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Abstract—Lacking an inherent “natural” dissimilarity measure 

between objects in categorical dataset presents special difficulties in 

clustering analysis. However, each categorical attributes from a given 

dataset provides natural probability and information in the sense of 

Shannon. In this paper, we proposed a novel method which 

heuristically converts categorical attributes to numerical values by 

exploiting such associated information. We conduct an experimental 

study with real-life categorical dataset. The experiment demonstrates 

the effectiveness of our approach.

Keywords—Categorical, Clustering, Converting, Information 

I. INTRODUCTION

ROUPING a set of objects into classes of similar objects 

is one of the major topics [3], [16], [18], [19]. A large 

number of clustering algorithms exist in the literature. In 

general, they can be classified into several categories [16], i.e. 

partitioning methods [20], [22], hierarchical methods [3], [7], 

[18], density-based methods [2], [8], [15], model-based 

methods [23] [9], and etc. 

 It is natural to approach this problem by computing the 

similarities between objects when distance function is 

naturally defined [16]. Numerical data has such geometric 

properties. Unfortunately, problems arise when it comes to 

categorical clustering, i.e. clustering data whose domains are 

discrete and not naturally ordered. It is hard to define which 

attribute is “smaller” or “bigger”. Lacking an inherent 

“natural” order makes a large number of traditional similarity 

measures ineffective. In the field of data mining, a lot of 

categorical clustering work have been published [3], [11], 

[12], [14], [17], [23], [26], [30]. Recently, information-related 

approaches have been studied [4], [6], [21].  

In this paper, we proposed a novel method which exploits 

information associated with each categorical attribute in a 

given dataset. Using such information, we are able to 

heuristically convert categorical attributes to numerical values. 

Our approach is derived from the concept of information 

theory and probabilistic model. It neither simply encodes 

categorical attributes, which does not necessarily produce 
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reasonable results, nor sets entropy criterion for partitioning. 

In a thorough real dataset evaluation, we demonstrate the 

effectiveness of our approach.  

The rest of the paper is organized as follows. Section II 

discusses related work on clustering categorical data. Section 

III describes cluster problem from mathematical aspect. 

Section IV introduces some definitions used in this paper. 

Section V expands discussion about the definitions. Section 

VI heuristically establishes converting model for categorical 

data. Section VII presents real-life experiment results. Section 

VIII follows summary.

II. RELATED WORK

In the standard clustering methods, COBWEB [9] is one of 

the popular algorithms for categorical data. It utilizes 

incremental learning and dynamically builds a dendrogram. Its 

conceptual learning property can describe cluster intrinsically. 

[23] presents other conceptual clustering algorithms and 

produces conceptual descriptions of clusters. People have 

sought dissimilarity measures by traditional clustering 

methods, e.g., Gower’s similarity coefficient [13] and other 

dissimilarity measures [10] applied on the hierarchical 

clustering methods [3], [18]. By using a simple matching 

dissimilarity measure and replacing means with modes, [17] 

presents an algorithm, K-modes. K-modes extends the 

traditional K-means [22] partitioning clustering from 

numerical data to categorical data. In [14], the authors propose 

a novel algorithm, ROCK, a concept of links to measure the 

similarity between objects. The algorithm employs links not 

distances when merging clusters. From functional analysis, 

[12] presents STIRR. The techniques can be studied 

analytically in terms of certain types of non-linear dynamic 

systems. The application can be extended to transactional 

data. For modification, [30] proposes a revised dynamic 

system to solve convergence problem in [12].  

In the area of categorical clustering, researchers are still 

looking for the potential relationship between categorical 

attributes and numerical values and making effort to employ 

numerical criteria for clustering. CACTUS [11] is such an 

algorithm. It defines inter-attribute and intra-attribute 

summaries which tell us how well values from different and 

the same attribute are related respectively. In [26], the author 

mentions an acceptable approach to use K-means algorithm to 

cluster categorical data. It converts multiple categorical 

attributes into binary attributes without order.  
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Information-related methods are attracting researcher 

attentions recently. They observe that clusters of similar 

objects have lower entropy. In [4], the authors design a 

heuristic algorithm, COOLCAT, which is capable of 

efficiently clustering large data sets with categorical attributes. 

[6] presents a solution which provides the dissimilarities 

between objects based on an information-theoretical definition 

of dissimilarities between partitions of finite sets. Using 

entropy as criterion, [21] proposes to search the partitions to 

minimize the information-based criterion. In fact, each 

categorical attributes from a given dataset provides natural 

probability and information in the sense of Shannon. In this 

paper, we proposed a novel method which heuristically 

converts categorical attributes to numerical values by 

exploiting such associated information. 

III. MATHEMATICAL PRELIMINARIES

In this section, we formally define categorical dataset, 

object, and cluster from mathematical aspect. 

A. Categorical Dataset 

Definition 3.1: Let { 1A , 2A ,…, mA } be a set of categorical 

attributes which consists of finite set of values. We let ia =

| iA | be the size of the attribute iA  for i=1,…,m, then iA  is 

described as a finite set }...,,1|{ i

i

j ajr . Let  

D = {( 1c , ..., ic , …, mc ), ic iA , mi1 }       (1) 

be the set of objects, the dataset.  

B. An Object from Categorical Dataset   

Definition 3.2: Following Def. 3.1, an object O from D is 

defined as a vector   

O = ( 1c , 2c , …, mc )                                  (2) 

C. Categorical Cluster  

For clustering problem, objects are grouped into classes of 

similar objects [16]. The set of such classes is named class 

target (class attribute) in this paper. 

Definition 3.3: Let us assume t is from a class target T

= }...,,1|{ lktk , l =|T|. For clustering problem, there is an 

association between D and T,

{( 1c , ..., ic , …, mc , t), ic iA , mi1 , and Tt }   (3) 

Each object O  with target attribute is defined as an element 

in this association, i.e. 

O = ( 1c , 2c , …, mc , t )                            (4) 

IV. DEFINITIONS

In this section, we introduces some definitions used in the 

remaining of the paper.  

We have mentioned that our method exploits information 

associated with each categorical attributes. Such information 

is estimated based on the following summaries.  

Definition 4.1: Let i

jkn  for lkaj i 1and1  denotes 

a summary associated to attribute iA , where i

jkn =| i

jkD |

and i

jkD = {( 1c , ..., ic , …, mc , t):
i

ji rc  and t= kt }.  

Definition 4.2: Let 
i

kn  ( lk1 ) be a summary that 

associated to iA  represents the number of objects having 

t= kt ,

ia

j

i

jk

i

k nn
1

  for mi1                     (5) 

Clearly u

jk

a

j

D
r

1

= v

jk

a

j

D
s

1

 for any mvu,1 , it follows 

immediately 
1

kn =
2

kn =…=
m

kn . Therefore 
i

kn  is independent 

on attribute index i.

From now on, we denote kn =
1

kn =
2

kn =…=
m

kn , then the 

number of objects in the dataset D is 

n = 

l

k

kn
1

                                      (6) 

Now we are ready to introduce some definitions which are 

used to measure the information for categorical attribute. 

Definition 4.3: Let E(
i

jr ) be the Entropy of the set of objects 

having ic =
i

jr  to be classified (converted) to target attribute 

for 1 mi and 
iaj1

E(
i

jr )=

l

k

i

jk

i

jk pp
1

2log                     (7)  

here  

l

k

i

jk

i

jki

jk

n

n
p

1

  for mi1 , iaj1 , lk1    (8) 

In Shannon’s pioneer work [27], the entropy is defined to 

measure how much “choice” is involved in the selection of the 

event or of how uncertain we are of the outcome. In other 

words, entropy provides the information and uncertainty of a 

set of possible events. Therefore, E(
i

jr ) is used to measure the 

amount of information needed for the set of objects having 

ic =
i

jr  to be converted to target attribute.  

As the opposite, we introduce Weight of Certainty and 

Information (WCI) to measure the weight of certainty and 

information for object having ic =
i

jr . It has the property that 

the greater WCI is, the more information and certainty the 

object having ic =
i

jr  brings.   
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Definition 4.4: Let WCI(
i

jr ) be the Weight of Certainty and 

Information (WCI) for objects having ic =
i

jr  to be converted 

to target attribute for mi1  and iaj1

WCI(
i

jr ) = 
l

rEl i

j

2

2

log

)(log
                     (9) 

Shannon has shown lrE i

j 2log)(0  in his work [27]. It 

immediately follows that 0 WCI(
i

jr ) 1, where (a) 

WCI(
i

jr )=0 if and only if 
i

jp 1 =
i

jp 2 =…=
i

jlp =1/l; (b) 

WCI(
i

jr )=1 if and only if 
i

jkp =1 for some k=s )1( ls

and all other
i

jkp  for sk  are 0.  

Definition 4.5: Let IGR( iA ) be the Information Gain Ratio 

(IGR) for categorical attribute iA  for mi1 .

IGR( iA )=
i

i

a

j

i

j

i

j

l

k

a

j

i

j

i

j
kk

qq

rEq
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n

n

n

1

2
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2

log

)(log

        (10) 

here  

i

jq =
n

n
l

k

i

jk

1
   for mi1  and iaj1      (11) 

Quinlan names information gain as the measure of 

information for an attribute [24]. For example, in the 

construction of decision tree, the higher information gain an 

attribute iA  is, the greater information iA  provides. 

However, Quinlan realizes that information gain has a strong 

bias for attributes with many values. To remove such bias, 

Quinlan addresses that IGR is a normalization that reduces the 

bias [25]. 

V. DISCUSSION

In this section, let us discuss the terms defined in section 

IV. Like [11], the method defines inter-attribute and intra-

attribute summaries which tell us how well values from 

different and the same attribute are related respectively, our 

approach evaluates information provided by attributes from 

those two aspects.  

(1) 
i

jkp

From (8), we know that 
i

jkp  provides natural probability 

that an object having ic =
i

jr  is converted to target attribute 

with value kt . For example, 
i

jkp =0.31 heuristically tells us 

that if ic =
i

jr  there is 31% chance that the object is mapped to 

kt .

(2) WCI(
i

jr )

i

jkp  provides converting information of object having 

ic =
i

jr  from probability concept. Besides the probability, 

there is WCI associated with 
i

jr . The bigger WCI(
i

jr ) results 

in, the more certainty (weight) we are sure about the 

converting. For example, if 
i

jr can fully tell which target value 

an object is converted to, i.e. rt  (where
i

jrp =1 and 
i

jkp =0 for 

all rk ), then 
i

jr  produces the most certainty. By Def 4.4, 

the weight WCI(
i

jr )=1; if 
i

jr  has no preference to any target 

attribute value, the associated spi

jk '  for all k=1…l have 

equal-probability value 1/l. Therefore 
i

jr  produces the most 

uncertainty and cannot add any information for decision. By 

Def. 4.4, the weight WCI(
i

jr )=0 is used to represent such 

uselessness.   

(3) IGR( iA ): 

As we stated before, both
i

jkp  and WCI(
i

jr ) are related to 

intra-attributes, i.e. attribute iA . However we also need to 

measure the relevance of different attributes. Thus, an inter-

attribute should be measured. In Def. 4.5, we mentioned that 

)( iAIGR is used to measure the amount of information that 

iA can provide. 

We have analyzed the roles that 
i

jkp , WCI(
i

jr ), and 

IGR( iA ) play from information concept. 
i

jkp can 

heuristically provide probability that an object having 

ic =
i

jr is converted to target value kt .  But it’s not completed 

since we need to know the confidence for such probabilistic 

converting. The term WCI(
i

jr ) fulfills such task to measure 

the certainty weight. However we realize these two terms are 

only related to the same attribute. As a measure of information 

gain for one attribute, IGR( iA ) is added as a weight to 

measure the difference between attributes. 

VI. CONVERTING CATEGORICAL DATA

From the above discussion, we are ready to deploy our 

proposed method to convert categorical attributes and 

categorical data.  

Definition 6.1: Let 
i

jr  for iaj ,...,1  be an element in the 

attribute iA . According to the statement above, 
i

jr  is 

converted to a 1-by-l vector 

)( i

jrv = [ IGR( iA )WCI(
i

jr )
i

jkp ] lk ...1              (12) 
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Definition 6.2: Let O = ( 1c , 2c , …, mc ) be an object in the set 

D, where 
i

ji rc  for mi ,...,1 , and iaj ,...,1 . Assume 

attributes are independent. Then from Def. 6.1, O is converted 

to a vector,  

V  = 

m

i

i

ji rcv
1

)(                            (13) 

Definition 6.3 Let O and O’ are distinct objects from the set D

Where O = ( 1c , 2c , …, mc ) and O’ = ( '1c , '2c ,…, 'mc ).

Following Def. 6.2, O is converted to V, and O’ is converted 

to V’. The pseudo distance between O and O’ is defined by 

using Euclidean distance: 

d(O, O’) = 
2||'|| VV                           (14) 

So far, we have formally constructed the framework of 

dissimilarity measure between categorical data. In summary, 

the proposed clustering process involves three phases: 

1. Firstly, we need to estimate the information from inter-

attributes and intra-attributes. This estimation can be obtained 

from a domain expert or by using a training set of objects. 

2. Secondly, we heuristically convert each attribute using 

the associated information. Therefore each object in the 

dataset is converted numerically with reasonable concept. 

3. Finally, traditionally clustering algorithms can be 

exploited effectively. 

VII. EXPERIMENTS

A. Performance Measure 

In section VI, the dissimilarity between objects is measured 

by Euclidean distance. Therefore, some traditional clustering 

methods, i.e. partitioning methods [20], [22] and hierarchical 

methods [3], [7], [18], can be applied for clustering based on 

the distance in (14).  

In this paper, we use two measures to evaluate the 

clustering performance, accuracy rate and entropy. Both of 

them are used as the measure of external quality. External 

quality let us evaluate how well the clustering is working by 

comparing the groups produced by the clustering techniques 

to known classes [28]. If one clustering algorithm performs 

better than other clustering algorithms on these measures, then 

we can have some confidence that it is truly the better 

clustering algorithm for the situation being evaluated [28]. 

(1) Accuracy rate measure 

Suppose that user specifies the number of clusters, i.e. K

clusters. In [1], clustering accuracy rate r is defined as 

r = 
n

n
K

i

i

1                                      (15) 

where  

in =max{
i

jn for all j=1…l |
i

jn : number of objects from 

cluster i belongs to target class j}. In other words, in  is the 

dominating number of objects in cluster i. A high accuracy 

rate implies that the clusters obtained are “pure”. 

(2) Entropy measure 

Entropy [27] has been used as a measure of quality of the 

clusters for a long time. The smaller the entropy is, the better 

the performance will be. 

Suppose there are l classes for target attribute T, and user 

specifies the number of clusters, i.e. K clusters. For each 

cluster, we compute
i

jp  (i=1…K and j=1...l), the “probability” 

that an object from cluster i belongs to target class j. Then the 

entropy of each cluster i for i=1…K is calculated [27], 

iE =

l

j

i

j

i

j pp
1

2log                         (16) 

Let in be the number of objects of cluster i, and n is the 

total number of objects of the dataset. Then the weighted 

entropy for the clustering performance is calculated, 
K

i

i
i E

n

n
E

1

)(                             (17) 

B. Real-life Datasets 

Because of the limit of space, we present one real-life 

categorical datasets from UCI Machine Learning Repository 

[5] to evaluate our approach.  

Congressional votes: It is the United States Congressional 

Voting Records in 1984. The dataset has 435 records, 168 of 

them are from Republicans, and 267 of them are from 

Democrats.  Each record corresponds to one congress man’s 

votes on 16 issues (e.g., education spending, immigration). 

The votes to all of those 16 issues are simplified to “Yes”, 

“No”, and “?” (neither “Yes”, nor “No”). A classification 

label of Republican or Democrat is provided with each data 

record. Thus it can be treated as target attribute. In summary, 

the dataset contains 16 categorical attributes plus one target 

attribute  

C. Pre-Processing 

In section IV, we assume the dataset D has summaries. The 

summaries can be obtained from a domain expert who 

understands the dataset very well and can provide such 

information as pre-processing. If such expert is not available, 

we can use a set of training objects which contain target 

attribute to approximate those summaries. Here we assume 

this estimation is obtained from:  

(1) E-1: Summaries estimated using samples of 60% records 

from the dataset. In general, 60% sampling will not provide 

the summaries information requested by our method exactly. 

Therefore, it exits some error from categorical attributes 

converted to numerical values.  

(2) E-2: Summaries estimated using the entire dataset. Using 

the entire dataset, we expect the estimation of summaries is 

relatively accurate compared to 60% sampling.  

We compared our approach using these two training 

datasets with K-means clustering algorithm using coded 

categorical attributes [26]. 
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D. Experiment Result and Comparison 

Congressional votes has a “natural” cluster (Republican / 

Democrat) number, K=2. So, we are more interested in the 

results when cluster number is set to 2. Table 1 shows such 

running results. 

TABLE I

CLUSTERING RESULTS FOR CONGRESSIONAL VOTES AT CLUSTER 

NUMBER K=2

K-means algorithm using coded categorical attributes 

Accuracy rate =0.8805 ; Entropy =0.4781 

Cluster No.        # of Democrats        # of Republicans 

      1                           42                             158 

      2                         225                               10 

E-1: Converting Method with 60% samples training 

Accuracy rate = 0.8897; Entropy =0.3948 

Cluster No.        # of Democrats        # of Republicans 

      1                           47                             167 

      2                         220                                 1 

E-2: Converting Method with entire dataset training 

Accuracy rate = 0.9425; Entropy =0.3040 

Cluster No.        # of Democrats        # of Republicans 

      1                           17                             160 

      2                         250                                 8 

As the table illustrates, 

(1) K-means algorithms: Cluster 1 has confidence to represent 

Republican group. However, around 21% of the members are 

Democrats. Cluster 2 has confidence to represent Democrat 

group. And 4% of the members are Republicans.     

(2) E-1: Cluster 1 has confidence to represent Republican 

group. Cluster 2 has confidence to represent Democrat group. 

The expected accuracy rate (0.8897) is higher than that 

(0.8805) from K-means. And the total expected entropy 

(0.3948) is less than that (0.4781) from K-means.  

(3) E-2: Cluster 1 has confidence to represent Republican 

group. Around 10% of the members are Democrats. Cluster 2 

has confidence to represent Democrat group. And 3% of the 

members are Republicans. The expected accuracy rate 

(0.9425) is higher than that from K-means. And the total 

expected entropy (0.3040) is less than that from K-means.  

It’s not surprised to observe that E-2 has better performance 

than E-1 since the summaries estimated from E-2 is more 

accurate than that from E-1. 

For more comparisons, we run the experiment on cluster 

number K from 3 to 10. Fig. 1 (a) displays comparison results 

measured by accuracy rate. Fig. 1 (b) displays the results 

measured by entropy. In Fig. 1(a), we observe that both E-1 

and E-2 have higher accuracy rate than K-means. Similarly in 

Fig. 1(b), both E-1 and E-2 obtain less entropy than K-means. 

This experiment verifies that our proposed approach either 

using estimated summary from 60% samples or from the 

entire dataset have better performance than K-means. 

Therefore we have some confidence to claim that it’s better 

clustering algorithm for the situation being evaluated.  
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VIII. CONCLUSION

In this paper, we proposed a novel method which 

heuristically converts categorical attributes to numerical 

values by exploiting information which is associated with 

intra-attributes and inter-attributes. Our approach is derived 

from the concept of information theory and probabilistic 

model. It neither simply encodes categorical attributes, which 

does not necessarily produce meaningful results, nor sets 

entropy criterion for partitioning. The results from our 

experimental study with real-life datasets are very 

encouraging. 
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