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Gesture Recognition by Data Fusion of

Time-of-Flight and Color Cameras
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Abstract—In the last years numerous applications of Human-
Computer Interaction have exploited the capabilities of Time-of-
Flight cameras for achieving more and more comfortable and precise
interactions. In particular, gesture recognition is one of the most active
fields. This work presents a new method for interacting with a virtual
object in a 3D space. Our approach is based on the fusion of depth
data, supplied by a ToF camera, with color information, supplied
by a HD webcam. The hand detection procedure does not require
any learning phase and is able to concurrently manage gestures of
two hands. The system is robust to the presence in the scene of
other objects or people, thanks to the use of the Kalman filter for
maintaining the tracking of the hands.

Keywords—Gesture recognition, human-computer interaction,
Time-of-Flight camera.

I. INTRODUCTION

A
Time-of-Flight (ToF) camera is a particular kind of active

sensor able to supply in real-time depth measures of an

environment. Since the introduction of the first models in 2003

[1], researchers have achieved interesting results with these

new devices, in particular in computer vision and computer

graphics [2]. One of the most active field is certainly Human-

Computer Interaction (HCI), where many different solutions

have been proposed in the last years, especially for gesture

recognition.

This paper presents a new kind of interaction that allows

a user to move a virtual object in a 3D space. The proposed

method uses as input the data supplied by a ToF camera and

the color information supplied by a traditional HD webcam.

The procedure can be subdivided in two main steps: firstly,

depth data are used for recognizing the entire body of the user

and for limiting the interest area; then, color is introduced

to refine the results and to extract specific details from the

retrieved cluster (in this case, the hands). The recognition of

specific gestures of the hands allows the user to translate, ro-

tate, and zoom 3D objects in real-time. Hand detection is based

on the analysis of generic chromatic characteristics, whereas

gesture recognition is based on geometrical transformations

of the clusters − so the algorithm does not need any learning

phase.

Experimental tests show that the system is robust to the

presence of false positive clusters (e.g. user’s head or other

people), thanks to the adoption of well selected distance

thresholds and to a tracking method based on Kalman filter.

A first implementation of our system for gesture detection

has been presented in [3], where a single hand has been used as
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a pointer for typing on a virtual keyboard. This work extends

the previous solution, introducing a more general system

for gesture recognition and the capability of concurrently

managing two hands instead of one. At the same time the

new method improves also the rejection rate of false positive

clusters.

The paper is organized as follows: section II describes the

characteristics of the adopted cameras, focusing in particular

on the ToF one; section III presents some previous work

concerning ToF-based HCI applications; section IV analyzes

our segmentation and hand detection algorithms; section V

describes the interaction modalities with the 3D object and the

experimental tests; at last, section VI draws some conclusions.

II. CAMERAS SPECIFICATIONS

ToF cameras are active imaging sensors that provide dis-

tance measures using laser light in the near-infrared spectrum.

Two main technologies are used for these devices: pulsed light

and modulated light. In the first case a coherent wavefront

(similar to a ”light wall”) hits the targets and then the distances

are measured analyzing the deformation in the reflected ”wall”.

In the second case, the camera emits a modulated light and the

depth data are gained by phase delay detection. Currently the

latter is the most widespread technology, adopted by the great

part of manufacturers (Canesta, PMDTec and Mesa Imaging).

There are both pros and cons in the use of a ToF camera

respect to other depth devices such as stereo cameras or laser

scanners. A ToF camera can work in real-time, since distances

are directly supplied by the sensors without complex additional

computation. There is no need for external reference points or

color contrast to estimate distances, and the shape of objects

does not influence measures. The illumination of the scene

is self-provided, so external illumination is superfluous. On

the other hand, ToF cameras still have a limited resolution

and are affected by different kinds of noise. The most notable

ones are ”flying pixels”, caused by areas with abrupt changes

in depth (e.g. the corners of an object), ”motion artifacts”,

generated by moving subjects, and multipath scattering [2].

The device is designed only for an indoor use: even if artificial

light does not influence the sensors, the presence of sunlight

introduces significant alterations. Moreover, the precision of

measures strictly depends on the reflectivity of objects: if it is

too high it can saturate the sensor, while if it is too low the

object may not be correctly detected.

The two cameras used in this work are a SR3000, developed

by Mesa Imaging, and a Logitech HD Pro Webcam C910

(Fig. 1). The first one is a modulated-light ToF camera whose

active leds emit an infrared laser light around 850nm with a
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frequency of 20MHz. Its useful range, without ambiguities, is

up to 7.5m, while its frame rate is about 18-20 fps. SR3000

provides two maps per frame, both with a QCIF resolution

(176x144 pixels): the first one contains distance data; the other

represents the intensity of reflected light. Intensity values de-

pend only on near-infrared light, since the sensor is insensible

to visible light.

The second camera is instead a standard webcam, used with

a resolution of 640x480 pixels. The C910 can reach 30 fps, but

in our case the recordings have been made at the same speed of

SR3000 for maintaining the synchronization of the two video

streams. The calibration of the two sensors is achieved with

a solution similar to that presented by Reulke in [4], able to

provide a direct mapping of color image on the depth map.

Instead of ortophoto generation approach used by Reulke, a

less precise but more faster perspective transformation has

been performed, with the purpose to reduce the computational

time. Possible slight misalignments between color and ToF

images, due for example to rapid user movements or to clusters

too close to the cameras, do not significantly influence the

precision of hand detection.

Fig. 1. The two cameras used in the experiments: the SR3000 (bottom) and
the Logitech HD Pro Webcam C910 (top)

III. STATE OF ART

In the last years research has shown a great interest in

gesture recognition applications with ToF cameras. The system

proposed in [5], for example, carries out gesture recognition

with a two step procedure: firstly the range and the intensity

images are fused in a new data set (the ”phase” image);

then this new image is used as an input for a segmen-

tation method based on the combination of two clustering

approaches, namely K-Means and Expectation Maximization.

This approach has been used also in robotics, for controlling

an industrial robot [6].

One of the most used techniques for hand movement de-

tection is certainly the Principle Component Analysis (PCA).

In [7] the PCA technique allows to obtain an approximate

estimation of the location and orientation of the hand. Subse-

quently, the result is refined by fitting the retrieved data with

a complex 3D hand model derived from a physically-based

muscle simulation and elastic skin attributes. The procedure

is simplified by initially discarding all the elements that fall

outside a predefined depth threshold. In [8] the PCA technique

is exploited to perform head and hands tracking in 3D space.

The Head-Finger Line (HFL), determined by estimating face

and fingertips orientation in the 3D space, and the orientation

of the forearm are used to assess the pointing direction. The

direction of the forearm is determined using PCA, while hand

tracking is implemented using a Particle Filter applied to

foreground color images. In the context of augmented reality

applications, a method to estimate hand position while behind

an interactive display is presented in [9]. Here PCA is used to

model the hand as an oriented box, which is then provided to

and processed by a ”physics engine”.

A system able to recognize twelve different static gestures is

presented in [10]. The gestures are classified by the projection

of the hand onto the X and Y axes of the image, while the arm

area is removed. Depth data of the ToF are taken into account

to solve ambiguities such as gestures with same projections but

different alignments. View invariant recognition of dynamic

arm gestures is presented in [11], where motion is perceived by

firstly differencing range images and then applying a bandpass

filter. The system is made invariant to rotation around the

vertical axis. A more complex technique, that involves also

the use of an RGB camera, is described in [12]. Here, a pre-

trained skin color model (generated with Gaussian mixture

approach) is combined with a histogram-based adaptive model

dynamically updated using the color information extracted

from the face. This first segmentation is mixed with a depth-

based one to obtain a more robust result capable to manage

worst conditions such as hand overlapping with the face

or people in the background. Also, gesture recognition is

achieved by combining color and depth data. The system

recognizes six different hand postures and can identify gestures

and movements of both hands. This procedure is used to

manipulate 3D models in real-time.

Another typical application of gesture recognition is the

slideshow control presented in [13], where the ”thumbs-up”

gestures, toward left or right, are used to move between slides,

while a finger indicating the screen is interpreted as a ”virtual

laser pointer”. The pointing direction is calculated in 3D, at

first through a segmentation of the person in front of the

camera with respect to the background, and then by detecting

the 3D coordinates of head and hand. An analogous use for

the interaction with a beamer projector is described in [14].

An algorithm exploiting fingertips to draw information about

the hand is described in [15]. The perceptive interface is able

to recognize single stroke gestures composed of the numbers

zero to nine, and hand gesture input can be disabled by simply

forming a fist.

A further context is represented by medical applications,

where it is often necessary to use interfaces which avoid

physical interaction with an input tool. A ToF camera can

be very useful to this purpose, because it allows relatively

easy implementations of touch-less interaction. In [16], five

different gestures are considered, namely ”translation”, ”cur-

sor”, ”click”, ”rotation” and ”reset”. After performing a coarse

segmentation of the hand, the separation between hand and

forearm is carried out in the 2D domain, firstly by searching

for the largest circle (which corresponds to the palm) that

contains only foreground pixels, and then by iteratively aug-

menting the size of the circle and analyzing the intersections

with foreground pixels themselves. The final result allows the

exploration and navigation through 3-D medical image data.
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A similar solution is proposed in [17], where hand gestures

are used to control the mouse cursor or manipulate medical

images. Hand segmentation, in this case, occurs by simply

thresholding distance and amplitude data.

IV. HAND DETECTION

The high variability of hand shapes makes hand detection

a complex problem. An approach based only on color or only

on depth may be easier, but in both cases the obtained perfor-

mances are not good due to different kinds of imprecisions. In

a color-based approach, background objects with colors similar

to the skin generate false positives; on the other hand, in

a depth-based solution a hand can be distinguished without

ambiguities only if its position is always far enough from

the rest of the body. The adoption of an RGBZ space (color

plus distance) can compensate the respective weaknesses of

the devices and can reach precise results with a limited

computational cost.

The proposed solution starts from a ToF-based foreground

segmentation method that retrieves the entire body of the user,

followed by a color-based refinement that extracts the possible

hand candidates from the cluster. The whole procedure does

not require any learning phase for the algorithm, nor a priori

knowledge of the environment.

A. ToF based Foreground Segmentation

Our foreground segmentation algorithm can be subdivided

into two main phases: firstly a thresholding of the depth

map, based on the corresponding values of the intensity map,

reduces the area of interest; then, a region growing, that starts

from seeds planted on peaks of the intensity map, completes

the procedure. The method is based on the consideration that

foreground objects receive more light than those in back-

ground, so they result more evident in the intensity map.

A proper intensity threshold (�seed) is used to find the

best seeds for region growing. The value of the threshold is

estimated for every frame using the Otsu’s method.

The set of seeds S is defined as follows:

{Ix > �seed, ∥x− s∥ > ,  > 1} → {x ∈ S} (1)

where x is a point of the distance map, Ix is its corresponding

intensity value and s is the last seed found. The control about

the distance between seeds guarantees a better distribution of

them on the image and also reduces their number, in order to

decrease the time needed for the growing step. Theoretically,

only one seed per cluster is needed; the relative position of the

seed on the cluster is not relevant for a correct region growing.

Formula (2) defines the similarity measure S between a

cluster pixel x and a neighboring pixel y.

S(x, y) = ∣�x −Dy∣ (2)

Dy is the distance value of pixel y and �x is a local parameter

related to the mean distance value around x (6). The lower S

is, the more similar pixels are. When a seed is planted, �x is

initialized to Dx. With a 4-connected neighborhood, a pixel x,

belonging to a cluster C, absorbs a neighbor y if it complies

with the following criteria:

{x ∈ C, S(x, y) < �, Iy ∈ L} → {y ∈ C} (3)

where L is a set of intensity points generated using (4) and

(5), designed to threshold the data so as to compensate some

of the distortions caused by sunlight; � is a constant parameter,

experimentally estimated, related to clusters separation.

{(Iy ≥ �) ∨ [(Iy < �) ∧ (I8n > � ∗ �)] , � ∈ [0, 1]}

→ {y ∈ A} (4)

L = A ∪M (5)

where � is an intensity threshold proportional to �seed, I8n
is the intensity of all the neighbors of pixel y considering the

8-connection, and M is the set A after the application of a

series of morphological operations experimentally established

(two dilations, five erosions and a final dilation, respectively).

When a neighbor y of seed x is absorbed, we compute the

average distance value �y in an incremental manner as follows:

�y =
�x ∗ �+Dy

�+ 1
(6)

where � is a learning factor of the local mean of D. If pixel

y has exactly � neighbors in the cluster, and if the mean of

D in this neighbor is exactly �x, then �y becomes the mean

of D when y is added to the cluster.

Every region grows excluding the just analyzed pixels from

successive steps. The process is iterated for all seeds in order

of descending intensity. Regions too small are discarded, to

remove false positive areas that pass the thresholding (for

example small surfaces with a high reflectivity).

A more complete discussion of the method can be found in

one of our previous works [18].

B. Sub-segmentation: Hands Extraction

The ToF segmentation retrieves all the foreground subjects

in the scene. Considering that the application field of this hand

detection system is the interaction with a virtual object, the

user must be relatively close to the camera to see the screen;

so we can exclude a priori all the retrieved clusters placed too

far from the cameras (generally over 2 m). In this way error

sources, e.g people moving behind the user, are automatically

removed with no additional computational cost.

After these preliminary phases, the interest area is limited

to a single cluster: the user placed in front to the camera (Fig.

2(a)). Color information can now be introduced to detect the

hands. Firstly, the input RGB image is converted to HSV, a

more suitable color model; then all the points of the cluster

outside the set W (7) are left out. Set W is defined as follows:

{y : −10∘ < Hy < 10∘, Sy > tℎs, Vy > tℎv}

→ {y ∈ W} (7)

where Hy , Sy and Vy are, respectively, the hue, saturation and

value of pixel y. The first two constraints set the color area

with a hue in the skin range; the saturation threshold excludes

all the white zones; finally, only points with a high value of
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lightness are included, to reduce to the minimum the number

of false positive clusters, e.g. clothes with skin-like colors.

The studied application does not require a precise segmenta-

tion of the hand; an approximation is usually enough (Section

V-A). This simplification gives an interesting advantage in the

choice of the parameters for defining W : it is possible to

apply very strictly color thresholds for finding the hands −
losing some details for removing certainly wrong areas is an

affordable cost. Small inaccuracies, e.g. holes, are in any case

fixed applying a morphological dilation on the retrieved sub-

clusters.

The described procedure extracts from the original cluster

(Fig. 2(a)) different sub-clusters (Fig. 2(b)), but not all of them

are valid hand candidates (e.g. the head). The result can be

further refined considering some physical constraints: a hand

can be placed only in an area included between the body

and the maximum arm extension. This useful region can be

found, for each user, with a quick initialization phase. At the

beginning we ask the user to stay in front of the camera and

raise one hand. The system can easily distinguish between

the hand (the cluster closer to the camera) and the rest of

the body (the cluster in the upper position). The positions

of the centroids of the hand and of the body are saved

and used respectively as minimum and maximum distance

thresholds. The final outcome is shown in figure 2(c): the head

disappears and only the hand remains. This solution has also

the additional advantage to exclude all the parts of skin-like

clothes that pass the test of (7).

(a) (b) (c)

Fig. 2. Different sub-segmentation steps: (a) initial segmentation of the entire
body (cluster visualized as cloud of points); (b) sub-segmentation applying
only W ; (c) sub-segmentation applying (8).

Better performances can be achieved applying this sub-

segmentation algorithm not after the entire ToF-based fore-

ground segmentation, but at the end of the thresholding

phase: this way, a single region growing is executed on a

reduced set of points. For this reason, the sub-segmentation

can be considered as an extension of the standard thresholding

algorithm (4) (5). The region growing method (3) can therefore

be adapted as follows:

{x ∈ C, S(x, y) < �, Iy ∈ L, y ∈ W, �m < Dy < �M}

→ {y ∈ C} (8)

where Dy is the distance value of pixel y and �m and �M
are, respectively, the minimum and the maximum distance

threshold previously defined.

The selection criteria used for deciding what is/are the

active cluster/s will be described in Section V. In any case,

after the choice, the selected clusters are followed in the next

iterations using a tracker based on Kalman filter. The tracking

allows the recognition of the chosen hand/s also in presence of

other moving clusters placed within the active area (Fig. 4(a)).

Short term occlusions are managed exploiting the predictions

supplied by the Kalman filter to estimate the more probable

path of the disappeared cluster. If the cluster reappears in a

position close to the predicted one, it is recognized as an active

hand; if not, the system waits until another cluster respects the

selection criteria.

V. INTERACTION WITH 3D OBJECT

A. Gestures Recognition

The interaction with the virtual object (the standard Utah

teapot) in the 3D space is achieved with a specific series of

gestures. The available movements can be grouped into two

categories: translation and rotation.

For translation, only one hand is needed. This mode is

activated when the hands are not aligned (Fig. 4(a)). When that

occurs, the cluster closer to the camera is chosen as an active

hand, so it is followed by the tracker in the next frames in

accordance with the previously described behavior. To estimate

the position of the hand, we use its centroid, the most stable

point in the cluster: errors in depth evaluation caused by the

various noise sources mainly affect points on the edges of the

objects. The system performs a mapping of the position of

the hand in the camera frames to the position of the object.

The ToF measures also allow a precise and fast estimation

of the Z coordinate of the hand, so variations in distance are

interpreted by the object as a zoom in or a zoom out command

(Fig. 3, second column). In this mode, the shape of the hand is

not important, as only the position of the centroid is crucial;

thus, the user can assume the position that s/he finds more

comfortable.

The rotation mode is activated when two hands stay aligned

for at least 2 seconds (Fig. 4(b)). A rotation of the hands

corresponds to a rotation of the object. In particular, the left

hand controls Y-axis rotations (Fig. 3 third column) and the

right hand the X-axis rotation (Fig. 3 fourth column). The

rotation directions are achieved analyzing the moments of

inertia of the hand. When the moment along the X-axis is

greater than the moment along the Y-axis, the rotation starts;

vice versa the object stops. The direction of the rotation

(positive or negative) depends on the sign of the mixture

moments XY. Also in this case, the two hands are tracked to

avoid false positive detections during the movements. For this

kind of interaction the hands must be opened with the palm

facing the camera. These gestures do not involve the presence

of specific elements, e.g. fingers, so also ”raw shapes” of the

hands are enough for correct working. If one of the hands

leaves the scene, the system starts again in translation mode,

using the other hand as control.

Some visual feedbacks help the user to understand what

mode is enabled and what is/are the active cluster/s: in

translation mode, a green cross marks the only active hand

(Fig. 4(a)); in rotation mode, a blue dot appears on the hand

controlling the Y-axis rotation and a yellow dot on the other

hand, controlling the X-axis rotation (Fig. 4(b)).
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Fig. 3. Possible movements of a 3D object (top line) and corresponding gestures of the hand/s (bottom line). From left to right: starting situation, no
movement, one hand selected; translation and zoom, one hand moving along axes (X,Y,Z); rotation on vertical axis, two aligned hands, the left one inclined;
rotation around the horizontal axis, two aligned hands, the right one inclined.

(a) (b)

Fig. 4. Visual feedbacks: (a) translation - clusters not aligned, only one hand
active (the one with green cross); (b) rotation - two aligned hands marked by
two different squares, a blue one for the left hand (Y-axis rotation) and a
yellow one for the right hand (X-axis rotation).

B. Experimental Results

The system has been informally tested several times dur-

ing its development, to assess its quality and tune program

parameters for best performance. However, at the end of the

implementation phase we have also carried out some more

formal experiments, aimed at validating the robustness of the

interaction mechanism. 15 users were involved in these trials.

The two interaction modes were examined separately with

two sub-tests:

1) Translation − The user raised one hand and randomly

moved it for a while (about 10 seconds), to move and

zoom the 3D object in the virtual space. The outcome

of the trial was considered positive if the object was

correctly ”fastened” to the hand, and therefore was never

lost while being shifted around the screen;

2) Rotation − The user raised both the hands, to trigger

the second interaction mode. The tester had to spin the

left and right hands for a while (about 20 seconds) to

rotate the object around the X and Y axes. In this case

too, the outcome of the trial was considered positive if

the object was never lost during its virtual manipulation,

as well as correctly revolved around its axes.

All the 15 testers succeeded in the first sub-test, while 14 out

of 15 succeeded in the second. Considering that the reason

for such a fail was mainly due to the incorrect execution of

the gestures by the tester rather than to system inaccuracy, the

results can be regarded as fairly good.

The tests have been performed on a computer equipped

with an Intel Core 2 Quad Q9300 2.60 GHZ processor and

a Nvidia GeForce GTX 260 graphic card. The proposed

approach ensures a good compromise between computational

time and precision of the results. The system easily reaches the

18 fps required by the ToF camera. Offline tests show that the

system can go up to 32 fps, so it can be used also with more

recent models of ToF camera (e.g. SR4000), that guarantee

better performances and a higher frame rate, without further

optimizations.

VI. CONCLUSION

This paper presents a new gestural interaction technique that

allows the user to control the movement of a virtual object in

the 3D space. The proposed approach exploits the potential

of the data fusion of an RGB and a ToF camera, to obtain

a flexible system, totally independent of the background,

robust to false positive clusters detection, and with no need

of any learning phase to recognize hands and gestures. Future

improvements will include more precise sub-segmentation, in

order to totally exclude parts of the arms during hand detec-

tion (currently avoided only considering distance constraints)

and the addition of other gestures to obtain more complex

interactions.
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