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Abstract—In automotive systems almost all steps concerning the 

calibration of several control systems, e.g., low idle governor or 
boost pressure governor, are made with the vehicle because the time-
to-production and cost requirements on the projects do not allow for 
the vehicle analysis necessary to build reliable models. Here is 
presented a procedure using parametric and NN (neural network) 
models that enables the generation of vehicle system models based 
on normal ECU engine control unit) vehicle measurements. These 
models are locally valid and permit pre and follow-up calibrations so 
that, only the final calibrations have to be done with the vehicle. 
 

Keywords—Automotive systems, neuro-hybrid models, 
demodulator, nonlinear systems, identification, and neural networks.  

I. INTRODUCTION 
N the automotive industry the systems of interest are almost 
of nonlinear nature [1]-[3]. These systems can be taken for 

identification using linear or nonlinear models. A linear model 
will not be a so good approximation as when employing a 
nonlinear one but makes the identification procedure a lot 
more simpler. It is then possible to get advantage of well 
proved identification tools like the least squares estimation 
(LSE) algorithm [4]-[5]. This algorithm is a very known 
algorithm for parametric models and can be also extended to 
provide reliable results when nonlinearities are added to 
models. Other way is to use nonparametric models as the 
series expansion (SE) or neural networks (NN) [6]-[7]. Series 
expansion like the Volterra expansion permits a good 
description of the systems dynamics, but also very attractive is 
the use of neural networks. This comes from the availability of 
tools that make it easier to identify a system from set of 
measurements done on that system’s variables, e.g., the 
program Matlab with its Neural Network toolbox. Without 
going into details neural networks can be built on very 
different structures which give them the ability to approximate 
any function with a finite number of discontinuities. 

Nevertheless the quality of the identification of a dynamic 
system is strongly dependent on the type of signals that are 
employed for that purpose. These signals must be able to 
excite the relevant system dynamics in a way that this 
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information can be later extracted from the system variables 
and brought into the chosen model structure. This is achieved 
by fulfillment of the so called persistence of excitation 
condition, that for linear systems implies, that for one 
parameter models a sinus exciting signal is enough for a 
complete system identification. Of course, for several kinds of 
dynamic systems the achievement of this condition can be 
very difficult or impractical at least if one is seeking for a 
global model of the system. Help can be obtained by looking 
for identification strategies that take advantage of the use of 
local models which may also have, if necessary, different 
structures, i.e., be of parametric or nonparametric nature. 

This possibility turns to be important when trying to model 
dynamic systems that are usually of interest in the automotive 
industry. Here to obtain the best performance of the 
integration engine, car body parts and auxiliary systems 
distinct control systems are employed and provide for the 
desired behavior at various motor operating points such as idle 
speed or full load. In these cases the encountered dynamics 
shows a variety of nonlinear characteristics that are better 
captured when utilizing local nonlinear models and this bring 
with it the challenge of how to perform data acquisition for 
identification purposes, i.e., system excitation in a local 
dynamic region. This is also true when analyzing the idle 
speed control system or idle speed governor system and it is 
more noticeable if one takes only into consideration the 
measurements that are available through the vehicle’s engine 
control unit (ECU). A solution out of these difficulties is 
achieved by combining a parametric model with a 
nonparametric neural network model that is itself supported 
by a so called signal demodulator. The underlying idea is to 
separate linear and nonlinear dynamics when performing 
identification with the nonlinear dynamics described by a 
static map whose inputs contain transformed versions of the 
input of the identified system, allowing for greater retention in 
the model of the information available in the used 
measurements. This procedure will be the subject of the next 
paragraphs. First the concept of neuro-hybrid models will be 
presented and analyzed within the settings and methods 
normally used for system identification. After that it will be 
given an application example regarding an automotive system 
which will be followed by a conclusion.  

II. SYSTEM IDENTIFICATION WITH NEURO-HYBRID MODELS 
A nonlinear dynamic system can be defined using either a 

state variable or an input-output representation. In any case 
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and without lose of generality an input-output representation 
can be extended in order to distinguish between nonlinear and 
linear behaviors when restricting the dynamic system to some 
particular region of its state variables. For such regions or 
domains, ]}},[,],,{[{

maxminmaxmin 11 niniiii xxxxxU K∈=  where x 

stands for the system’s state variables, the output of the 
system, y, when the system is subjected to the input u will be 
given by 

 
uxfuxfy lnl )(),( +=            (1) 

 
Taking in consideration (1) the identification of the dynamic 
system can be done by performing first the identification of its 
linear part, )(xfl , using a linear model of appropriate order 
and then identifying its nonlinear part, ),( uxfnl , by employing 
a static map. This strategy simplifies the identification 
procedure by allowing the choice of well known methods and 
models, i.e., linear parametric models together with least 
squares estimation algorithms and nonparametric models 
defined by neural networks. Nevertheless in this strategy the 
static map is also expected to capture all the system’s 
dynamics that was not taken by the linear model. The 
fulfillment of such request is very dependent on the 
characteristics of the signal applied to the system’s input and 
difficult to achieve when that signal is considered almost 
constant because it contains only a limited number of step 
changes in value. For such signals the normally used training 
algorithms for neural networks like the backpropagation 
algorithm are not able to extract enough information from its 
input-output vectors to reproduce accurately the relationship 
that exists between these two vectors. Given this fact a 
solution to allow for the correct learning of this relationship 
by the neural networks can be found having as reference the 
theory of Fourier regarding signal decomposition. According 
with this theory non-sinusoidal signals, f(t), have a frequency 
content or spectrum, F(jω), given by 
 

∫
+∞

∞−

−= dtetfjF tjωω )()(            (2) 

 
where ω represents an angular frequency and once known its 
spectrum it can always be reconstructed as a summation of 
sinus and cosine signals each of one with a magnitude defined 
by F(jω), i.e., 
 

∫
+∞

∞−

= ωω
π

ω dejFtf tj)(
2
1)( .          (3) 

So, it can be said that the information contained around an 
instant of time, e.g., step change of value in a signal, can be 
expanded in time by doing a spectrum analysis and generating 
the corresponding sinus and cosine signals for each frequency 
in the spectrum. In practical terms this can be performed by 
employing several filters each of them tuned for a particular 

frequency of the signal to be analyzed. This set of signals 
represents then in an unique way in time the analyzed signal. 

The approach just presented is used in the identification of 
the nonlinear part of the dynamic system with the neural 
networks model becoming as its input a set of filtered versions 
of the system’s input more the state variables of the parametric 
model that was identified in first place. This approach is part 
essential of the so called neuro-hybrid model as shown in Fig. 
1 where the demodulator block has the function already 
mentioned of providing a set of signals that describe in a 
unique way the frequency content of the input signal of the 
dynamic system under identification. 
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Fig. 1  Structure of a neuro-hybrid model 

 
The neuro-hybrid model provides a flexible structure for 

system identification because it implements a mechanism 
where the system dynamics dependent on its dominant 
behavior and a priori knowledge can be weighed between the 
parametric and the neural network models. If the system 
dynamics is almost linear the parametric model will describe 
the most of it, )ˆ(ˆ xfl , with the remained dynamics given by 
 

uxfyuxf lerror )ˆ(ˆ),ˆ( −=            (4) 
 
which will be a smooth function requiring a simple 
demodulator and neural network model. The opposite will 
happen when the system to be identified shows a strong 
nonlinear behavior. In any case the demodulator will generate 
an output vector  
 

)](,),(),(,[ 21 uguguguu ndm K=          (5) 
  
where the functions, gi(u) with i = 1, …, n, can in their 
simplest form be taken as 1st order filters with a Laplace 
representation 
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The structure of the demodulator plays an important role in 

the neuro-hybrid model with the number of generated signals 
in its output vector directly related to the complexity of the 
dynamics to be approximated by the neural network, i.e., a 
complex dynamics requires a larger output vector than where 
such does not occur. The same can be stated regarding the 
expected similarities between the components of its output 
vector. For a good identification this similarity should be 
small and can be indirectly defined in the time domain by the 
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so called dissimilarity index, Ids, which should be as big as 
possible. This is in (7) formulated and if (5) is taken as 
reference it can be seen that u0 = u and ui = gi(u). 
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The dissimilarity index, Ids, can be also used to obtain 

information about the input signal employed to excite the 
dynamic system under identification. In general it can be said 
that a low value for this index will point out to a situation 
where the dynamic system is not adequately excited for 
identification purposes.  

III.  A NEURO-HYBRID MODEL FOR IDLE SPEED ENGINE 
IDENTIFICATION 

The idle engine speed control system is one part essential of 
every vehicle control system and must be able to provide for a 
good engine speed regulation on different engine operating 
conditions such as low temperatures, gear shift and 
activation/deactivation of supplementary systems (air 
conditioning and/or heaters) without degradation of engine 
vibration or noise. Depending on these operating conditions 
the dynamic behavior of the engine changes itself in a strong 
way and the similar is also true regarding engine speed and 
load, i.e., for low engine speeds and/or loads the engine has 
other dynamics that when working at high engine speeds 
and/or loads. This latter phenomenon is very noticeable during 
gear shift and requires a complex structure and intensive 
calibration of the idle engine speed controller with the most of 
the calibration work usually done in the vehicle. Improvement 
in this calibration procedure would be achieved if a reliable 
engine model could be obtained from the measurements 
directly available on the vehicle’s ECU (Engine Control Unit). 

Having in mind these considerations a neuro-hybrid model 
is employed to describe the engine dynamic behavior during 
idle speed gear shift (2nd to 3rd gear). For the linear part a 2nd 
order discrete model was chosen and identified using a 
recursive least squares algorithm [8]-[9]. The remained system 
dynamics will be modeled by a cascade-forward neural 
structure with a total of 41 neurons among five layers and 
having an input vector with ten components. The cascade-
forward neural structure was chosen because in this type of 
neural network there are also connections between the inputs 
and each of its inner layers. The implementation and learning 
of the neural network was done accordingly with the structure 
shown in Fig. 2 using the program Matlab with its Neural 
Network toolbox and in this case the demodulator employs 
seven low pass 1st order filters. This type of demodulator was 
chosen as a compromise between modeling accuracy, 
complexity and processing time. 

+ ydata(t)

Neural Network
Model 

- 

Demodulator

Parametric
Model 
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Fig. 2 Neural network training within the structure of the neuro-
hybrid model for idle speed engine identification 

 
The measurements for identification were made directly on 

the ECU (Engine Control Unit) of a diesel vehicle and 
considered the gear shift between 2nd and 3rd gears when in 
idle speed control. These measurements concern the torque 
that is calculated by the controller and the actual engine speed 
leaving out other influences on the vehicle such as rough 
roads and given so it is also expected some error between 
measurement and model simulation results. This error is 
accepted and regarded as a natural consequence of the simple 
resources taken to perform the system identification.  

The first set of measurements was performed with a tuned 
idle speed controller that allows on the closed loop for a 
damped second order dynamic behavior. This is to be seen in 
Fig. 3 where first the engine speed breaks at the beginning of 
the gear shift and after strong intervention of the controller 
remains at its steady state value with small deviations that are 
caused by a relatively rough road. In this case the engine 
presents almost a linear character and the identified neuro-
hybrid model is able to reproduce with a small error its 
dynamic behavior. 

 
Fig. 3  Measurement (dashed line) and neuro-hybrid model 

simulation (solid line) results for 3rd gear shift with tuned idle speed 
controller 

 
The second set of measurements considers a totally 

different situation. One of having a detuned idle speed 
controller that implements a partially on-off control behavior. 
In this case as documented in Fig. 4 it happens again that first 
the engine speed breaks at the beginning of the gear shift but 
after that and because of a strong controller it is not able to 
reach its desired steady state and enters a limit cycle that 
produces a permanent oscillation. In such cases the engine 
shows extreme nonlinear behavior but also here the identified 
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neuro-hybrid model is able to reproduce this behavior with an 
acceptable error. 

 
Fig. 4  Measurement (dashed line) and neuro-hybrid model 

simulation (solid line) results for 3rd gear shift with detuned idle 
speed controller 

 
A similar analysis was performed regarding the gear shift 

between other gears and with other controller calibrations. In 
all these situations the neuro-hybrid model was able to capture 
the dynamics of the engine with an error that although higher 
when the engine showed larger nonlinear behavior was within 
the expected error boundaries. These boundaries are not 
defined by the neuro-hybrid model itself but by the set of 
measurements that were used for the identification.  

IV. CONCLUSION 
The concept of neuro-hybrid models provides a new tool 

for system modeling when it happens that the system’s 
dynamics is only temporarily excited. In this case neuro-
hybrid models are able to retain the most of the information 
contained among the measurements available for 
identification. This capability is dependent on the structure 
chosen for the demodulation function, e.g., type and order of 
the employed filters, and requires further investigation. 
Nevertheless it must be already stated that this type of models 
show great applicability potential not only in the automotive 
sector but overall in the industry. 
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