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The Game of Maundy Block
Alessandro Cincotti

Abstract—The game of Maundy Block is the three-player variant
of Maundy Cake, a classical combinatorial game. Even though to
determine the solution of Maundy Cake is trivial, solving Maundy
Block is challenging because of the identification of queer games,
i.e., games where no player has a winning strategy.

Keywords—Combinatorial game, Maundy Cake, Three-player par-
tizan games.

I. INTRODUCTION

THE game of Maundy Block is a three-player version of
Maundy Cake [1]. Every instance of this game is defined

as a set of blocks of integer side-lengths, with edges parallel
to the x−, y−, and z− axes. A legal move for Left is to divide
one of the blocks into any number of blocks of equal integer
side-length by means of a certain number of cuts perpendicular
to the x− axis; analogously, we define the legal moves for
Center and Right. Players take turns making legal moves in
cyclic fashion (. . ., Left, Center, Right, Left, Center, Right,
. . .). When one of the three players is not more able to move,
he/she leaves the game and the remaining players continue in
alternation until one of them cannot move. Then that player
leaves the game and the remaining player is the winner.

Definition 1: Given a positive integer n ≥ 2, the prime
factorization is written n = p1p2 . . . pk where the pis are the
k prime factors. We define d(n) = k and d(1) = 0.

We recall that in the game of Maundy Cake the outcome
for a l by r rectangle depends on the dimension of l and

r as shown in Table I.

TABLE I

Left starts Right starts

d(l) > d(r) Left wins Left wins

d(l) < d(r) Right wins Right wins

d(l) = d(r) Right wins Left wins

II. THREE-PLAYER PARTIZAN GAMES

For the sake of self-containment we recall the basic defi-
nitions and main results concerning a mathematical theory to
classify three-player partizan games [2]. Such a theory is an
extension of Conway’s theory of partizan games [3] and, as
a consequence, it is both a theory of games and a theory of
numbers.

Definition 2: If L,C,R are any three sets of numbers
previously defined and

1) no element of L is ≥L any element of C ∪ R, and
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2) no element of C is ≥C any element of L ∪ R, and
3) no element of R is ≥R any element of L ∪ C,

then {L|C|R} is a number. All numbers are constructed in
this way.
This definition for numbers is based on the definition and
comparison operators for games given in the following two
definitions.

Definition 3: If L, C,R are any three sets of games pre-
viously defined then {L|C|R} is a game. All games are
constructed in this way.

Definition 4: We say that
• x ≥L y iff (y ≥L no xC , y ≥L no xR and no yL ≥L x),
• x ≤L y iff y ≥L x,
• x ≥C y iff (y ≥C no xL, y ≥C no xR and no yC ≥C x),
• x ≤C y iff y ≥C x,
• x ≥R y iff (y ≥R no xL, y ≥R no xC and no yR ≥R x),
• x ≤R y iff y ≥R x.

where xL, xC , xR are respectively the typical elements of L,
C, and R.
We write

• x �≥L y to mean that x ≥L y does not hold,
• x �≥C y to mean that x ≥C y does not hold,
• x �≥R y to mean that x ≥R y does not hold.
Definition 5: We say that
• x =L y iff (x ≥L y and y ≥L x),
• x >L y iff (x ≥L y and y �≥L x),
• x <L y iff y >L x,
• x =C y iff (x ≥C y and y ≥C x),
• x >C y iff (x ≥C y and y �≥C x),
• x <C y iff y >C x,
• x =R y iff (x ≥R y and y ≥R x),
• x >R y iff (x ≥R y and y �≥R x),
• x <R y iff y >R x,
• x = y if and only if (x =L y, x =C y, and x =R y).

All the given definition are inductive, so that to decide whether
x ≥L y we check the pairs (xC , y), (xR, y), and (x, yL).

Theorem 1: For any number x

• xL <L x, x <L xC , x <L xR,
• xC <C x, x <C xL, x <C xR,
• xR <R x, x <R xL, x <R xC

and, for any two numbers x and y

• either x ≥L y or y ≥L x,
• either x ≥C y or y ≥C x,
• either x ≥R y or y ≥R x.

Numbers are totally ordered with respect to ≥L, ≥C , and ≥R

but games are partially-ordered, i.e., there exist games x and
y for which we have neither x ≥L y nor y ≥L x.

Definition 6: We define the sum of two numbers as follows

x + y = {xL + y, x + yL|xC + y, x + yC |xR + y, x + yR}.
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TABLE II

Class Left starts Center starts Right starts

= Right wins Left wins Center wins

>L Left wins Left wins Left wins

>C Center wins Center wins Center wins

>R Right wins Right wins Right wins

=LC Center wins Left wins Center wins

=LR Right wins Left wins Left wins

=CR Right wins Right wins Center wins

<CR ? Left wins Left wins

<LR Center wins ? Center wins

<LC Right wins Right wins ?

< ? ? ?

All numbers can be classified in in 11 outcome classes as
shown in Table II. For further details, please refer to [2].

III. CLASSIFYING THE INSTANCES OF MAUNDY BLOCK

Theorem 2: Let

G = [l1, c1, r1] + . . . + [li, ci, ri] + . . . + [ln, cn, rn]

be a general instance of Maundy Block. Then, G is a number.
Proof: Let G = {GL|GC |GR} be a general instance of

Maundy Block. By induction hypothesis, GL, GC , and GR

are numbers; moreover, for every couple of options GL and
GC , we can distinguish two different subcases:

1) if GL and GC concern the same block then

GL <L GLC <L . . . <L GLC...C ≡
GCL...L <L . . . <L GCL <L GC

It follows GL <L GC where the number of center
options following GL is equal to the number of blocks
created by GL and the number of left options following
GC is equal to the number of blocks created by GC .

2) if GL and GC concern two different blocks then

GL <L GLC ≡ GCL <L GC ⇒ GL <L GC

In the same way, we prove that GL <L GR, GC <C GL,
GC <C GR, GR <R GL, and GR <C GC .

Example 1: Let G = [3, 2, 4] be a block of Maundy Block.
We observe that

GL = [1, 2, 4] + [1, 2, 4] + [1, 2, 4]
<L [1, 1, 4] + [1, 1, 4] + [1, 2, 4] + [1, 2, 4]
<L [1, 1, 4] + [1, 1, 4] + [1, 1, 4] + [1, 1, 4] + [1, 2, 4]
<L [1, 1, 4] + [1, 1, 4] + [1, 1, 4] + [1, 1, 4] + [1, 1, 4] +

[1, 1, 4]
<L [1, 1, 4] + [1, 1, 4] + [1, 1, 4] + [3, 1, 4]
<L [3, 1, 4] + [3, 1, 4]
= GC

Theorem 3: In the game of Maundy Block
1) G = [1, 1, 1] = 0
2) G = [l, 1, 1] >L 0, l > 1
3) G = [1, c, 1] >C 0, c > 1

4) G = [1, 1, r] >R 0, r > 1
Proof:

1) Trivial.
2) By induction hypothesis GL ≥L 0 and G >L 0.
3) Analogous to (2).
4) Analogous to (2).

Theorem 4: In the game of Maundy Block

1) if d(l) = d(c) then G = [l, c, 1] =LC 0,
2) if d(l) > d(c) then G = [l, c, 1] >L 0,
3) if d(l) < d(c) then G = [l, c, 1] >C 0,
4) if d(l) = d(r) then G = [l, 1, r] =LR 0,
5) if d(l) > d(r) then G = [l, 1, r] >L 0,
6) if d(l) < d(r) then G = [l, 1, r] >R 0,
7) if d(c) = d(r) then G = [1, c, r] =CR 0,
8) if d(c) > d(r) then G = [1, c, r] >C 0,
9) if d(c) < d(r) then G = [1, c, r] >R 0,

where l, c, r > 1.
Proof:

1) A generic left option GL is represented by

[l1, c, 1] + [l2, c, 1] + . . . + [lk, c, 1]

where l1 = l2 = . . . = lk and d(li) < d(c) for all
1 ≤ i ≤ k. By induction hypothesis, [li, c, 1] >C 0 for
all 1 ≤ i ≤ k therefore GL >C 0.
By similar reasoning, we can prove that GC >L 0
therefore G =LC 0.

2) We observe that there exists at least a left option

GL = [l1, c, 1] + . . . + [lk, c, 1]

where d(li) ≥ d(c) therefore, by induction hypothesis,
either GL >L 0 or GL =LC 0. In both cases we have
G >L 0.

3) Analogous to (2).

The other 6 cases can be proved analogously.
Theorem 5: Let G = [l, c, r] be a block of Maundy Block

where l, c, r > 1. If

• d(l) < d(c) + d(r)
• d(c) < d(l) + d(r)
• d(r) < d(l) + d(c)

then G < 0 else one of the following 6 cases occurs

1) if d(l) > d(c) + d(r) then G >L 0,
2) if d(l) = d(c) + d(r) then G <CR 0,
3) if d(c) > d(l) + d(r) then G >C 0,
4) if d(c) = d(l) + d(r) then G <LR 0,
5) if d(r) > d(l) + d(c) then G >R 0,
6) if d(r) = d(l) + d(c) then G <LC 0.

Proof: Let’s assume that d(l) < d(c) + d(r), d(c) <
d(l) + d(r), and d(r) < d(l) + d(c). We have two subcases:

• d(l) = 1. In this case, d(c) = d(r) therefore

GL = [1, c, r] + . . . + [1, c, r] =CR 0

as shown in the previous theorem.
• d(l) > 1. In this case, there exist at least a left option

GL = [l1, c, r] + . . . + [lk, c, r]
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where d(li) = d(l) − 1 for all 1 ≤ i ≤ k. By induction
hypothesis, [li, c, r] is

– <LR 0 if d(c) = d(l1) + d(r),
– <LC 0 if d(r) = d(l1) + d(c),
– < 0 otherwise.

Therefore GL is <LR 0, <LC 0, or < 0.
It follows that for each of the 2 aforementioned cases there
exists at least a left option GL ≤C 0 and GL ≤R 0 therefore
G <C 0 and G <R 0. Analogously, we can prove that G <L 0
(G <R 0) considering

GC = [l, c1, r] + . . . + [l, ck, r]

where d(ci) = d(c) − 1 for all 1 ≤ i ≤ k therefore G < 0.
Now, let’s suppose that the hypothesis d(l) < d(c) + d(r),
d(c) < d(l) + d(r), and d(r) < d(l) + d(c) is false. In this
case, only one of the 6 cases mentioned previously can be
true.

1) In this case, there exists at least a left option

GL = [l1, c, r] + . . . + [lk, c, r]

where d(li) = d(l)−1 such that by induction hypothesis
either GL >L 0 or GL <CR 0. In both cases we have
G >L 0.

2) We observe that, for any center option

GC = [l, c1, r] + . . . + [l, ck, r]

d(ci) < d(c) ⇒ d(l) > d(ci) + d(r) for all 1 ≤ i ≤ k
therefore, by induction hypothesis, GC >L 0. In the
same way, we prove that GR >L 0. Let’s consider a
generic left option

GL = [l1, c, r] + . . . + [lk, c, r]

where d(li) < d(l) for all 1 ≤ i ≤ k. It follows that
d(li) � d(c)+d(r) therefore [li, c, r] can only be >C 0,
>R 0, =CR 0, <LR 0, <LC 0, or < 0. In any case,
GL <L 0 and therefore G <CR 0.

We can prove the other 4 cases analogously.
Theorem 6: Let

G = [l1, c1, r1] + . . . + [li, ci, ri] + . . . + [ln, cn, rn]

be a general instance of Maundy Block. If d(li) ≤ d(ci) for
all 1 ≤ i ≤ n and Left has to play then Left has not a winning
strategy.

Proof: Let’s suppose that Left plays in the i-th block

[li, ci, ri] → [li1 , ci, ri] + . . . + [lik
, ci, ri].

In every of these blocks d(lij ) < d(ci) for all 1 ≤ j ≤ k and
Center can play in any of these blocks.
Successively, Right has to play but we observe that his/her
move cannot affect the relation between Left and Center inside
a block. When Left will move again, in every block [l, c, r],
we have d(l) ≤ d(c) therefore, by induction hypothesis, Left
has not a winning strategy.

The following theorem can be proven in the same way.
Theorem 7: Let

G = [l1, c1, r1] + . . . + [li, ci, ri] + . . . + [ln, cn, rn]

TABLE III

Left starts Center starts Right starts

G <CR 0 Left wins/q Left wins Left wins

G <LR 0 Center wins Center wins/q Center wins

G <LC 0 Right wins Right wins Right wins/q

q = queer.

TABLE IV

G < 0 Left starts Center starts Right starts

L > C, L > R Left wins/q Left wins/q Left wins/q

C > L, C > R Center wins/q Center wins/q Center wins/q

R > L, R > C Right wins/q Right wins/q Right wins/q

L = C, L > R Center wins/q Left wins/q Center wins/q

L = R, L > C Right wins/q Left wins/q Left wins/q

C = R, C > L Right wins/q Right wins/q Center wins/q

L = C, L = R Right wins/q Left wins/q Center wins/q

L = d(l),C = d(c), R = d(r), q = queer.

be a general instance of Maundy Block. If d(li) ≤ d(ri) for
all 1 ≤ i ≤ n and Left has to play then Left has not a winning
strategy.
Analogously, we can get the same results for Center and Right.
The previous theorems give us some further information about
the outcome of G = [l, c, r] <CR 0, G = [l, c, r] <LR 0,
G = [l, c, r] <LC 0, and G = [l, c, r] < 0 as shown in Table
III and IV.

We briefly recall the definition of queer game introduced by
Propp [4]:

Definition 7: A position in a three-player combinatorial
game is called queer if no player can force a win.

IV. [25, 2, 2] IS A QUEER GAME

Let’s consider the game G = [25, 2, 2]. We observe that
d(25) = d(2) + d(2) therefore G <CR 0. When Center
or Right makes the first move Left has always a winning
strategy. When Left makes the first move we know, by previous
theorems, that neither Center nor Right has a winning strategy;
therefore, we have two possible cases: either Left has a
winning strategy or G is a queer game. We show that Left
has not a winning strategy.
In the beginning, Left has only one plausible move:

[25, 2, 2] → [5, 2, 2] + [5, 2, 2] + [5, 2, 2] + [5, 2, 2] + [5, 2, 2].

Successively, Center moves

[5, 2, 2] → [5, 1, 2] + [5, 1, 2]

and Right moves

[5, 2, 2] → [5, 2, 1] + [5, 2, 1]

obtaining the instance

[5, 1, 2]+[5, 1, 2]+[5, 2, 2]+[5, 2, 2]+[5, 2, 2]+[5, 2, 1]+[5, 2, 1].

Now, Left has 3 possible moves:

• If Left moves in [5, 1, 2] we have

[5, 1, 2] → [1, 1, 2]+[1, 1, 2]+[1, 1, 2]+[1, 1, 2]+[1, 1, 2].
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In this case, Center moves

[5, 2, 2] → [5, 1, 2] + [5, 1, 2]

and Right moves

[1, 1, 2] → [1, 1, 1] + [1, 1, 1].

Now, Left has to move and you can check easily that
he/she has not a winning strategy.

• If Left moves in [5, 2, 2] we have

[5, 2, 2] → [1, 2, 2]+[1, 2, 2]+[1, 2, 2]+[1, 2, 2]+[1, 2, 2].

In these 5 blocks, Center and Right can make 7 moves
each one and Left can make only 6 moves in the other
blocks therefore he/she has not a winning strategy.

• If Left moves in [5, 2, 1] we have

[5, 2, 1] → [1, 2, 1]+[1, 2, 1]+[1, 2, 1]+[1, 2, 1]+[1, 2, 1].

Analogous to the first case.

It is amazing to observe that both [25, 2, 2] and [4, 2, 2] are
<CR 0 but in [4, 2, 2] Left has still a winning strategy when
he/she makes the first move.
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