
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1059

Abstract—Conventional approaches in the implementation of

logic programming applications on embedded systems are solely of

software nature. As a consequence, a compiler is needed that

transforms the initial declarative logic program to its equivalent

procedural one, to be programmed to the microprocessor. This

approach increases the complexity of the final implementation and

reduces the overall system’s performance. On the contrary,

presenting hardware implementations which are only capable of

supporting logic programs prevents their use in applications where

logic programs need to be intertwined with traditional procedural

ones, for a specific application. We exploit HW/SW codesign

methods to present a microprocessor, capable of supporting hybrid

applications using both programming approaches. We take advantage

of the close relationship between attribute grammar (AG) evaluation

and knowledge engineering methods to present a programmable

hardware parser that performs logic derivations and combine it with

an extension of a conventional RISC microprocessor that performs

the unification process to report the success or failure of those

derivations. The extended RISC microprocessor is still capable of

executing conventional procedural programs, thus hybrid

applications can be implemented. The presented implementation is

programmable, supports the execution of hybrid applications,

increases the performance of logic derivations (experimental analysis

yields an approximate 1000% increase in performance) and reduces

the complexity of the final implemented code. The proposed

hardware design is supported by a proposed extended C-language

called C-AG.

Keywords— Attribute Grammars, Logic Programming, RISC

microprocessor.

I. INTRODUCTION

nowledge engineering and logic programming

approaches have extensively been used in many

application domains such as medicine , scheduling and

planning , control , artificial intelligence [1] etc. Therefore,

the possibility of exploiting such approaches in embedded

systems is of crucial importance. Since many of those

applications need to conform to very strict real-time margins,

one of the key requirements for the efficiency of such systems

is that of
Manuscript received December 23, 2003.

I.P. Panagopoulos is with the National Technical University of Athens,

Zografou Campus, Athens, Greece (e-mail: ioannis@cslab.ece.ntua.gr., Tel:

++30210-7722495)

C.C. Pavlatos is with the National Technical University of Athens,

Zografou Campus, Athens, Greece (e-mail: cpavlatos@cslab.ece.ntua.gr, Tel:

++30210-7721529).

G. K. Papakonstantinou is with the National Technical University of

Athens, Zografou Campus, Athens, Greece (e-mail:

papakon@cslab.ece.ntua.gr, Tel: ++30210-7722495).

performance.

In order to meet this requirement, we exercise an innovative

HW/SW codesign method by presenting a special purpose

hardware extension to RISC microprocessors, based on

attribute grammar evaluation, well suited for the efficient

implementation of logic programming applications in

embedded systems.

Knowledge engineering tools are based on the declarative

programming model. On the other hand, the nature of

computation supported today by existing microprocessors is

solely procedural. As a consequence, the implementation of

logic programs in existing microprocessors is bound to the use

of a software compiler performing the declarative to

procedural translation for their execution. This translation

mechanism affects both the complexity and speed of the final

implementation, since it usually imposes the implementation

of a software stack for logic derivations, increasing

exponentially memory I/O references. As a consequence,

software implementations of logic programs, in existing

embedded platforms, negatively affect design efficiency. The

existence of processors capable of supporting the declarative

programming model would greatly improve execution

performance and simplicity of the generated code.

Extensive efforts in the implementation of machines for

logic programming have been mainly encountered in the 5th

generation computing era which envisioned a number of

interconnected parallel machines for AI applications [3][4].

Powerful processors have been introduced working on UMA

and NUMA computers [2][3] in the effort of increasing the

efficiency and parallelization of declarative programs

implemented for PROLOG inference engines. Although the

overall speed-up achieved, following such approaches, has

been satisfactory, the cost for the implementation of such

systems, along with their size, prevented their use in small

scale applications in embedded system environments.

Additionally, the implemented machines were solely

optimized for the logic programming model, which is not

always suited for all application domains. The introduction of

embedded systems [5] seems to present new challenges and

requirements in the implementation of processors with

optimized logic inference capabilities. Embedded systems do

not target generality since they are oriented for small-scale

applications running on dedicated hardware. Additionally,

their restricted computational power (required for constraint

satisfaction), turns approaches for increasing performance

An Embedded System for Artificial Intelligence

Applications

Ioannis P. Panagopoulos, Christos C. Pavlatos, and George K. Papakonstantinou

K

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1060

extremely useful for design efficiency. As a result, the effort

of designing hardware capable of supporting the declarative

programming model for logic derivations can now lead to

intelligent embedded designs which are considerably more

efficient compared to the traditional procedural ones.

In this paper we propose an extension of the RISC-

architecture microprocessor for knowledge representation,

based on attribute grammars evaluation, in the effort of

achieving design efficiency for intelligent embedded systems.

We have chosen to follow the attribute grammar (AG)

approach for the implementation of inference engines, since

AGs have been proven to support both the declarative and

procedural programming model encountered in existing

knowledge representation systems [6][7][8][9]. Our

contribution is summarized in the following:

We introduce a programmable hardware implementation

of an extended parser which is capable of handling all

required derivations in logic programming applications.

We propose a modified version of the RISC

microprocessor which allows programs following the

declarative execution model to be executed. This

modification extends and not substitutes the conventional

procedural execution and thus hybrid applications may be

programmed.

We combine the extended hardware parser with the

modified RISC microprocessor to present an AG

evaluation system, capable of supporting inference

processes in a knowledge base.

We allow design flexibility, since both the

microprocessor and the extended hardware parser are

programmable allowing the implementation of any

desired knowledge base.

The rest of the paper is organized as follows. In Section II,

we present the close relation between logic programming and

AGs and current software and hardware implementations of

AG evaluators. In Section III, a brief overview of our

approach is provided. In Section IV, we present the proposed

C-extensions in the introduced C-AG language. In Section V,

we provide a detailed description of the compilation process

used for programming the extended microprocessor along

with the preprocessors introduced to assist in the compilation

process. In Section VI, we present implementation details of

our approach. In Section VII, an example application is

presented and used for the evaluation of the efficiency of our

approach. In Section VIII, we demonstrate the approach we

followed for the implementation of the proposed design.

Finally, conclusions and future work are presented at Section

IX.

II. ATTRIBUTE GRAMMARS AND LOGIC PROGRAMMING

A. Introduction to Attribute Grammars

An attribute grammar (AG) is based upon a context free

grammar (CFG). A CFG is a 4-tuple G = (N, T, P, Z), where

N is the set of non-terminal symbols, T is the set of terminal

symbols, P is the set of grammar rules (a subset of N x (N

T)* written in the form A , where A N and (N

T)*) and Z (NZ) is the start symbol (the root of the

grammar). An AG is a 4–tuple AG = {G, A, SR, d} where G

is a context-free grammar, A = A(X) where A(X) is a finite

set of attributes associated with each symbol X V (V=(N

 T)). Each attribute represents a specific context-sensitive

property of the corresponding symbol. The notation X.a is

used to indicate that attribute a is an element of A(X). A(X) is

partitioned into two disjoint sets; the set of synthesized

attributes AS(X) and the set of inherited attributes AI(X).

Synthesized attributes X.s are the values defined in terms of

attributes at descendant nodes of node X of the corresponding

semantic tree (decorated tree). Inherited attributes X.i are

values defined in terms of attributes at the parent and

(possibly) sibling nodes of node X of the corresponding

semantic tree. From the definition, the start symbol does not

have inherited attributes while the terminal symbols do not

have synthesized attributes. Each of the productions Pp

(
nXXXp ...10:) of the CFG is augmented by a set of

semantic rules SR(p) that define attributes evaluation rules and

conditions in terms of other attributes of terminals and non

terminals appearing in the same production. The way

attributes will be evaluated, depends both on their

dependencies to other attributes in the tree and also on the

way the tree is traversed. Finally, each attribute a is associated

with a specific domain d().

The syntax rules of the AG define all possible derivations

from a specific non terminal symbol. If only terminal symbols

are used to determine the success of those derivations (based

on comparisons with the tokens of an input string), then

parsing is performed. If terminal symbols and attribute

instance values determine the success of those derivations

then, semantically driven parsing is performed. It is possible

to omit all terminal symbols in the AG (replace them with nil

tokens) and store their information in attributes at the leaf

nodes of the tree (definite clause AG approach [10]), in order

to perform semantically driven parsing without the use of

terminal symbols. Finally, if no terminal symbols exist and no

input string in used, then parsing is degenerate and tree

derivations are only controlled by semantic conditions on

attribute instance values. In our approach, we do not use any

terminal symbols since the implementation’s main purpose is

for logic programming applications. Apart from that, using the

proposed implementation, semantically driven parsing can be

performed through the definite clause AG approach, while

degenerate parsing can be realized through the evaluation and

checking of attribute instance values. As a consequence, all

expressive power of AGs is preserved. This, as it will be

shown in later sections, ensures the maximum possible

flexibility in the design.

B. Logic Programming Using Attribute Grammars

Attribute grammars have extensively been used for logic

programming applications [6][11][12]. In [8] [9] an effective

method based on an extension of the Floyd’s parser [13] is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1061

presented that transforms a logic programming program to its

AG equivalent representation. This method introduces a

number of equivalent syntax rules for the inference rules and a

number of attributes and semantic conditions for the

unification process in the inference procedure and can be used

as a complete inference engine. The basic concepts underlying

this approach are the following:

Every inference rule in the initial logic program can be

transformed to an equivalent syntax rule consisting solely of

non-terminal symbols. For example:

),...,,()...,...,,(),...,,(),...,,(
1210 212222121121110201 mmkmmmkkokO

tttRtttRtttRtttR

is transformed to the syntax rule: .|...21 mO RRRR

(“|.” represents the end of the rule). In case there are two or

more alternatives for a single inference rule, those are

transformed to an equal number of alternatives in the

corresponding syntax rule. For example:

),...,,()...,...,,(),...,,(),...,,(212222121121110201 210 ppkpppkkokO tttRtttRtttRtttR

),...,,()...,...,,(),...,,(),...,,(212222121121110201 210 qqlqqqllokO tttDtttDtttDtttR

are transformed to the syntax rule: .|...|...
2121 qpO

DDDRRRR

(“|” represents the alternative meta-symbol). Finally, facts

of the inference rules are transformed to terminal leaf nodes of

the syntax tree referring to the empty string. For example the

facts:

),(),,(),,(feRdcRbaR ggg

are transformed to: .|||gR

(which are three “nil” symbols separated by the alternative

meta-symbol). Obviously, parsing is degenerate since there are

no terminal symbols. For every variable existing in the initial

predicates, two attributes are attached to the corresponding

node of the syntax tree one synthesized and one inherited.

Those attributes assist in the unification process of the

inference engine. The attribute evaluation rules are

constructed based on the initial logic program. A detailed

method for specifying those transformation rules can be found

in [8][9][12] and can be easily performed automatically by a

suitable tool. Attributes at the leaf nodes of the tree are

assigned values from the constants in the facts of the logic

program. The inference process is carried out during tree

derivations and an EVAL function is called at the

insertion/visit of each node that computes the attribute rules

performing the unification procedure. Semantic conditions, on

the result of the unification procedure, determine the success

or failure of those derivations in the inference procedure (a

meta-variable flag is used to hold this information). In

general, the addition of attribute evaluation rules which

determine the creation and form of the constructed syntax tree

forms a full degenerate semantically driven parser which can

be effectively used in logic programming derivations.

Additional semantic rules can be further added to increase the

inference power beyond the one affected by the PROLOG

rules, leading to the implementation of semantically driven

parsers [14], theorem provers [15] and inference engines with

fuzziness and uncertainty [16].

TABLE I

AG EQUIVALENT REPRESENTATION OF THE KNOWLEDGE BASE OF THE

"SUCCESSOR" PROBLEM

Informal Definition of

the Knowledge Base

Equivalent AG evaluation Syntax

and Semantic rules

Goal (X,Y) if

Successor (X,Y)

Successor (X,Y) if

Parent (Z,X) and

Successor (Z,Y)

Successor(X,Y) if

Parent (Y,X)

Parent (j,b)

Parent (j,l)

Parent (b,a)

Parent (b,p)

Goal = Successor |.

 Successor.ia1=Goal.ia1;

 Goal.sa2=Successor.sa2;

Successor = Parent Successor |.

 Parent.ia2=Successor[1].ia1;

 Successor[2].ia1=Parent.sa1;

Successor = Parent |.

 Parent.ia2=Successor.ia1;

 Successor.sa2=Parent.sa1;

Parent = |.

 if ((Parent.ia1!=nil) &&

(Parent.ia1!=”j”))

 flag=0; else Parent.sa1=”j”;

 if ((Parent.ia2!=nil) &&

(Parent.ia2!=”b”))

 flag=0; else Parent.sa2=”b”;

Parent= |.

 if ((Parent.ia1!=nil) &&

(Parent.ia1!=”j”))

 flag=0; else Parent.sa1=”j”;

 if ((Parent.ia2!=nil) &&

(Parent.ia2!=”l”))

 flag=0; else Parent.sa2=”l”;

…

In order to clarify the aforementioned transformation, we

demonstrate a toy-scale example of a logic program which is

transformed to its AG equivalent one. Consider that we have

the knowledge base illustrated in Table I (First Column) and

we want to ask the question “p is successor of whom?” i.e.

Successor (p,?). The syntax rules which form the equivalent

AG evaluator are illustrated in Table I (Second Column) along

with the attribute evaluation rules and semantic conditions to

be used for the inference and unification process.

The question asked has two solutions, which are “j” and

“b”. The corresponding parse trees, decorated with the

unification attributes are illustrated in Fig. 1.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1062

Fig. 1 Parse trees for the "successor" example leading to solutions (Note that

tree traversal is top-bottom, left to right)

C. Attribute Grammar Software/Hardware

Implementations

Several software [8][17][18][19] and hardware [14][21][22]

implementations of attribute grammar evaluators exist in

literature. Nevertheless, existing hardware implementations

for AGs although highly efficient in terms of performance,

restrict their use to a specific AG (hardwired in the design)

and as a consequence lack the programmability required in

embedded systems. The proposed implementation is based on

a modified version of the AG evaluator presented in [8] [9]

and its hardware implementation presented in [20]. The choice

of this AG evaluator, due to its simplicity, allows a simple and

fast hardware implementation and can become easily

reprogrammable. It is also semantically driven (supports

dynamic parsing by exploiting tree-pruning techniques to

increase efficiency and prevent the memory explosion

problem for storing all possible parse trees) and gives all

possible solutions (non-deterministic), i.e. it can provide all

possible parse trees for a specific input string. Due to the close

relation between attribute grammars and logic programs, it can

be easily extended to be used in intelligent embedded systems

for constraint logic programming applications [23] and can be

extended to support fuzziness and uncertainty [15] [16].

Finally, there are already software implementations of the

parser and its use in various application domains providing a

sufficient development environment for the evaluation of the

design [8] [9] [20] [12].

III. OVERVIEW OF OUR APPROACH

Conventional approaches, for the incorporation of a logic

program in embedded systems, follow the method illustrated

in Fig. 2(a). A logic program is initially captured using a

Logic Programming Language (such as PROLOG). Then, a

compiler is used that performs the transition from the

declarative algorithm to the behaviorally equivalent

procedural one, performing the inference process. The final

algorithm is programmed to the microprocessor for execution.

Our approach (Fig. 2(b)) starts from a conventional PROLOG

like language for the definition of the knowledge base. The

initial specification is transformed, through the use of a

preprocessor, to its AG equivalent representation, written in

the proposed extended C-language, called C-AG.

Fig. 2 (a) Conventional approach (b) Proposed approach

We further introduce an extension to the RISC

microprocessor which consists of a programmable hardware

parser, for the definition of the syntax rules, that performs the

required tree derivations (logic derivations) and a

conventional RISC part that handles the attribute evaluation

rules (unification process) and possibly executes conventional

sequential code that co-exists in the hybrid procedural-

declarative application. The C-AG language is finally

transformed to a conventional program expressed in C through

the use of a preprocessor that adds inline assembly code

(related to the extended RISC’s features and supporting the

declarative execution) to the final program. The use of the

preprocessor is imperative to prevent any modifications that

would be required to the conventional C-compiler, adding

additional effort in translating existing C-compilers to support

the innovative extended RISC’s features. The mapping of the

C-AG program to the extended RISC microprocessor is

illustrated in Fig. 3.

Fig. 3 Overview of the mapping process of the final AG equivalent program

written in C-AG

The basic idea in the proposed architecture is to equip the

microprocessor with two modes of operation: one declarative

and one procedural. In the procedural mode, the processor

functions in the conventional way (the hardware parser

extension is disabled) and program execution is sequential

through consecutive increases or jumps of the Program

Counter (PC). On the declarative mode, the hardware parser is

enabled and performs the required tree derivations (logic

derivations) based on its internally stored syntax rules

(capturing the knowledge base). Nodes of the constructed tree

are stored in a specially designed stack within the hardware

parser. There is a one-to-one correspondence between a stack

Logic

Program

Syntax Rules

AG Evaluation

Rules

AG equivalent program

HW

PARSER

Extended RISC

DATAMEM

CONTROL

LOGIC

PC

INSTR

MEM
DATAPATH

Logic Program

COMPILER

RISC

HW

PARSER

Extended RISC

Logic Program

PREPROCESSING

STAGE

PROCEDURAL

CODE

(a) (b)

COMPILER

<Goal>

<Successor

<Parent <Successor

<Parent

ia1=p, sa1=nil, ia2=nil, sa2=j

ia1=p, sa1=nil, ia2=nil, sa2=j

ia1=nil, sa1=b, ia2=p, sa2=p ia1=b, sa1=nil, ia2=b, sa2=j

ia1=nil, sa1=j, ia2=b, sa2=b

<Goal>

<Successor

<Parent

ia1=p, sa1=nil, ia2=nil, sa2=b

ia1=p, sa1=nil, ia2=nil, sa2=b

ia1=p, sa1=b, ia2=p, sa2=p

SOLUTION: j

SOLUTION: b

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1063

line and the node in the parse tree it represents. Consequently,

the position of the node in the stack can be used as the

identification number of the specific node (NID-Node

IDentification number). A stack line also holds an encoding of

the non-terminal symbol (predicate) associated with the node

along with information on the dependency of the node to other

nodes (predicates) of the tree (represented as locations in the

stack).

Upon each creation/visit to a node, attribute evaluation

rules need to be executed in order to perform unification and

possibly determine the success or failure of the unification

process. Attribute evaluation rules are organized as blocks of

code in the RISC microprocessor. Each block is associated

with its corresponding non-terminal symbol. The hardware

parser uses the associated non-terminal symbol’s encoding

(stored in the stack line), for each node, to determine (by

controlling the value of the PC) the block of code that needs

to be executed (the block of code that performs unification). A

space is also reserved in the embedded system’s memory for

storing attribute instances. The latter are dynamically

organized in blocks (associated with a specific stack line-

node) and can be referenced based on the NID of the node.

0 20000 40000 60000 80000 100000 120000 140000

Clock Cycles

5

8

9

12

16

N
u

m
b

e
r

o
f

E
d

g
e

s

RISC w ith Pipeline Com putation tim e (Path Finding)

"Tree Derivations"

"Attribute Evaluation"

0 50000 100000 150000

Clock Cycles

5

8

9

12

16

N
u

m
b

e
r

o
f

E
d

g
e

s

RISC Com putation tim e (Path Finding)

"Tree Derivations"

"Attribute Evaluation"

Fig. 4 Computational Time required for performing tree derivations and

attribute evaluation in a RISC and a RISC with pipeline microprocessor

By using the proposed approach and the microprocessor’s

extended features, apart from the fact of the declarative-

procedural coexistence, we greatly reduce the complexity of

the implemented program (no translation to procedural code is

needed). We also achieve a great improvement to the system’s

performance (av. 1000%). This is mainly due to the fact that

the programmable hardware implementation of the parser

relieves the microprocessor from the additional computation

time that would be required for performing the additional tree

derivations (logic derivations).

In Fig. 4, it is clear that the computational time required for

performing such tree derivations by a RISC and also a RISC

with pipelining capabilities microprocessor constitutes

approximately the 80% of the total time required to perform

the inference process (attribute evaluation computations

related to the unification process consist of simple assignment

operations and therefore are not computationally intensive).

Mapping the tree derivation process to hardware would

therefore surely improve the overall embedded system’s

performance.

In the following sections of this paper, we present in more

detail, the extended C-AG language, the required

preprocessors’ features for the compilation process and details

of the extended RISC’s hardware implementation.

IV. THE EXTENDED C-AG LANGUAGE

In the effort of supporting our proposed implementation,

specific language constructs were needed to enable hybrid

declarative-procedural computations. For that reason, we had

to incorporate a specific syntax for the specification of the

syntax and attribute grammar evaluation rules, along with a

way to enable the control of tree derivations and perform the

required switching mechanism from declarative to procedural

code and vice-versa. Nowadays, the most well known

programming language syntax for the specification of

grammars is YACC [24]. Although YACC is widely accepted

as a valuable tool for the specification of syntax rules and

parsing, it has been shown that its use is restrictive for AGs

[24] (eg. it does not support inherited attributes). Several other

attribute grammar evaluators also do exist (following the

conventional approach) defining an AG-like syntax such as

ELI [24] and FNC2 [25]. Those systems also allow the

specification of blocks of sequential code within the attribute

evaluation rules. Such mechanism increases the

expressiveness of AGs, required for real-life applications. We

have chosen to follow an ELI-like syntax for the specification

of the AG in the introduced extended C language (C-AG) and

performed the required modifications to be able to integrate it

into conventional procedural code. An overview of the

introduced programming template is illustrated in Fig.5. AGs

within the conventional C-code are defined as functions.

Those functions are distinguished from conventional ones by

being prefixed with the string “AG_”. Within the function,

syntax rules are defined along with their associated attribute

evaluation rules. We allow at every syntax rule a sequential

block of code that is executed upon a successful creation of

the sub-tree starting from the non terminal defined at the Left-

Hand Side of the specific rule. Reserved keywords

“setflag/clrflag” within the attribute evaluation rules are used

to determine the success/failure of a derivation.

Finally, in main(), the switch to declarative code is

performed through the reserved work “switchdecl” whose

parameter specifies the function defining the AG to be

executed. It should be noted that the scope of conventional

variables within the program remains intact and attribute

evaluation rules are able to access the same variables that

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1064

could be accessed in a conventional C-program. This allows

data sharing between procedural and declarative code.

Fig. 5 A general template of the C-AG language

V. THE PREPROCESSORS

As mentioned before, two preprocessors are used for the

mapping process of the desired application to the extended

RISC microprocessor. The first (Logic Preprocessor) receives

the initial logic program and presents the resulting AG

equivalent one written in C-AG. The designer can additionally

include any other procedural-declarative desired code to the

resulting program written in C-AG. The hybrid program is

then received by the second preprocessor (C-AG to C

preprocessor) which translates the C-AG program to its

equivalent C one, by adding inline assembly code, where

needed, to take advantage of the extended RISC

microprocessor’s additional features. The overview of this

translation mechanism is presented in Fig. 6.

Fig. 6. The stages of the preprocessing phase

The Logic Preprocessor performs automatically the

transition from the Logic Program to the C-AG equivalent

representation, based on rules for the logic programming to

AG transformation. Since those rules have been already well

documented in [8][9][12] their description and explanation is

beyond the scope of this paper. Therefore, we will consider

having ready the C-AG equivalent program that will be

further preprocessed to be mapped to the extended

microprocessor. Consider, for example, the C-AG

representation of the “successor” example presented in

Section II (Fig. 6).

Fig. 6 Output of the "Logic Preprocessor" for the "successor" example (Code

in italics represents additional code added by the designer after the

preprocessing stage)

The resulting C-AG program is further preprocessed by the

“C-AG to C” preprocessor. The program written in C-AG is

separated in the fragments of code (attribute evaluation rules,

procedural code) to be mapped to software and the syntax

rules that program the hardware parser (HW/SW Codesign).

The syntax rules of the AG are extracted from the program,

encoded and loaded to the hardware parser’s “Rules

Memory”. The preprocessor determines automatically the time

AG evaluation rules need to be executed, depending on the

position in the syntax rule (tree derivations have reached so

far) and transforms the rules accordingly. Conventional C-

code is finally produced augmented with inline assembly

instructions using the extended instruction set of the proposed

implementation. Then, a conventional C-compiler is used to

produce the final binary executable. The schematic diagram of

the “C-AG to C” preprocessor along with the description of

the resulting code is illustrated in Fig. 7.

Program begins execution like in a conventional RISC

microprocessor. When the “swichdecl” instruction is

encountered, the encoded syntax rules of the corresponding

AG are loaded into the hardware parser’s “Rules Memory”

and the hardware parser takes control of the microprocessor’s

#include <stdio.h>
void AG_Successor (char successors[10], char p){

int i;
 i=-1;
 RRULE: G::=S EEND {
 G.ia1=p;
 S.ia1=G,ia1;
 {successors[i++]=G.sa2}
 }
 RULE: S::= P S EEND {
 P.ia1=S[1].ia1;
 S[2].ia1]=P.sa1;
 }
 RULE: S::= P EEND {
 P.ia2=S.ia1;
 S.sa2=P.sa1;
 }
 RULE: P::= EEND {
 if ((P.ia1!=’j’)&&(P.ia1!=nil)) clrflag;
 else P.sa1=’j’;
 if ((P.ia2!=’b’)&&(P.ia2!=nil)) clrflag;
 else P.sa1=’b’;
 }
 … (Rules for other facts follow here) }}

int main (int argc,char argv[]) {
int j;

 char successors[10];
for (j=0;j<10;i++) successors[i]=’ ‘;
switchdecl(AG_successor (successors,’p’’));

 j=0;
 while (successors[j]!=’ ‘)
 printf (“%c, “,successors[j++]);
exit(0);
}

Logic Program

Logic

Preprocessor

Additional

application specific

code in C-AG

C-AG equivalent

program

C-AG to C

Preprocessor

C code with

inline assembly

C COMPILER

Extended

RISC

…Conventional C inlcudes, variable, function declarations
<return type> AG_<grammar_name> (…){
 ….

RULE: <NT> ::= <NT> <NT> … <NT> EEND
 {
 attribute evaluation rules;
 {..} procedural code
 }

RULE: <NT> ::= <NT> <NT> … <NT> EEND
 {
 attribute evaluation rules;
 if (condition (<NT>.<attribute>)) cclrflag/setflag;
 }
 …. return ….; }}
int main (int argc,char argv[])
{

<return type> variable;
….
variable= sswitchdecl
 (AG_<grammar_name>(…));
 exit(0);

}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1065

program counter. The hardware parser performs tree

derivations and, according to the non terminal symbol

processed, defines the position of the attribute evaluation rules

to be processed by the microprocessor to report success/failure

of the derivations (in this case the unification process).

Fig. 7 Substages of the "C-AG to C" preprocessor

When there are no valid tree derivations left, the hardware

parser completes and the microprocessor regains control of the

program counter. In the following subsections, a more detailed

description is provided on the encoding of the syntax rules

used to be stored in the parser along with the description of

the inline code and final representation of the C-code to be

compiled.

A. Syntax Rules Encodings

The extracted syntax rules from the initial program are

initially transformed to the following representation: RULE:

A::= B C END and RULE: A::=D E END are transformed to

A=BC| DE|. where the symbol “|” represents alternative

productions and the combination of “|.” denotes the end of the

rule. The proposed encoding used for the non-terminal

symbols of the grammar uses)2(log2 NP bits, where (N-

2) is total number of non-terminal symbols. The additional

two symbols have the encoding “000..” which is used to

represent the symbol “|” and encoding “11111…” which is

used to represent the symbol “.”. Such an encoding on one

hand is the smallest possible, achieving the maximum possible

reduction in the number of bits needed to represent the

grammar and on the other hand, as it will be shown, provides

an easy way of storing the grammar rules into the “Rules

Memory” in the hardware parser. Every sub-goal (the left

hand side non-terminal symbol in each syntax rule) is assigned

a value according to the previously mentioned encoding. We

use the encoding of each sub-goal as the reference address to

the “Rules Memory” location where the Right-Hand-Side of

the grammatical rule is stored.

To better illustrate this, we demonstrate the resulting

encoding of the “successor” example. Fig. 8(b) represents the

encoding for the non-terminal symbols of the grammar and

Fig. 8(c) represents the way the rules are stored in the “Rules

Memory” in the hardware parser.

Fig. 8 (a) Syntax rules of a the “successor” example grammar. (b) Example

grammar's encoding (Each non terminal symbol is assigned a specific 4bit

encoding) (c) Contents of "Rules Memory".

B. AG Evaluation Rules Translation

As previously stated, the “C-AG to C” preprocessor

automatically determines when attribute evaluation

computations need to be performed; depending on the position

in a syntax rule i.e. tree derivations have reached so far. For

example, an initial attribute evaluation rule of the form:

B.inh=f(A.inh) associated with the syntax rule A=B|. is

automatically transformed to: When a node associated with B

is visited: inh[current]=inh[father]. Note that the notation

<attribute name>[<related_node>] illustrates the

dependency of the attribute <attribute name> in the currently

visited node with attributes in its neighboring nodes in the

derived tree. This implies the transformation of the initial

attribute evaluation rules associated with non terminal

symbols in the syntax rules, to semantically equivalent

attribute evaluation rules related to node dependencies in the

derived tree. In our previous example such a transformation

can be expressed as: “when a node related to the non-terminal

symbol B in the rule A=B|. is visited, the attribute inh of the

node can be calculated from the attribute inh of its father

(which is a node associated with the non-terminal A)”. Those

transformations are automatically performed by the “C-AG to

C” preprocessor which determines the attribute dependencies

expressed in the syntax rules and transforms them to attribute

dependencies related to dependencies on the nodes of the tree.

Table II demonstrates such transformations for various types

of dependencies among non-terminal symbols in a syntax rule

(the notation (enc(NT),i) is explained right after Table II and is

used to access the memory address i.e. label corresponding to

a specific non-terminal node, where the execution of the

specific computation will have to take place during tree

derivations).

In order for such transformation to take place, we need to

be able to distinguish non-terminal symbols at the right hand

side (RHS) of the syntax rule. For that reason non terminal

symbols at the RHS are defined by a tuple (x,i) where x is the

sub-goal’s encoding for the specific syntax rule (LHS non

terminal symbol) and i is the position of the needed non-

(a)

G = S |.

 S = P S | P |.

 P = | | | | |.

Goal
Encoding

(Binary)
enc(Goal)

G 0001 1

S 0010 2

P 0011 3

| 0000 F

. 1111 0

(b)

(c

Address Data

1 2 0 F F F F

2 3 2 0 3 0 F

3 0 0 0 0 0 F

Hybrid procedural-declarative

code written in C-AG

Preprocessor

C Code for AG Evaluation

Rules with inline assembly

using the extended

instruction set

C - Compiler

Encoding of

Syntax Rules to

be mapped to the

Extended RISC HW Parser

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1066

terminal symbol at the RHS of the syntax rule starting from 0.

For example in the rule A=BC|., (enc(A), 0) defines B,

(enc(A),1) defines C, (enc(A),2) defines the “|” and so on

(enc(NT) gives the encoding of the non terminal symbol NT).

TABLE II

TRANSFORMATION OF ATTRIBUTE EVALUATION RULES FROM NT-RELATED TO

NODE-RELATED (INDICES I, J, K IMPLY “FOR ALL” ATTRIBUTES HAVING SUCH

COMPUTATION DEPENDENCE, “TEMPI” ARE ADDITIONAL ATTRIBUTES

INTRODUCED FOR THE REQUIRED COMPUTATION)

Attribute Evaluation

Rules

Attribute Evaluation Equivalent

(traversal dependent)

A B C |.

 A.syni =

f (B.synj,C.synk)

(enc(A),2):

syni[current]=

 f(synj[predsub],synk[sub])

A B C |.

 B.inhi=f(A.inhj);

 C.inh=h(A.inhk);

(enc(A),0):

inhi[sub]=f(inhj[current]);

(enc(A),1):

inhi[sub]=h(inhk[current]);

A B1 B2 B3 … Bn |.

 A.syni=

 f(B1.a1,B2.a2,…, Bn.an);

(enc(A),1):

temp1[current]= a1[sub];

(enc(A),2):

temp2[current]= a2[sub];

…

(enc(A),n-1):

tempn[current]= an-1[sub];

(enc(A),n):

syni[current]=f(temp1[current],

temp2[current],

…,tempn[current] , an[sub])

A B C |.

 C.inhi=f(B.inhj);

(enc(A),1):

inhi[sub]=f(inhj[sub]);

A B C D E|.

 D.inhi=f(B.inhj);

(enc(A),1):

temp[l]=inhj[sub];

(enc(A),2):

inhi[sub]=f(temp[current]);

The instruction memory is divided into blocks where each

block holds the attribute evaluation rules of a specific syntax

rule (referenced by the value of x in the tuple (x,i)). This block

is further subdivided into sub-blocks holding the attribute

evaluation rules for every position within the rule (indicated

by the index i in the tuple (x,i)). Those blocks and sub-blocks

can either be organized with fixed sizes or a mapping table

can be used that points to the memory location for every tuple

of the form (x,i). The resulting memory organization for the

AG evaluation rules for the “successor” example is illustrated

in Table III. (Fixed block sizes are used in this example

reserving 256bytes per block (for every syntax rule) and

32bytes per sub-block (for every position within the syntax

rule).

TABLE III

MEMORY LAYOUT OF THE ATTRIBUTE EVALUATION RULES.

Address Content

Base to Base+999 Sequential Code

Base+1000 to Base+1031
Attribute Evaluation

Rules (enc(G),0)

Base+1031 to Base+1063
Attribute Evaluation

Rules (enc(G),1)

Base+1064 to Base+1095
Attribute Evaluation

Rules (enc(G),2)

Base+1096 to Base+1255 UNUSED

Base+1256 to Base 1287
Attribute Evaluation

Rules (enc(S),0)

Base+1288 to Base 1319
Attribute Evaluation

Rules (enc(S),1)

Base+1320 to Base 1351
Attribute Evaluation

Rules (enc(S),2)

Base+1352 to Base+1383
Attribute Evaluation

Rules (enc(S),3)

Base+1384 to Base+1415
Attribute Evaluation

Rules (enc(S),4)

Base+1416 to Base+1447
Attribute Evaluation

Rules (enc(S),5)

Base+1448 to Base+1511 UNUSED

Base+1512 to Base 1543
Attribute Evaluation

Rules (enc(P),0)

… …

Base+1768 to Base+xxxx Sequential Code

C. Extended RISC Instruction Set

The memory for attribute instances values is also divided

into blocks, where each block corresponds to a node located in

the stack of the hardware parser and can be referenced by its

NID. In order for the RISC to be able to access attribute

instances values of current and neighboring nodes whenever a

tuple (x,i) is dispatched from the parser for attribute

evaluation, additional information is needed from the

hardware parser indicating the position of the parent, son,

sibling and son’s sibling node of the currently visited node.

Those can be used in the microprocessor’s attribute evaluation

rules for accessing attributes of neighboring nodes. For that

reason we have extended the RISC microprocessor’s

instruction set to incorporate additional instructions related to

attribute referencing. Moreover, additional instructions are

needed for implementing the required switching mechanism

between procedural and declarative code and for uploading

the rules to the parser’s “Rules Memory”. Finally, two

additional instructions are used for controlling the meta-

variable flag indicating the success/failure of semantic

conditions on attribute instance values. The complete table of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1067

the added instructions is illustrated in Table IV.

(Implementation issues for the incorporation of this extended

instruction set to the RISC microprocessor will be given in

Section 6 where hardware implementation issues are

explained in detail)

TABLE IV

ADDED INSTRUCTIONS TO THE RISC MICROPROCESSOR’S INSTRUCTION SET

FOR ATTRIBUTE REFERENCING

Instruction Description

ldsub addr,dest

ldsup addr, dest

ldsib addr, dest

ldssib addr, dest

ldcur addr, dest

Load the value at memory location

addr+(index depending on position

in stack) and store it to register dest.

(index positions refer to current(cur),

son(sub), sibling(sib), parent(sup)

and son’s sibling node(ssib)).

stsub addr,value

stsup addr,value

stsib addr,value

stssib addr,value

stcur addr,value

Store to memory location

addr+(index depending on position

in stack) the value “value”. (index

positions refer to current(cur),

son(sub), sibling(sib), parent(sup)

and son’s sibling node(ssib)).

prgdecl addr

Performs the switch between

declarative and procedural code.

Specifically, the assembly

instruction loads to the PC the base

memory address where AG

evaluation rules are stored and

pushes into the stack the return value

of the PC (after all logic derivations

have taken place and all solutions

have been found)

setflag/clrflag

Allows the manipulation of the

previously described meta-variable

flag which is dispatched to the

Hardware parser in order to indicate

a successful/unsuccessful derivation

ldrules index,addr

Load the 32bit value located at

memory address “addr” to the”

Rules Memory” of the hardware

parser at position “index”.

initstk
Assembly instruction used to

initialize the parser’s stack contents

D. C-Code with Inline Assembly

As previously mentioned, the end-product of the

preprocessing stage is software code written in C with specific

inline assembly blocks related to the extended

microprocessor’s instruction set. During the preprocessing

phase the C-AG code is transformed as follows:

Initially the preprocessor extracts the grammar from the C-

AG code and inserts a global array of 32bit encodings of the

rules of the grammar (logic formulas) following the encoding

presented in Subsection V(B):

The call to the attribute evaluation function through the use

of “switchdecl” is transformed to a conventional call to a

function:

For every attribute used within the attribute evaluation

rules, a space is reserved in the global section of the final C

program:

The initial attribute evaluation rules, based on syntax rules,

are transformed to attribute evaluation rules based on nodes of

the constructed tree following the rules specified in Table II:

(The notation [i] denotes the index number i of the register in

the register file)

Inline assembly is added at the location of the attribute

evaluation rules which initializes the “Rules Memory” and the

parser’s stack and initiates the declarative mode. The

assembly instruction “prgdecl” pushes into the stack the

location of the PC and then jumps to the attribute evaluation

RULE: G::=S EEND {
 G.ia1=p;
 S.ia1=G,ia1;
 {successors[i++]=G.sa2} }
 RULE: S::= P S EEND {
 P.ia1=S[1].ia1;
 S[2].ia1=P.sa1; }
 RULE: S::= P EEND {

P.ia2=S.ia1;
 S.sa2=P.sa1; }
 RULE: P::= EEND {
 if ((P.ia1!=’j’)&&(P.ia1!=nil)) clrflag;
 else P.sa1=’j’;
 if ((P.ia2!=’b’)&&(P.ia2!=nil)) clrflag;
 else P.sa1=’b’; }

void AG_successor_asm_rules()
{
 _asm{

/*(enc(G),0)*/
stcur ia1, p;

 stsub ia1, p;
(nop until end of subblock)

/*(enc(G),1)*/
(nop until end of subblock)

/*(enc(G),2)*/
ld [0],i

 inc [0]
 stcur sa2, successors+[0]

(nop until end of subblock)
... …
 }
}

ia1, ia2, sa1, sa2 (integer attributes)

int ia1[100],ia2[100],sa1[100],sa2[100]

switchdecl(AG_successor (successors,’p’’));

AG_successor (successors,’p’’);

RULE: G::=S END
RULE: S::= P S END
RULE: S::= P END
RULE: P::= END
RULE: P::= END
RULE: P::= END
RULE: P::= END
RULE: P::= END

int AG_successor_rules[18]=
{ 2, 0, F, F, F, F,
 3, 2, 0, 3, 0, F,
 0. 0, 0, 0, 0, F}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1068

function.

The whole purpose of the preprocessing stage is to provide

a final C-program which, when compiled and executed by the

microprocessor handles both the declarative and procedural

code. In specific, the microprocessor can be functioning at

two modes of operation. The procedural one follows the

conventional steps of program execution. At the declarative

one, (call to an AG evaluation function in the program) the

processor switches to the declarative mode. The flowchart of

the two mode switching mechanism is illustrated in Fig. 9.

Fig. 9 Flowchart of the two modes of operation of the microprocessor

During the declarative mode, the processor initially loads

the grammar rules into the hardware parser’s “Rules

Memory”, specifies the base address of the AG evaluation

rules (the address of the AG evaluation function after the

completion of the “C-AG to C” preprocessor), pushes into the

stack the return address of the PC (when declarative mode

completes) and waits for a signal from the hardware parser

indicating that AG evaluation is required. The processor at

each such call, jumps to the AG evaluation block related to the

non terminal associated with the currently parsed node,

performs the AG computation and waits for further requests.

At the end of the derivation process, the processor pops from

the stack the return address and resumes normal, procedural

execution. In the next section all hardware implementation

issues required for the hardware parser and the extended RISC

microprocessor, in order to support such operation, are clearly

defined.

VI. HARDWARE IMPLEMENTATION ISSUES

A. The Hardware Parser

An overview of the parser’s flowchart is illustrated in Fig.

10.

Fig. 10 The implemented parser's flowchart

The parser uses a stack to hold the nodes of the constructed

parse tree. Those nodes are defined as five-tuples of the form

(goal , i , sup , sub , pred) in a stack S. goal , is the non

terminal which is currently tried, is the element of the stack

(current node) which is currently active, v is the new empty

position in the stack, i is the place in the definition of the non

terminal goal at which tree derivations have reached so far,

sup is the location in the stack S of the goal’s superior and

sub , pred are the locations in the stack S of the goal’s most

recent subordinate and sibling respectively. The parsing that

takes place is degenerate. The parser has been extended to

incorporate calls to an attribute evaluator procedure (EVAL)

for attribute evaluation whose results control tree derivations

through the use of the meta-variable flag. A more detailed

description of a similar software implementation of the

extended parser can be found in [20][8].

An overview of the proposed programmable hardware

implementation of the parser is illustrated in Fig. 11. The

grammatical rules are encoded and stored within the parser in

the “Rules Memory”. Another memory element within the

parser is used as the stack S that stores nodes visited of the

constructed tree. The stack is a two-input, two-output memory

allowing two memory read/write operations to be executed

simultaneously. We have chosen to integrate this stack within

the hardware parser in the effort of increasing performance in

the construction of the tree.

Declarative

Mode ?

Push

RetAddress

Load

Rules Base

Address

PC=DeclPC

Enable Parser

Fetch

Decode

Execute

MemAccess

PC=PC+4

End of AG eval ? PC=PC+4

Evaluate ?

END signal ? POP RetAddr

Execute

Instruction

Execute

Instruction

SWITCH

DECL

SWITCH

PROC

YES

NO

NO YES

NO YES

void AG_Successor (char successors[10], char p)
{
 int i;
 i=-1;

_asm {
 ld [0],0
 ldrules [0],AG_successor_rules+[0];
 …
 initstk;
 prgdecl AG_succesor_asm_rules;
 }
 …

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1069

Fig. 11 A general overview of the extended RISC microprocessor’s hardware

parser

Two additional registers are used to store the current and

new position in the stack: the register and the v register

respectively. The detailed hardware implementation of the

parser is provided in Fig. 12 and has been obtained by the

implementation of the hardware in the XILINX ISE 6.0

environment [27].

(a) Top Most Level

(b) Extended Stack

(c) Extended Rules

(d) Extended Registers

Fig. 12 Detailed implementation of the datapath of the hardware parser. (a)

Top level design (b) The Stack’s implementation (c) The “Rules Memory

implementation (d) The register’s implementation

A Finite State Machine controller drives the control signals

and implements the parsing algorithm. The design is driven by

the microprocessor’s clock. Since the operations that occur in

a single cycle in the parser are primitive RTL operations, the

hardware parser’s computations within a single cycle do not

impose any upper limit to the microprocessor’s clock,

provided that they are implemented using the same technology

used for the implementation of the microprocessor. At any

moment, the sub-goal’s encoding and the index, within the

current syntax rule in the current stack line, is used to

determine the next symbol to be evaluated (Value at the

output port of the “Rules Memory”). The new symbol is either

a new non terminal causing a new node to be added to the

stack line or defines the end of the syntax rule. After the

addition of a new node, the hardware parser triggers the

microprocessor for attribute evaluation and monitors the value

of the flag. If the derivation is unsuccessful or a new symbol

represents the end of the rule, new alternatives are evaluated.

The “Rules Memory” is of k*32bit size where k is its

maximum size. The non terminal symbols of each syntax rule

are stored in consecutive memory positions at fixed intervals.

Each stack line holds information on a specific node of the

constructed parse tree as described by the software parser.

This means that with a P bit encoding of non terminal symbols

and k at maximum symbols allowed at the RHS of a

production, each stack line is of 4*log2N + log2k bits. For an

efficient and realistic implementation, a typical size for the

stack is 1,5KB and for the “Rules Memory” 2KB. This means

that for an 8bit encoding of non terminal symbols, the

hardware can support up to 300 nodes in each tree, 254 non

terminals and up to 254 syntax rules with a maximum of 8 non

Rules

Memory Stack

Clk

Information on

current node

flag

Datapath

Control Unit

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1070

terminals at the RHS of each rule.

In order for this hardware implementation to support

attribute instance referencing, the parser has been extended to

dispatch attribute referencing base addresses of neighboring

nodes (their positions in the stack).

B. RISC Modifications

For our analysis and experimental evaluation we have used

the description of the RISC microprocessor presented in [26].

Based on this description we have implemented a soft-core in

VHDL of a traditional microprocessor, which we have

extended for AG evaluations. The hardware parser takes

control of the PC and dispatches the tuple (x,i) to define the

attribute evaluation computations to be executed for each

node. The modification in the PCs datapath for such action is

illustrated in Fig. 13.

Fig. 13 The Program Counter’s new Datapath

 If more than one computation instructions are defined for a

visited node, those are executed sequentially. Attributes

associated with every node in the parse tree are stored in a

designated area in the microprocessor’s data memory. We

have chosen to use this memory for attribute storage in order

to enable other parts of the program’s code (sequential or

declarative) to be able to access them. Attributes in this

memory area are also organized into blocks. The RISC

microprocessor’s instruction set is extended to support such

attribute referencing instructions. Those are assigned their

own encodings and introduce additional hardware to the

microprocessor’s soft core for their implementation (since

those instructions are similar to any other indexed memory

access instructions, they do not impose any additional delay in

the designated microprocessor’s clock cycle time). In Fig.14

additional registers are introduced storing the NIDs of

neighboring nodes which are accessed upon execution of the

additional introduced attribute referencing instructions.

Fig. 14 Added Registers for attribute referencing instruction support

VII. CASE STUDY AND BENCHMARKING

As an illustrative example , we want to implement a logic

program for finding paths from an arbitrary node x to another

node z in a directed acyclic graph For a graph of k nodes with

each node represented by a number i, where 0<i<k we define

the predicate connected (i, j) which is true whenever there is a

directed edge leading from i to j. Such program is illustrated

in Fig. 15.

Fig. 15 Example directed acyclic graph and Logic Program for finding a path

in a directed acyclic graph

We want the program to be able to answer questions of the

form “path(1,4)?” that is, “are there any paths from 1 to 4

and if so, which are these?”. Based on the previously

mentioned transformations, we can transform this logic

program to its AG equivalent written in the C-AG language

(Fig. 16) where the non-terminal G corresponds to Goal, P to

Path, C to Connected and the formed syntax rules correspond

to the logical formulas of the initial logic program. The initial

attribute evaluation rules are determined by the application of

the “Logic Preprocessor” to the initial logic program. An

additional attribute index is then added and used in order to

determine the number of steps taken for visiting a specific

node. A two-dimensional array called “paths[i][j]” is used,

where at each i we hold the nodes that should be visited for a

solution and at each j we store the actual nodes. The index

attribute is used to determine the location of a newly visited

node that has led to a successful derivation. Whenever a node

is added to the array, the next position in the array is filled

with the value “-1”. This is chosen in order to denote the end

goal(x,y) path(1,4)
path(x,z)
connected(x,y),path(y,z)
path(x,z)
connected(x,z)
connected (1,2)
connected (1,5)
connected (2,3)
connected (2,5)
connected (3,4)
connected (5,4)

1

2

3

4
5

Register

File

l

sup

sub

pred

predsub

v

ALU

A

B

MUX

MEMORY

PC

MEMORY

addr

dout

MUX

din

PC+4

jump instruction

+

RuleBase

dout

MEMORY din

shl 4

Genc

i

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1071

of the created path so far, since backtracking could have left

“garbage” in the next locations in the array. There is also a

variable np which is initially 0 and is incremented whenever a

succesful tree deriation i.e a succesful path from 1 to 4 has

been found. It should be noted that, although the

implementation of the graph finding example may seem

complicated, we deliberately followed such solution to the

problem in order to clearly emphasize the intertwining

achieved between procedural-declarative code and their data

sharing possibilities. A simpler solution would also be

possible, that allows the attribute grammar evaluation process

itself to present the solutions in a form of a linked list of

visited nodes.

Fig. 16 Program in C-AG

The program specification remains simple and expressive

enough while procedural and declarative constructs are

combined in a single program Such a path finding mechanism

can be used in robotic applications in embedded systems (Fig.

17) where the graph represents visiting paths of a space

separated in rooms. A robot uses the extended microprocessor

to locate possible paths for reaching a specific room while the

procedural part receives input from sensors (function

rcv_sensor_input()), decides which path to follow from the

ones found (function selectpath()) and controls the motors

(function control_motors()).

Fig. 17 Embedded system with proposed implementation

In order to evaluate the performance of the proposed

implementation, we have used this implementation and

simulated it for various sizes of graphs. The time required for

the evaluation of attribute has not been considered. This does

not affect the correctness of the results, since in both

approaches (proposed and conventional) attribute evaluation

occurs in the microprocessor. Therefore, attribute evaluation

time does not get affected by our proposed implementation

(and therefore no improvement in this time is achieved). For a

various number of tree derivations (size of the parse tree

constructed) instruction-level simulation with exact execution

times has given the results illustrated in Fig.18, Fig.19

compared to both a conventional RISC implementation and a

RISC with a pipeline with 5 stages. We have not considered

any additional delay for memory I/O references.

Perform ance Analysis (Path Fininding Application)

0

20000

40000

60000

80000

100000

120000

140000

5 8 9 12 16

Number of Edges

C
lo

c
k

 C
y

c
le

s

RISC-Parser

Pipelined RISC

RISC

Fig. 18 Performance analysis in clock cycles for possible implementations

Perform ance Analysis (Path Fininding Application)

0.00%

200.00%

400.00%

600.00%

800.00%

1000.00%

1200.00%

1400.00%

5 8 9 12 16

Num ber of Edges

C
lo

c
k

 C
y

c
le

s

% RISC

% Pipelined

Fig. 19 Increase in performance achieved by our method compared to

conventional approaches

Performance using the proposed programmable attribute

grammar evaluator has increased by an average of 1000%

compared to the purely software approach in a conventional

microprocessor. Apparently the increase in performance is

larger if we take into consideration memory I/O delays.

MEM

RISC

HW

Parser

Processor Bus

Sensors

Control

int paths [10][10]; int np;
void AG_findpath (int paths[] [10],int start,int end) {

RULE: G::=P EEND {
 P.inh1=start;P.inh2=end;P.index=0;
 {np++;}
 }
 RULE: P::= C P EEND {

C.inh1=P[1].inh1;P[2].inh2=P[1].inh2;
P[1].inh1=C.syn2;
 P[2].index=P[1].index+1; C.index=P[1].index;
 }
 RULE: P::= C EEND {

C.inh1=P.inh1;C.inh2=P.inh2; C.index=P.index;
 }
 RULE: C::= EEND {
 if ((C.inh1!=1)&&(C.inh1!=nil)) clrflag;
 else
 {C.syn2=2;paths[np][C.index]=2;
 paths[np][C.index+1]=-1;}
 } … (Other facts) }
int main (int argc,char argv[]) {
 int i,j;

for (i=0;i<100;i++)
 for (j=0;j<100;j++) paths[i][j]=-1;

rcv_sensor_input();
switchdecl(AG_findpath (paths),1,4);
selectpath(); control_motors();
for (i=0;i<np;i++) {
 j=0;
 while (j!=-1) printf (“%d “,paths[i][j++]);
exit(0); }

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1072

VIII. IMPLEMENTATION DETAILS

The proposed approach has initially been verified for its

correctness in a testing and evaluation environment that we

have implemented in software, using the VISUAL C++ 6.0

environment [28] (Fig. 20). The implemented program accepts

as input the syntax and attributes evaluation rules for a given

grammar and provides graphically, the way tree derivation

process is carried out. It additionally estimates the time

required for the completion of the tree derivation for the

simple RISC approach, the RISC with pipeline approach and

the proposed Hardware Parser-RISC hybrid approach

Having verified the correctness of our approach and getting

encouraging results in estimated performance we achieve, we

focused on the actual hardware implementation of the intial

idea. The proposed implementation has been implemented in

synthesizable Verilog in the XILINX ISE 6.0 environment

[27] and has been simulated for various FPGA technologies at

the net-list level. RISC times have been accurately simulated

by a similar implementation of a RISC architecture in

synthesizable Verilog in the same environment. The actual

optimization results have completely verified our initial

expectations.

Fig. 20 Two Snapshots of the execution of the software implementation

IX. CONCLUSION AND FUTURE WORK

In this paper we have proposed an extended RISC

microprocessor for logic programming applications. Towards

this goal we have presented a RISC extension that supports

the execution of hybrid combinations of declarative-

procedural code and a C-extended language that allows such

programs to be written. We have also proposed, a hardware

programmable implementation of a parser that is attached to

the microprocessor, in order to define the execution sequence

of attribute evaluation rules creating a programmable

semantically driven parser to be used for knowledge

representation. As a result, we proposed a complete extended

RISC microprocessor, which while supporting all

conventional facilities for the execution of procedural

programs, is capable of increasing the performance of logic

programming computations and allows design flexibility

required in embedded system applications. In the case where

there is the need of reducing the final proposed system’s size

and cost, one possible modification to the presented extension

is illustrated in Fig. 21. It is possible for the “Stack Memory”

of the hardware parser to reside in the system’s memory and

not within the parser. Such an approach reduces the total

space required for the implementation but also results in a

negative impact to the maximum possible increase in

performance.

Fig. 21 Abstract architecture when the hardware parser's stack resides in

Memory

Another possible modification to the proposed

implementation concerns improving the extended

microprocessor with pipelining capabilities. In other words,

the hardware parser after each call to an EVAL function for

the evaluation of attribute instances does not block until

attribute instances are evaluated to determine the value of the

flag, but continues execution. In that case the hardware parser

assumes that the derivation has been successful and continues

creating the corresponding derivation tree. In the case where

attribute evaluation has been successful the hardware parser

will have already computed a part of the rest of the derivation

tree. In the different case the computed derivations are flushed

and a new alternative is evaluated. Such pipelining technique

is expected to improve even more the system’s performance

and is one of our main focus points in future releases of the

implementation. Our current efforts are also focused in

increasing the efficiency of the implemented hardware parser

by using different more efficient parsing algorithms such as

programmable modifications of the ones presented in [21]

MEMORY

RISC

HW

Parser

Rules

Memory

Processor Bus

Stack

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1073

space were drawn from the Cauchy distribution, mainly

because its fatter tails are more likely than the Gaussian

distribution to produce the rapid and/or large shift in attention

allocation that has been reported by some empirical studies.

However, with a proper experimenter-defined parameter

setting (e.g., initial temperature & temperature decreasing rate),

such shifts in attention might have been achieved with the

Gaussian distribution. Moreover, it may be possible that shifts

could be drawn from other types of distributions, including

rectangular, skewed, or multi-modal distributions. Further

simulation and empirical studies seem useful for investigating

this issue.

ACKNOWLEDGMENT

Authors thank Stephen Jose Hanson, Catherine Hanson,

Yasuaki Sakamoto, Areti Chouchourelou, and researchers at

RUMBA for their helpful comments and suggestions.

REFERENCES

[1] Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist

model of category learning, Psychological Review, 99. 22-44.

[2] Kruschke, J. K., & Johansen, M. K. (1999). A model of probabilistic

category learning. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 25, 1083-1119.

[3] Love, B. C. & Medin, D. L. (1998). SUSTAIN: A model of human

category learning. Proceeding of the Fifteenth National Conference on AI

(AAAI-98), 671-676.

[4] Matsuka, T. (2002). Attention processes in computational models of

category learning. Unpublished doctoral dissertation. Columbia

University, New York, NY.

[5] Matsuka, T. & Corter, J. E. (2003). Empirical studies on attention

processes in category learning. Poster presented at 44th Annual Meeting

of the Psychonomic Society. Vancouver, BC, Canada.

[6] Matsuka, T., Corter, J. E. & Markman, A. B. (2003). Allocation of

attention in neural network models of categorization. Under review

[7] Bower, G. H. & Trabasso, T. R. (1963). Reversals prior to solution in

concept identification. Journal of Experimental Psychology, 66, 409-418.

[8] Rehder, B. & Hoffman, A. B. (2003). Eyetracking and selective attention

in category learning [CD-ROM]. Proceedings of the 25th Annual Meeting

of the Cognitive Science Society, Boston, 2003.

[9] Macho, S. (1997). Effect of relevance shifts in category acquisition: A

test of neural networks. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 23, 30-53.

[10] Ingber, L. (1998). Very fast simulated annealing. Journal of

Mathematical Modelling, 12: 967-973.

[11] Nosofsky, R. M. (1986). Attention, similarity and the identification

–categorization relationship. Journal of Experimental Psychology:

General, 115, 39-57

[12] Nosofsky, R. M., Palmeri, T. J., McKinley, S. C. (1994).

Rule-plus-exception model of classification learning. Psychological

Review, 101, 53-79

[13] Shepard, R. N., Hovland, C. L., & Jenkins, H. M. (1961). Learning and

memorization of classification. Psychological Monograph, 75 (13).

[14] Bettman, J. R., Johnson, E. J., Luce, M. F., Payne, J. W. (1993).

Correlation, conflict, and Choice. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 19, 931-951.

[15] Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C., &

Glauthier, P. (1994). Comparing models of rule-based classification

learning: A replication and extension of Shepard, Hovland, and Jenkins

(1961). Memory and Cognition, 22, 352-369.

[16] Matsuka, T. (In press). Generalized exploratory model of human category

learning. International Journal of Computational Intelligence.

