Value>
<! ELEMENT Item (#PCDATA)>
<! ELEMENT Unit (#PCDATA)>
<! ELEMENT Value (#PCDATA)>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

868

evaluate the similarity between business operations. In the
business component level, we propose five specification
matches between business components.

A. Matching between Business Operations
Definition 3: Let D1 and D2 be two DTD+, if for every X∈

Instance(D1) such that X∈Instance(D2), then D1 is called as a
subtype of D2, denoted as D1 ⊆ D2. If (D1 ⊆ D2) ∧ (D2 ⊆ D1),
then D1 is equivalent to D2, denoted as D1≡D2.

D1 ⊆ D2 denotes that the instance set of D2 contains the
instance set of D1, that is to say, the expression ability of D2 is
stronger than that of D1. Fig. 3(c) gives another DTD+.
According to the definition 2, the XML+ in fig 1(a) is also an
instance of the DTD+ in Fig. 3(c), and for every instance that
satisfies the format of DTD+ in Fig. 3(c), it also satisfies the
format of DTD+ in Fig. 1(a), so the DTD+ in Fig. 3(c) is a
subtype of the DTD+ in Fig. 1(a).

To judge the paternity between two business data types, we
map each DTD+ into an unorder labeled tree, and then take
advantage of the matching relationship between two unorder
labeled trees to judge the paternity between two business data
types.

Definition 4: A DTD+ can be represented as an unorder
labeled tree T=(V,E,root(T)), where, V is the set of nodes, and
each node represents an element, root(V) is the root node of
labeled tree. E is the set of edges, and (u,v)∈E represents that u
is the father node of v, denoted as u=Parent(v). u=Parent?(v)
represents that v is the optional element of u.
u=Parent%(v1,v2,…,vn) represents that there will be an element
selected from v1,v2,…,vn. u=Parent+(v) represents that v can
repeat 1 or more times. u=Parent*(v) represents that v can
repeat 0 or more times. u=Parent1(v) represents that v can’t be
repeated and absent.

(a) Label Tree 1

(b) Label Tree 2
Fig. 4 An Example of label trees

For example, Fig. 4(a) gives a unorder labeled tree that
represents the DTD+ in Fig. 3, and Fig. 4(b) gives another
unorder labeled tree that represents the DTD+ in Fig. 1(a).

Firstly, we discuss the method of judging the paternity
between two unorder labeled trees whose depths are one. Let
T1=(V1,E1,root(T1)) and T2=(V2,E2,root(T2)) be two unorder
labeled trees, Depth(T1)=1, Depth(T2)=1, if T1 and T2 satisfy the
following conditions, then T1 ⊆ T2.

Condition 1: label(root(T1))～ label(root(T1)), where ～
represents that the tag name of root(T1) and the tag name of
root(T2) are synonymous.

Condition 2: for every element v in V1-{root(T1)}, there
exist an element v’ in V2-{root(T2)}, such that:

 label(v)～label(v’);
 u=parent1(v) ⇒ u’=parent1(v’) ∨ u’=parent?(v’) ∨

u’=parent+(v’) ∨ u’=parent*(v’), where u is the father
node of v, and u’ is the father node of v’;

 u=parent?(v) ⇒ u’=parent?(v’) ∨ u’=parent*(v’);
 u=parent+(v) ⇒ u’=parent+(v’) ∨ u’=parent*(v’);
 u=parent*(v) ⇒ u’=parent*(v’);
Condition 3: if there exists an element v’ in V2-{root(T2)},

but there dose not exist element v in V1-{root(T1)} such that:
label(v)～label(v’), then

 u’=parent?(v’) ∨ u’=parent*(v’) ∨ u’=
parent%(v1’,v2’,…,v’,…,vn’).

 if there exists relation u’=parent%(v1’,v2’,…,v’,…,vn’),
suppose that for each element in v1’,v2’,…,vk’, there dose
not exist element vi (i=1,2,…,k) in V1-{root(T1)} that
satisfies conditions: label(vi)～ label(vi’), and for each
element in vk+1’,vk+2’,…,vn’, there exist element vj
(j=k+1,k+2,…,n) in V1-{root(T1)} that satisfies
conditions: label(vi)～label(vi’). if k≥2, then there exist
relation u=parent%(v1,v2,…,vk,…,vm), label(vi) ～
label(vi’) (i=1,2,…,k).

For two unorder labeled trees whose depths are bigger than
one, we can use above approach and width search technique to
judge the paternity between them. In the following, we
illustrate the method by an example.

 Fig. 5 shows the mapping relationships between two
unorder labeled trees T1 and T2 that are the labeled trees shown
in Fig 4. In Layer0, label(T1)=label(T2). In Layer1, for every
element v in T1, there exists an element v’ in T2, they satisfy
condition 2. Fig 5 gives the map relationships from T1 to T2.For
the node Instockbill and QualityRate in T2, there does not exist
corresponding elements in T1, but they satisfy condition 2. In T1,
the element CheckItem includes three son elements, and in T2,
there exist also corresponding elements that satisfy above
conditions. So DTD+ represented by T1 is a subtype of DTD+
represented by T2.

Fig. 5 Label Tree Matching

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

869

Definition 5: Let bop1=(n1,t1,In1,Out1) and bop2=(n2,t2,In2,
Out2) be two business operations, if bop1 and bop2 satisfy
condition: (t1=t2) ∧ (In1 ⊆ In2) ∧ (Out1 ⊆ Out2), then bop2 is
called as the specification of bopi, denoted as bop1→S bop2.

Theorem 1: Specification matching between two business

operations satisfies reflexive and transitive, that is, (1) bop→S

bop; (2) bop1→S bop2 ∧ bop2→S bop3 ⇒ bop1→S bop3.
Let bop1 and bop2 be two business operations, bop1→S bop2,

denotes that the service provided by bop2 is stronger than the
service provided by bop1. Suppose bop1 and bop2 are two query
business operations. The input business data type of bop1 is the
DTD+ in Fig. 6(a), and the output business data type of bop1 is
the DTD+ in Fig. 2(a). The input business data type of bop2 is
the DTD+ in Fig. 3, and the output business data type of bop2 is
the DTD+ in Fig. 6(b). According to the method of judging the
paternity between business data types, we have In1 ⊆ In2,
Out1 ⊆ Out2, thus bop1→S bop2.

(a) DTD1+

(b) DTD2+
Fig. 6 Two DTD+s

B. Matching between Business Components
From the standpoint of reuse, a business component can be

represented as set of business operations. Every business
operation is a signature of the business components. Here we
give five matching relationships between business components.

Definition 6: Let bc1 and bc2 be two business components,

BOP(bc1) is the set of business operations provide by bc1, and
BOP(bc2) is the set of business operations provided by bc2.

 1) If there exist a one-to-one and onto mapping from
BOP(bc1) into BOP(bc2), and for every bopi∈BOP(bc1), there
exists a bopj∈BOP(bc2) such that bopi→S bopj, then bc2 is
called an equivalent specification from bc1, denoted as bc1→

Equi bc2;
2) If for every bopi∈BOP(bc1), there exists a bopj∈

BOP(bc2) such that bopi→S bopj, then bc2 is called an extension
specification from bc1, denoted as bc1→Extend bc2;

3) If for every bopj∈BOP(bc2), there exists a bopi∈

BOP(bc1) such that bopi→S bopj, then bc2 is called a partial
specification from bc1, denoted as bc1→Part bc2;

4) If there exists a bopi∈BOP(bc1) and a bopj∈BOP(bc2)
such that bopi→ S bopj, then bc2 is called a modification
specification from bc1, denoted as bc1→Modi bc2.

5) If there does not exist a bopi∈BOP(bc1) and a bopj∈

BOP(bc2) such that bopi → S bopj, then bc2 is called a
non-specification from bc1, denoted as bc1→Non bc2.

In above five matching relationships, the equivalent
specification is the strongest, both the extension specification
and the partial service specification are weaker than equivalent
service specification and stronger than the modification service
specification, and the non- specification is the weakest.

V. BUSINESS COMPONENT RETRIEVAL

A. Similarity Degree
Reusable business components are stored in the repository.

To retrieve the suitable business component form the
repository, I give the rule of measurement that can evaluate the
similarity degree between two business components.

 Signature Similarity Degree:
Let bc1 and bc2 be two business components, the signature

similarity degree between bc1 and bc2 can be defined as

SSD(bc1,bc2)=)()(
|)(|2

21

21

bcBOPbcBOP
bcbcBOP

∩
∩⋅ ,

where)(21 bcbcBOP ∩ represents the set composed of the pairs
of business operations of bc1 and bc2 that satisfy specification
matching, that is,)(21 bcbcBOP ∩ ={(bop1i, bop2j)| bop1i ∈

BOP(bc1), bop2j∈BOP(bc2), bop1i→S bop2j}. BOP(bc1) and
BOP(bc2) are the sets of business operations included in bc1 and
bc2.

 Action Similarity Degree:
 Action similarity degree between two business components
can be calculated by the action semantic of business
components. The action semantic can be expressed as a
concurrent regular expression on business operation which is
decomposed into the disjoint set of partial order business
operations. Here we call every business operations set as a
business operation sequence.

Definition 7: Let p1=bop11 p bop12 p … p bop1m and
p2=bop21 p bop22 p … p bop2n be two business operation
sequences, if p1 and p2 satisfy conditions: (1) m=n; (2) bop1i→S

bop2i (i=1,2,…,m), then p2 is called as the specification of p1,
denoted as p1→S p2.

Let bc1 and bc2 be two business components, the action
similarity degree between bc1 and bc2 can be defined as

ASD(bc1,bc2)=)()(
|)(|2

21

21

bcPbcP
bcbcP

∩
∩⋅

,

where)(21 bcbcP ∩ represents the set composed of the pairs of
business operation sequences of p1 and p2 that satisfy
specification matching, that is,)(21 bcbcP ∩ ={(p1i, p2j)| p1i∈

P(p1), bop2j∈P(bc2), p1i→S p2j}. P(bc1) and P(bc2) are the sets
of business operation sequences included in bc1 and bc2.

<! DOCTYPE Check order [
<! ELEMENT Check order (Number, Standard, Object)>
<! ELEMENT Number (#PCDATA)>
<! ELEMENT Standard (#PCDATA)>
<! ELEMENT Object (#PCDATA)>]>

<! DOCTYPE Check order [
<! ELEMENT Check order (Number, Standard?, Object?)>
<! ELEMENT Number (#PCDATA)>
<! ELEMENT Standard (#PCDATA)>
<! ELEMENT Object (#PCDATA)>]>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

870

 Similarity Degree between business components:
Let bc1 and bc2 be two business components, the similarity

degree between bc1 and bc2 can be defined as SD(bc1,bc2)=wS·
SSD(bc1,bc2)+wA· ASD(bc1,bc2), where wS ∈[0,1]is the weight
of structural similarity, wA ∈[0,1]is the weight of action
similarity, and wS + wA =1.

B. Retrieval Command
In order to reuse already developed business components

which can satisfy the functionality specified by the query, we
proposed the component query command which has the similar
semantic as the conventional SQL. The syntax of component
query command is represented as

Select <x> from <C>
[Where <Q>]
[Order by <(bc’, SDT,OT)>]

where x is the name of target business component to be

retrieved, and C is the reusable business component repository
Q is the query condition, Q::=Q ∧ Q |Q ∨ Q |～Q | x θ bc, where
bc is the name of business component that can be represented
as the set of business operations, and θ∈{=, >,<,like,≠} is
match operator. The query returns all business components in
the repository that satisfy the query condition. In the following,
we give the signification of some basic query conditions.

 x=bc means that bc is the equivalent specification of x. If
the query condition Q = ”x=bc”, then RC={x | (x∈C) ∧ (x
→Equi bc)};

 x>bc means that bc is the partial specification of x. If the
query condition Q = ”x>bc”, then RC={x | (x∈C) ∧ (x→
Part bc)};

 x<bc means that bc is the extension specification of x. If
the query condition Q =”x<bc”, then RC={x | (x∈C) ∧ (x
→Extend bc)};

 x like bc means that bc is the modification specification of
x. If the query condition Q = ”x like bc”, then RC={x | (x
∈C) ∧ (x→Modi bc)};

 x≠bc means that bc is the non-specification of x. If the
query condition Q = ”x≠bc”, then RC={x | (x∈C) ∧ (x→
Non bc)};

According to above basic query conditions, we can construct
complex query conditions. For example, if the query condition
is Q = ”(x>bc1) ∧ (x<bc2) ”, then RC={x| (x∈C) ∧ (x→Extend
bc1) ∧ (x→Part bc2}.

The [Order by <(bc’, SDT,OT)>] represents that the
business components retrieved from component repository C
according to query condition Q need to be sorted by the
similarity degrees, and bc is the target business component.
SDT::=SSD|ASD|SD represents the type of similarity degree,
where SSD represents the Signature Similarity Degree, SSD
represents the Action Similarity Degree, and SD represents the
Similarity Degree which is the weighted sum of Signature
Similarity Degree and Action Similarity Degree.
OT::=ASCEND|DESCEND represent sort type.

For example, the following query command retrieves all
business components that are the partial specification of
Checkorder. The query result is sorted by DESCEND
according to the Signature Similarity Degree, and the target
business component is Checkorder.

Select x from C
Where x>Checkorder
Order by (Checkorder, SSD, DESCEND)

C. An Example of Application
Here, we give an example to express the business component

retrieval method. Let bc be a query business component, and
assuming that the repository consists of the six reusable
business components: bc1, bc2,…,bc6. Here we ignore the
business data type, and use name to represent business
components and business operations. Table I shows the seven
business components.

TABLE I

BUSINESS COMPONENTS
Business
componen
t

Business operations Concurrent regular
expression

bc a, b, c, d (a p b) &(c p d)
bc1 a, d a & b
bc2 a, c, d b &(c p d)
bc3 a, b, c, d, e, f, i, g, k, l (a p b) & (c p d) &

(e p f) & i & g &
(k p l)

bc4 a, c, d, e a&(c p d)& e
bc5 c, d, f, g (c p d)& (e p f)
bc6 e, f, g (e p f)&g

According to definition 6, we have bc→Partbc1, bc→Partbc2,

bc→Extendbc3, bc→Modibc4, bc→Modibc5, bc→Non bc6. We assign
weight of signature similarity degree 0.8, and weight of action
similarity degree 0.2, According to the formula of similarity
degree, we have
SSD(bc,bc1)=2/3, ASD(bc,bc1)=0, SD(bc, bc1)=0.5;
SSD(bc,bc2)=4/7, ASD(bc,bc2)=1/2, SD(bc, bc2)=0.6;
SSD(bc,bc3)=4/7, ASD(bc,bc3)=1/2, SD(bc, bc3)=0.6;
SSD(bc,bc4)=3/4, ASD(bc,bc4)=2/5, SD(bc, bc4)=0.7;
SSD(bc,bc5)=1/2, ASD(bc,bc5)=1/2, SD(bc, bc5)=0.2;
SSD(bc,bc6)=0, ASD(bc,bc6)=0, SD(bc, bc6)=0.2.

Once the retrieval process has finished, the user has to select
the most closet business component that satisfy the function
requirement for the query business component. From a
semantic viewpoint, we select these business components that
are equivalent and extension specifications from the query
business component. In this example, bc3 is an extension
specification from bc. From a similar viewpoint, we select the
business component that has the biggest similarity degree with
query business component. In this example, bc4 has the biggest
signature similarity degree with bc, bc2, bc3 and bc5 have
biggest action similarity degrees with bc, and bc4 have biggest
similarity degree with bc.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

871

VI. CONCLUSION
Comparing with the previous approaches, the proposed

approach has the following characteristics. First, the proposed
component model can describe both the static structure
information about the interface and the dynamic behavior
feature of a business component. The business type based on
XML proposed can express the variable business data that can
describe the variety of business operations. Second, we propose
a multi-layer matching mode that can enrich the semantic
information of business component repository. Finally, to
retrieve closet business component with the query business
component, we propose a method of calculating the similarity
degree between business components, and give the query
command to help user to retrieve approximate business
components about business requirement. In order to continue
this approach proposed, currently, we have developed business
modeling and business component identification and retrieval
prototype systems.

REFERENCES
[1] William C. Chu, Chih-Wei Lu, Hongji Yang and Xudong He. A formal

approach for component retrieval and integration analysis. Journal of
Software Maintenance: Research And Practice. 2000; 12:325-342.

[2] William B. Frakes. A case study of a reusable component collection in the
information retrieval domain. The Journal of Systems and Software 72
(2004) 265–270.

[3] W.B. Frakes, T.P. Pole, An empirical study of representation methods for
reusable software components, IEEE Transactions on Software
Engineering 20 (8) (1994).

[4] Hafedh Mili, Estelle Ah-Ki, Robert Godin, Hamid Mcheick, An
experiment in software component retrieval. Information and Software
Technology 45 (2003) 633–649.

[5] D. Merkl, A.M. Tjoa, G. Kappel. Learning the semantic similarity of
reusable software components. Proceedings of 3rd International
Conference on Software Reuse(ICSR’94), IEEE Computer Society Press,
1994. 33-41.

[6] S. Henninger. Supporting the process of satisfying information needs with
reusable software libraries: an empirical study. Proceedings of the 17th
International Conference on Software Engineering on Symposium on
Software Reusability, ACM Press, 1995. 267-270.

[7] D. Vijay Rao, V.V.S.Sarma. A rough-fuzzy approach for retrieval of
candidate components for software reuse. Pattern Recognition Letter
24(2003): 875-886.

[8] Chung-Horng Lung and Joseph E. Urban. An Approach to the
Classification of Domain Models in Support of Analogical Reuse. SSR
’95, Seattle, WA, USA G 1995 ACM 0-89791 -739- 1/95/0004.

[9] E. Damiani, M.G. Fugini, C. Bellettini. A hierarchy-aware approach to
faceted classification of object-oriented components[J]. ACM
Transactions on Software Engineering and Methodology, 1998, 8(3):
215-262.

[10] Hsien-chou liao, ming-feng chen and feng-jian wang. A
Domain-Independent Software Reuse Framework Based on a
Hierarchical Thesaurus. software—practice and experience, Vol. 28(8),
799–818 (10 July 1998).

[11] David Hemer. Specication-based retrieval strategies for component
architectures. In ： Proceedings of the 2005 Australian Software
Engineering Conference (ASWEC’05).

[12] Lamia Labed Jilani, Jules Desharnais, Retrieving Software Components
That Minimize Adaptation Effort.

[13] Hai-Feng Guo, Miao Liu, Jiaxiong Pi. Precise Specification Matching for
Automated Component Retrieval and Adaptation.

[14] David Hemer, Peter Lindsay. Specification-based Retrieval Strategies for
Module Reuse.2001.

[15] John Penix, Perry Alexander. Using Formal Specification for Component
Retrieval and Reuse.

[16] Amy Moormann Zaremski, Jeannette M. Wing. Specification Matching of
Software Components. ACM Transactions on Software Engineering and
Methodology, 1997, 6(4): 333–369.

[17] Kakeshita.T, Murata.M. Specification-based component retrieval by
means of examples. Proceedings of International Symposium on Database
Applications in Non-Traditional Environments (DANTE '99),
1999:411~420.

[18] B.H.C. Cheng and J.J.Jeng. Reusing analogous components. IEEE
Transaction on Knowledge and Data Engineering, 9(2), March, 1997.

[19] Redondo, R.P.D.; Arias, J.J.P.; Vilas, A.F.; Martinez, B.B. Approximate
Retrieval of incomplete and formal specifications applied to vertical
reuse[D]. Proceedings of International Conference on Software
Maintenance (ICSM’02), 3-6 Oct. 2002:618- 627.

[20] Redondo, R.P.D.; Arias, J.J.P.; Vilas, A.F.; Martinez, B.B. Approximate
Retrieval of Incomplete and Formal Specifications applied to horizontal
reuse[D]. Proceedings of 28th Euromicro Conference, 4-6 Sept. 2002:90
– 97.

[21] Hai Zhuge. An inexact model matching approach and its applications[J].
The Journal of Systems and Software 67 (2003) 201–212.

[22] Praphamontripong, U.; Hu, G. XML-based software component retrieval
with partial and reference matching. Proceedings of the 2004 IEEE
International Conference on Information Reuse and Integration，8-10
Nov. 2004:127 – 132.

[23] Mili, R. Mili, and R. Mittermeir, Storing and Retrieving Software
Component: A Refinement Based Approach. IEEE Transactions on
software Engineeing, Vol. 23, No.7, page 139-170, 1999.

[24] Amy Moormann Zaremski, Signature and Specification Matching, Ph.
Disseration, Carnegie Mellon University, 1996.

[25] Amy Moormann Zaremski Xerox Corporation, Jeannette M. Wing.
Specification Matching of Software Components. ACM Transactions on
Software Engineering and Methodology, Vol. 6, No. 4, October 1997,
Pages 333–369.

[26] Peter Herzum, Oliver. Business Component Factory: A Comprehensive
Overview of Component-Based Development for the Enterprise. John
Wiley& sonc, Inc, 2000.

[27] Marlon E.R. Vieira. A Compositional Approach for analyzing
Dependencies in Component-Based System. Ph. Disseration, University
of California, 2003.

Meng Fanchao received the B.S.and M.S. degrees from Heilongjiang
University in 1997 and Harbin science and technology university in 2000,
respectively. He is presently a Ph.D candidate at Center of Intelligent
computing of Enterprises, School of Computer Science and Technology in
Harbin Industrial of Technology of China. His current research areas include
Enterprise Modeling, ERP, and software engineering..

