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Abstract—Conventional approaches in the implementation of 

logic programming applications on embedded systems are solely of 

software nature. As a consequence, a compiler is needed that 

transforms the initial declarative logic program to its equivalent 

procedural one, to be programmed to the microprocessor. This 

approach increases the complexity of the final implementation and 

reduces the overall system’s performance. On the contrary, 

presenting hardware implementations which are only capable of 

supporting logic programs prevents their use in applications where 

logic programs need to be intertwined with traditional procedural 

ones, for a specific application. We exploit HW/SW codesign 

methods to present a microprocessor, capable of supporting hybrid 

applications using both programming approaches. We take advantage 

of the close relationship between attribute grammar (AG) evaluation 

and knowledge engineering methods to present a programmable 

hardware parser that performs logic derivations and combine it with 

an extension of a conventional RISC microprocessor that performs 

the unification process to report the success or failure of those 

derivations. The extended RISC microprocessor is still capable of 

executing conventional procedural programs, thus hybrid 

applications can be implemented. The presented implementation is 

programmable, supports the execution of hybrid applications, 

increases the performance of logic derivations (experimental analysis 

yields an approximate 1000% increase in performance) and reduces 

the complexity of the final implemented code. The proposed 

hardware design is supported by a proposed extended C-language 

called C-AG. 

Keywords— Attribute Grammars, Logic Programming, RISC 

microprocessor. 

I. INTRODUCTION

nowledge engineering and logic programming 

approaches have extensively been used in many 

application domains such as medicine , scheduling and 

planning , control , artificial intelligence [1] etc. Therefore, 

the possibility of exploiting such approaches in embedded 

systems is of crucial importance. Since many of those 

applications need to conform to very strict real-time margins, 

one of the key requirements for the efficiency of such systems 

is that of 
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performance. 

In order to meet this requirement, we exercise an innovative 

HW/SW codesign method by presenting a special purpose 

hardware extension to RISC microprocessors, based on 

attribute grammar evaluation, well suited for the efficient 

implementation of logic programming applications in 

embedded systems. 

Knowledge engineering tools are based on the declarative 

programming model. On the other hand, the nature of 

computation supported today by existing microprocessors is 

solely procedural. As a consequence, the implementation of 

logic programs in existing microprocessors is bound to the use 

of a software compiler performing the declarative to 

procedural translation for their execution. This translation 

mechanism affects both the complexity and speed of the final 

implementation, since it usually imposes the implementation 

of a software stack for logic derivations, increasing 

exponentially memory I/O references. As a consequence, 

software implementations of logic programs, in existing 

embedded platforms, negatively affect design efficiency. The 

existence of processors capable of supporting the declarative 

programming model would greatly improve execution 

performance and simplicity of the generated code.  

Extensive efforts in the implementation of machines for 

logic programming have been mainly encountered in the 5th

generation computing era which envisioned a number of 

interconnected parallel machines for AI applications [3][4]. 

Powerful processors have been introduced working on UMA 

and NUMA computers [2][3] in the effort of increasing the 

efficiency and parallelization of declarative programs 

implemented for PROLOG inference engines. Although the 

overall speed-up achieved, following such approaches, has 

been satisfactory, the cost for the implementation of such 

systems, along with their size, prevented their use in small 

scale applications in embedded system environments. 

Additionally, the implemented machines were solely 

optimized for the logic programming model, which is not 

always suited for all application domains. The introduction of 

embedded systems [5] seems to present new challenges and 

requirements in the implementation of processors with 

optimized logic inference capabilities. Embedded systems do 

not target generality since they are oriented for small-scale 

applications running on dedicated hardware. Additionally, 

their restricted computational power (required for constraint 

satisfaction), turns approaches for increasing performance 
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extremely useful for design efficiency. As a result, the effort 

of designing hardware capable of supporting the declarative 

programming model for logic derivations can now lead to 

intelligent embedded designs which are considerably more 

efficient compared to the traditional procedural ones. 

In this paper we propose an extension of the RISC-

architecture microprocessor for knowledge representation, 

based on attribute grammars evaluation, in the effort of 

achieving design efficiency for intelligent embedded systems. 

We have chosen to follow the attribute grammar (AG) 

approach for the implementation of inference engines, since 

AGs have been proven to support both the declarative and 

procedural programming model encountered in existing 

knowledge representation systems [6][7][8][9]. Our 

contribution is summarized in the following: 

We introduce a programmable hardware implementation 

of an extended parser which is capable of handling all 

required derivations in logic programming applications. 

We propose a modified version of the RISC 

microprocessor which allows programs following the 

declarative execution model to be executed. This 

modification extends and not substitutes the conventional 

procedural execution and thus hybrid applications may be 

programmed. 

We combine the extended hardware parser with the 

modified RISC microprocessor to present an AG 

evaluation system, capable of supporting inference 

processes in a knowledge base. 

We allow design flexibility, since both the 

microprocessor and the extended hardware parser are 

programmable allowing the implementation of any 

desired knowledge base. 

The rest of the paper is organized as follows. In Section II, 

we present the close relation between logic programming and 

AGs and current software and hardware implementations of 

AG evaluators. In Section III, a brief overview of our 

approach is provided. In Section IV, we present the proposed 

C-extensions in the introduced C-AG language. In Section V, 

we provide a detailed description of the compilation process 

used for programming the extended microprocessor along 

with the preprocessors introduced to assist in the compilation 

process. In Section VI, we present implementation details of 

our approach. In Section VII, an example application is 

presented and used for the evaluation of the efficiency of our 

approach. In Section VIII, we demonstrate the approach we 

followed for the implementation of the proposed design. 

Finally, conclusions and future work are presented at Section 

IX.

II. ATTRIBUTE GRAMMARS AND LOGIC PROGRAMMING

A. Introduction to Attribute Grammars 

An attribute grammar (AG) is based upon a context free 

grammar (CFG). A CFG is a 4-tuple G = (N, T, P, Z), where 

N is the set of non-terminal symbols, T is the set of terminal 

symbols, P is the set of grammar rules (a subset of N x (N 

T)* written in the form A , where A  N and  (N 

T)*) and Z ( NZ ) is the start symbol (the root of the 

grammar). An AG is a 4–tuple AG = {G, A, SR, d} where G 

is a context-free grammar, A = A(X) where A(X) is a finite 

set of attributes associated with each symbol X  V (V=(N 

 T)). Each attribute represents a specific context-sensitive 

property of the corresponding symbol. The notation X.a is

used to indicate that attribute a is an element of A(X). A(X) is 

partitioned into two disjoint sets; the set of synthesized 

attributes AS(X) and the set of inherited attributes AI(X).

Synthesized attributes X.s are the values defined in terms of 

attributes at descendant nodes of node X of the corresponding 

semantic tree (decorated tree). Inherited attributes X.i are 

values defined in terms of attributes at the parent and 

(possibly) sibling nodes of node X of the corresponding 

semantic tree. From the definition, the start symbol does not 

have inherited attributes while the terminal symbols do not 

have synthesized attributes. Each of the productions Pp

(
nXXXp ...10: ) of the CFG is augmented by a set of 

semantic rules SR(p) that define attributes evaluation rules and 

conditions in terms of other attributes of terminals and non 

terminals appearing in the same production. The way 

attributes will be evaluated, depends both on their 

dependencies to other attributes in the tree and also on the 

way the tree is traversed. Finally, each attribute a is associated 

with a specific domain d( ).

The syntax rules of the AG define all possible derivations 

from a specific non terminal symbol. If only terminal symbols 

are used to determine the success of those derivations (based 

on comparisons with the tokens of an input string), then 

parsing is performed. If terminal symbols and attribute 

instance values determine the success of those derivations 

then, semantically driven parsing is performed. It is possible 

to omit all terminal symbols in the AG (replace them with nil

tokens) and store their information in attributes at the leaf 

nodes of the tree (definite clause AG approach [10]), in order 

to perform semantically driven parsing without the use of 

terminal symbols.  Finally, if no terminal symbols exist and no 

input string in used, then parsing is degenerate and tree 

derivations are only controlled by semantic conditions on 

attribute instance values. In our approach, we do not use any 

terminal symbols since the implementation’s main purpose is 

for logic programming applications. Apart from that, using the 

proposed implementation, semantically driven parsing can be 

performed through the definite clause AG approach, while 

degenerate parsing can be realized through the evaluation and 

checking of attribute instance values. As a consequence, all 

expressive power of AGs is preserved. This, as it will be 

shown in later sections, ensures the maximum possible 

flexibility in the design. 

B. Logic Programming Using Attribute Grammars 

Attribute grammars have extensively been used for logic 

programming applications [6][11][12]. In [8] [9] an effective 

method based on an extension of the Floyd’s parser [13] is 
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presented that transforms a logic programming program to its 

AG equivalent representation. This method introduces a 

number of equivalent syntax rules for the inference rules and a 

number of attributes and semantic conditions for the 

unification process in the inference procedure and can be used 

as a complete inference engine. The basic concepts underlying 

this approach are the following:  

Every inference rule in the initial logic program can be 

transformed to an equivalent syntax rule consisting solely of 

non-terminal symbols. For example: 

),...,,()...,...,,(),...,,(),...,,(
1210 212222121121110201 mmkmmmkkokO

tttRtttRtttRtttR

is transformed to the syntax rule: .|...21 mO RRRR

(“|.” represents the end of the rule). In case there are two or 

more alternatives for a single inference rule, those are 

transformed to an equal number of alternatives in the 

corresponding syntax rule. For example: 

),...,,()...,...,,(),...,,(),...,,( 212222121121110201 210 ppkpppkkokO tttRtttRtttRtttR

),...,,()...,...,,(),...,,(),...,,( 212222121121110201 210 qqlqqqllokO tttDtttDtttDtttR

are transformed to the syntax rule: .|...|...
2121 qpO

DDDRRRR

(“|” represents the alternative meta-symbol). Finally, facts 

of the inference rules are transformed to terminal leaf nodes of 

the syntax tree referring to the empty string. For example the 

facts:

),(),,(),,( feRdcRbaR ggg

are transformed to: .|||gR

(which are three “nil” symbols separated by the alternative 

meta-symbol). Obviously, parsing is degenerate since there are 

no terminal symbols. For every variable existing in the initial 

predicates, two attributes are attached to the corresponding 

node of the syntax tree one synthesized and one inherited. 

Those attributes assist in the unification process of the 

inference engine. The attribute evaluation rules are 

constructed based on the initial logic program. A detailed 

method for specifying those transformation rules can be found 

in [8][9][12] and can be easily performed automatically by a 

suitable tool. Attributes at the leaf nodes of the tree are 

assigned values from the constants in the facts of the logic 

program. The inference process is carried out during tree 

derivations and an EVAL function is called at the 

insertion/visit of each node that computes the attribute rules 

performing the unification procedure. Semantic conditions, on 

the result of the unification procedure, determine the success 

or failure of those derivations in the inference procedure (a 

meta-variable flag is used to hold this information). In 

general, the addition of attribute evaluation rules which 

determine the creation and form of the constructed syntax tree 

forms a full degenerate semantically driven parser which can 

be effectively used in logic programming derivations. 

Additional semantic rules can be further added to increase the 

inference power beyond the one affected by the PROLOG 

rules, leading to the implementation of semantically driven 

parsers [14], theorem provers [15] and inference engines with 

fuzziness and uncertainty [16].  

TABLE I

AG EQUIVALENT REPRESENTATION OF THE KNOWLEDGE BASE OF THE 

"SUCCESSOR" PROBLEM

Informal Definition of 

the Knowledge Base 

Equivalent AG evaluation Syntax 

and Semantic rules 

Goal (X,Y) if 

Successor (X,Y) 

Successor (X,Y) if 

Parent (Z,X) and 

Successor (Z,Y) 

Successor(X,Y) if 

Parent (Y,X) 

Parent (j,b) 

Parent (j,l) 

Parent (b,a) 

Parent (b,p)

Goal = Successor |. 

     Successor.ia1=Goal.ia1; 

     Goal.sa2=Successor.sa2; 

Successor = Parent Successor |. 

     Parent.ia2=Successor[1].ia1; 

     Successor[2].ia1=Parent.sa1; 

Successor = Parent |. 

     Parent.ia2=Successor.ia1; 

     Successor.sa2=Parent.sa1; 

Parent = |. 

     if ((Parent.ia1!=nil) && 

(Parent.ia1!=”j”)) 

        flag=0; else Parent.sa1=”j”; 

     if ((Parent.ia2!=nil) && 

(Parent.ia2!=”b”)) 

        flag=0; else Parent.sa2=”b”; 

Parent= |. 

     if ((Parent.ia1!=nil) && 

(Parent.ia1!=”j”)) 

        flag=0; else Parent.sa1=”j”; 

     if ((Parent.ia2!=nil) && 

(Parent.ia2!=”l”)) 

        flag=0; else Parent.sa2=”l”; 

…

In order to clarify the aforementioned transformation, we 

demonstrate a toy-scale example of a logic program which is 

transformed to its AG equivalent one. Consider that we have 

the knowledge base illustrated in Table I (First Column) and 

we want to ask the question “p is successor of whom?” i.e. 

Successor (p,?). The syntax rules which form the equivalent 

AG evaluator are illustrated in Table I (Second Column) along 

with the attribute evaluation rules and semantic conditions to 

be used for the inference and unification process. 

The question asked has two solutions, which are “j” and 

“b”. The corresponding parse trees, decorated with the 

unification attributes are illustrated in Fig. 1. 
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Fig. 1 Parse trees for the "successor" example leading to solutions (Note that 

tree traversal is top-bottom, left to right) 

C. Attribute Grammar Software/Hardware 

Implementations 

Several software [8][17][18][19] and hardware [14][21][22] 

implementations of attribute grammar evaluators exist in 

literature. Nevertheless, existing hardware implementations 

for AGs although highly efficient in terms of performance, 

restrict their use to a specific AG (hardwired in the design) 

and as a consequence lack the programmability required in 

embedded systems. The proposed implementation is based on 

a modified version of the AG evaluator presented in [8] [9] 

and its hardware implementation presented in [20]. The choice 

of this AG evaluator, due to its simplicity, allows a simple and 

fast hardware implementation and can become easily 

reprogrammable. It is also semantically driven (supports 

dynamic parsing by exploiting tree-pruning techniques to 

increase efficiency and prevent the memory explosion 

problem for storing all possible parse trees) and gives all 

possible solutions (non-deterministic), i.e. it can provide all 

possible parse trees for a specific input string. Due to the close 

relation between attribute grammars and logic programs, it can 

be easily extended to be used in intelligent embedded systems 

for constraint logic programming applications [23] and can be 

extended to support fuzziness and uncertainty [15] [16]. 

Finally, there are already software implementations of the 

parser and its use in various application domains providing a 

sufficient development environment for the evaluation of the 

design [8] [9] [20] [12]. 

III. OVERVIEW OF OUR APPROACH

Conventional approaches, for the incorporation of a logic 

program in embedded systems, follow the method illustrated 

in Fig. 2(a). A logic program is initially captured using a 

Logic Programming Language (such as PROLOG). Then, a 

compiler is used that performs the transition from the 

declarative algorithm to the behaviorally equivalent 

procedural one, performing the inference process. The final 

algorithm is programmed to the microprocessor for execution. 

Our approach (Fig. 2(b)) starts from a conventional PROLOG 

like language for the definition of the knowledge base. The 

initial specification is transformed, through the use of a 

preprocessor, to its AG equivalent representation, written in 

the proposed extended C-language, called C-AG.

Fig. 2 (a) Conventional approach (b) Proposed approach 

We further introduce an extension to the RISC 

microprocessor which consists of a programmable hardware 

parser, for the definition of the syntax rules, that performs the 

required tree derivations (logic derivations) and a 

conventional RISC part that handles the attribute evaluation 

rules (unification process) and possibly executes conventional 

sequential code that co-exists in the hybrid procedural-

declarative application. The C-AG language is finally 

transformed to a conventional program expressed in C through 

the use of a preprocessor that adds inline assembly code 

(related to the extended RISC’s features and supporting the 

declarative execution) to the final program. The use of the 

preprocessor is imperative to prevent any modifications that 

would be required to the conventional C-compiler, adding 

additional effort in translating existing C-compilers to support 

the innovative extended RISC’s features. The mapping of the 

C-AG program to the extended RISC microprocessor is 

illustrated in Fig. 3. 

Fig. 3 Overview of the mapping process of the final AG equivalent program 

written in C-AG 

The basic idea in the proposed architecture is to equip the 

microprocessor with two modes of operation: one declarative 

and one procedural. In the procedural mode, the processor 

functions in the conventional way (the hardware parser 

extension is disabled) and program execution is sequential 

through consecutive increases or jumps of the Program 

Counter (PC). On the declarative mode, the hardware parser is 

enabled and performs the required tree derivations (logic 

derivations) based on its internally stored syntax rules 

(capturing the knowledge base). Nodes of the constructed tree 

are stored in a specially designed stack within the hardware 

parser. There is a one-to-one correspondence between a stack 

Logic 

Program

Syntax Rules

AG Evaluation 

Rules

AG equivalent program 

HW 

PARSER 

Extended RISC

DATAMEM 

CONTROL 

LOGIC 

PC

INSTR 

MEM 
DATAPATH 

Logic Program 

COMPILER

RISC

HW 

PARSER 
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Logic Program 

PREPROCESSING 

STAGE

PROCEDURAL 
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COMPILER

<Goal> 

<Successor

<Parent <Successor

<Parent

ia1=p, sa1=nil, ia2=nil, sa2=j

ia1=p, sa1=nil, ia2=nil, sa2=j

ia1=nil, sa1=b, ia2=p, sa2=p ia1=b, sa1=nil, ia2=b, sa2=j

ia1=nil, sa1=j, ia2=b, sa2=b 

<Goal> 

<Successor

<Parent

ia1=p, sa1=nil, ia2=nil, sa2=b 

ia1=p, sa1=nil, ia2=nil, sa2=b 

ia1=p, sa1=b, ia2=p, sa2=p

SOLUTION: j 

SOLUTION: b 
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line and the node in the parse tree it represents. Consequently, 

the position of the node in the stack can be used as the 

identification number of the specific node (NID-Node 

IDentification number). A stack line also holds an encoding of 

the non-terminal symbol (predicate) associated with the node 

along with information on the dependency of the node to other 

nodes (predicates) of the tree (represented as locations in the 

stack).  

Upon each creation/visit to a node, attribute evaluation 

rules need to be executed in order to perform unification and 

possibly determine the success or failure of the unification 

process. Attribute evaluation rules are organized as blocks of 

code in the RISC microprocessor. Each block is associated 

with its corresponding non-terminal symbol. The hardware 

parser uses the associated non-terminal symbol’s encoding 

(stored in the stack line), for each node, to determine (by 

controlling the value of the PC) the block of code that needs 

to be executed (the block of code that performs unification). A 

space is also reserved in the embedded system’s memory for 

storing attribute instances. The latter are dynamically 

organized in blocks (associated with a specific stack line-

node) and can be referenced based on the NID of the node.  
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Fig. 4 Computational Time required for performing tree derivations and 

attribute evaluation in a RISC and a RISC with pipeline microprocessor 

By using the proposed approach and the microprocessor’s 

extended features, apart from the fact of the declarative-

procedural coexistence, we greatly reduce the complexity of 

the implemented program (no translation to procedural code is 

needed). We also achieve a great improvement to the system’s 

performance (av. 1000%).  This is mainly due to the fact that 

the programmable hardware implementation of the parser 

relieves the microprocessor from the additional computation 

time that would be required for performing the additional tree 

derivations (logic derivations).  

In Fig. 4, it is clear that the computational time required for 

performing such tree derivations by a RISC and also a RISC 

with pipelining capabilities microprocessor constitutes 

approximately the 80% of the total time required to perform 

the inference process (attribute evaluation computations 

related to the unification process consist of simple assignment 

operations and therefore are not computationally intensive). 

Mapping the tree derivation process to hardware would 

therefore surely improve the overall embedded system’s 

performance. 

In the following sections of this paper, we present in more 

detail, the extended C-AG language, the required 

preprocessors’ features for the compilation process and details 

of the extended RISC’s hardware implementation. 

IV. THE EXTENDED C-AG LANGUAGE

In the effort of supporting our proposed implementation, 

specific language constructs were needed to enable hybrid 

declarative-procedural computations. For that reason, we had 

to incorporate a specific syntax for the specification of the 

syntax and attribute grammar evaluation rules, along with a 

way to enable the control of tree derivations and perform the 

required switching mechanism from declarative to procedural 

code and vice-versa. Nowadays, the most well known 

programming language syntax for the specification of 

grammars is YACC [24]. Although YACC is widely accepted 

as a valuable tool for the specification of syntax rules and 

parsing, it has been shown that its use is restrictive for AGs 

[24] (eg. it does not support inherited attributes). Several other 

attribute grammar evaluators also do exist (following the 

conventional approach) defining an AG-like syntax such as 

ELI [24] and FNC2 [25]. Those systems also allow the 

specification of blocks of sequential code within the attribute 

evaluation rules. Such mechanism increases the 

expressiveness of AGs, required for real-life applications. We 

have chosen to follow an ELI-like syntax for the specification 

of the AG in the introduced extended C language (C-AG) and 

performed the required modifications to be able to integrate it 

into conventional procedural code.  An overview of the 

introduced programming template is illustrated in Fig.5. AGs 

within the conventional C-code are defined as functions. 

Those functions are distinguished from conventional ones by 

being prefixed with the string “AG_”. Within the function, 

syntax rules are defined along with their associated attribute 

evaluation rules. We allow at every syntax rule a sequential 

block of code that is executed upon a successful creation of 

the sub-tree starting from the non terminal defined at the Left-

Hand Side of the specific rule. Reserved keywords 

“setflag/clrflag” within the attribute evaluation rules are used 

to determine the success/failure of a derivation. 

Finally, in main(), the switch to declarative code is 

performed through the reserved work “switchdecl” whose 

parameter specifies the function defining the AG to be 

executed. It should be noted that the scope of conventional 

variables within the program remains intact and attribute 

evaluation rules are able to access the same variables that 
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could be accessed in a conventional C-program. This allows 

data sharing between procedural and declarative code. 

Fig. 5 A general template of the C-AG language 

V. THE PREPROCESSORS

As mentioned before, two preprocessors are used for the 

mapping process of the desired application to the extended 

RISC microprocessor. The first (Logic Preprocessor) receives 

the initial logic program and presents the resulting AG 

equivalent one written in C-AG. The designer can additionally 

include any other procedural-declarative desired code to the 

resulting program written in C-AG. The hybrid program is 

then received by the second preprocessor (C-AG to C 

preprocessor) which translates the C-AG program to its 

equivalent C one, by adding inline assembly code, where 

needed, to take advantage of the extended RISC 

microprocessor’s additional features. The overview of this 

translation mechanism is presented in Fig. 6. 

Fig. 6. The stages of the preprocessing phase 

The Logic Preprocessor performs automatically the 

transition from the Logic Program to the C-AG equivalent 

representation, based on rules for the logic programming to 

AG transformation. Since those rules have been already well 

documented in [8][9][12] their description and explanation is 

beyond the scope of this paper. Therefore, we will consider 

having ready the C-AG equivalent program that will be 

further preprocessed to be mapped to the extended 

microprocessor. Consider, for example, the C-AG 

representation of the “successor” example presented in 

Section II (Fig. 6). 

Fig. 6 Output of the "Logic Preprocessor" for the "successor" example (Code 

in italics represents additional code added by the designer after the 

preprocessing stage) 

The resulting C-AG program is further preprocessed by the 

“C-AG to C” preprocessor. The program written in C-AG is 

separated in the fragments of code (attribute evaluation rules, 

procedural code) to be mapped to software and the syntax 

rules that program the hardware parser (HW/SW Codesign). 

The syntax rules of the AG are extracted from the program, 

encoded and loaded to the hardware parser’s “Rules 

Memory”. The preprocessor determines automatically the time 

AG evaluation rules need to be executed, depending on the 

position in the syntax rule (tree derivations have reached so 

far) and transforms the rules accordingly. Conventional C-

code is finally produced augmented with inline assembly 

instructions using the extended instruction set of the proposed 

implementation. Then, a conventional C-compiler is used to 

produce the final binary executable. The schematic diagram of 

the “C-AG to C” preprocessor along with the description of 

the resulting code is illustrated in Fig. 7. 

Program begins execution like in a conventional RISC 

microprocessor. When the “swichdecl” instruction is 

encountered, the encoded syntax rules of the corresponding 

AG are loaded into the hardware parser’s “Rules Memory” 

and the hardware parser takes control of the microprocessor’s 

#include <stdio.h> 
void AG_Successor (char successors[10], char p){

int i; 
   i=-1; 
   RRULE: G::=S EEND {
     G.ia1=p; 
     S.ia1=G,ia1; 
     {successors[i++]=G.sa2}
   } 
  RULE: S::= P S EEND {
     P.ia1=S[1].ia1; 
     S[2].ia1]=P.sa1; 
  } 
  RULE: S::= P EEND {
    P.ia2=S.ia1; 
    S.sa2=P.sa1;
  } 
  RULE: P::= EEND {
     if ((P.ia1!=’j’)&&(P.ia1!=nil)) clrflag; 
     else  P.sa1=’j’; 
     if ((P.ia2!=’b’)&&(P.ia2!=nil)) clrflag; 
     else  P.sa1=’b’; 
  }
 … (Rules for other facts follow here) }}

int main (int argc,char argv[]) { 
int j; 

  char successors[10]; 
for (j=0;j<10;i++)  successors[i]=’ ‘; 
switchdecl(AG_successor (successors,’p’’)); 

  j=0;  
 while (successors[j]!=’ ‘)  
   printf (“%c, “,successors[j++]); 
exit(0);  
}

Logic Program 

Logic  

Preprocessor 

Additional 

application specific 

code in C-AG 

C-AG equivalent 

program 

C-AG to C 

Preprocessor 

C code with 

inline assembly 

C COMPILER 

Extended 

RISC

…Conventional C inlcudes, variable, function declarations 
<return type> AG_<grammar_name> (…){ 
 …. 

RULE: <NT> ::= <NT> <NT> … <NT> EEND
 { 
    attribute evaluation rules; 
    {..} procedural code
 } 

RULE: <NT> ::= <NT> <NT> … <NT> EEND
 { 
    attribute evaluation rules; 
    if (condition (<NT>.<attribute>)) cclrflag/setflag;
 } 
 …. return ….; }}
int main (int argc,char argv[]) 
{

<return type> variable; 
….
variable= sswitchdecl  
                (AG_<grammar_name>(…));
 exit(0); 

}
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program counter. The hardware parser performs tree 

derivations and, according to the non terminal symbol 

processed, defines the position of the attribute evaluation rules 

to be processed by the microprocessor to report success/failure 

of the derivations (in this case the unification process). 

Fig. 7 Substages of the "C-AG to C" preprocessor 

When there are no valid tree derivations left, the hardware 

parser completes and the microprocessor regains control of the 

program counter. In the following subsections, a more detailed 

description is provided on the encoding of the syntax rules 

used to be stored in the parser along with the description of 

the inline code and final representation of the C-code to be 

compiled. 

A. Syntax Rules Encodings 

The extracted syntax rules from the initial program are 

initially transformed to the following representation: RULE: 

A::= B C END and RULE: A::=D E END are transformed to 

A=BC| DE|. where the symbol “|” represents alternative 

productions and the combination of “|.”  denotes the end of the 

rule. The proposed encoding used for the non-terminal 

symbols of the grammar uses )2(log2 NP  bits, where (N-

2) is total number of non-terminal symbols. The additional 

two symbols have the encoding “000..” which is used to 

represent the symbol “|” and encoding “11111…” which is 

used to represent the symbol “.”. Such an encoding on one 

hand is the smallest possible, achieving the maximum possible 

reduction in the number of bits needed to represent the 

grammar and on the other hand, as it will be shown, provides 

an easy way of storing the grammar rules into the “Rules 

Memory” in the hardware parser. Every sub-goal (the left 

hand side non-terminal symbol in each syntax rule) is assigned 

a value according to the previously mentioned encoding. We 

use the encoding of each sub-goal as the reference address to 

the “Rules Memory” location where the Right-Hand-Side of 

the grammatical rule is stored.  

To better illustrate this, we demonstrate the resulting 

encoding of the “successor” example. Fig. 8(b) represents the 

encoding for the non-terminal symbols of the grammar and 

Fig. 8(c) represents the way the rules are stored in the “Rules 

Memory” in the hardware parser. 

Fig. 8 (a) Syntax rules of a the “successor” example   grammar. (b) Example 

grammar's encoding (Each non terminal symbol is assigned a specific 4bit 

encoding) (c) Contents of "Rules Memory". 

B. AG Evaluation Rules Translation 

As previously stated, the “C-AG to C” preprocessor 

automatically determines when attribute evaluation 

computations need to be performed; depending on the position 

in a syntax rule i.e. tree derivations have reached so far.  For 

example, an initial attribute evaluation rule of the form: 

B.inh=f(A.inh) associated with the syntax rule A=B|. is

automatically transformed to: When a node associated with B 

is visited: inh[current]=inh[father]. Note that the notation 

<attribute name>[<related_node>] illustrates the 

dependency of the attribute <attribute name> in the currently 

visited node with attributes in its neighboring nodes in the 

derived tree. This implies the transformation of the initial 

attribute evaluation rules associated with non terminal 

symbols in the syntax rules, to semantically equivalent 

attribute evaluation rules related to node dependencies in the 

derived tree. In our previous example such a transformation 

can be expressed as: “when a node related to the non-terminal 

symbol B in the rule A=B|. is visited, the attribute inh of the 

node can be calculated from the attribute inh of its father 

(which is a node associated with the non-terminal A)”. Those 

transformations are automatically performed by the “C-AG to 

C” preprocessor which determines the attribute dependencies 

expressed in the syntax rules and transforms them to attribute 

dependencies related to dependencies on the nodes of the tree. 

Table II demonstrates such transformations for various types 

of dependencies among non-terminal symbols in a syntax rule 

(the notation (enc(NT),i) is explained right after Table II and is 

used to access the memory address i.e. label corresponding to 

a specific non-terminal node, where the execution of the 

specific computation will have to take place during tree 

derivations). 

In order for such transformation to take place, we need to 

be able to distinguish non-terminal symbols at the right hand 

side (RHS) of the syntax rule. For that reason non terminal 

symbols at the RHS are defined by a tuple (x,i) where x is the 

sub-goal’s encoding for the specific syntax rule (LHS non 

terminal symbol) and i is the position of the needed non-

(a)

G = S |. 

       S = P S | P |. 

             P = | | | | |.

Goal
Encoding

(Binary) 
enc(Goal) 

G 0001 1 

S 0010 2 

P 0011 3 

| 0000 F 

. 1111 0 

(b)

(c

Address Data 

1 2 0 F F F F 

2 3 2 0 3 0 F 

3 0 0 0 0 0 F 

Hybrid procedural-declarative 

code written in C-AG 

Preprocessor 

C Code for AG Evaluation 

Rules with inline assembly 

using the extended 

instruction set 

C - Compiler 

Encoding of 

Syntax Rules to 

be mapped to the 

Extended RISC HW Parser 
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terminal symbol at the RHS of the syntax rule starting from 0.

For example in the rule A=BC|., (enc(A), 0) defines B,

(enc(A),1) defines C, (enc(A),2) defines the “|” and so on 

(enc(NT) gives the encoding of the non terminal symbol NT).  

TABLE II 

TRANSFORMATION OF ATTRIBUTE EVALUATION RULES FROM NT-RELATED TO 

NODE-RELATED (INDICES I, J, K IMPLY “FOR ALL” ATTRIBUTES HAVING SUCH 

COMPUTATION DEPENDENCE, “TEMPI” ARE ADDITIONAL ATTRIBUTES 

INTRODUCED FOR THE REQUIRED COMPUTATION)

Attribute Evaluation 

Rules

Attribute Evaluation Equivalent 

(traversal dependent) 

A B C |. 

   A.syni =

f (B.synj,C.synk)

(enc(A),2):

syni[current]= 

    f(synj[predsub],synk[sub]) 

A B C |. 

      B.inhi=f(A.inhj);

      C.inh=h(A.inhk);

(enc(A),0):

inhi[sub]=f(inhj[current]);

(enc(A),1):

inhi[sub]=h(inhk[current]);

A B1 B2 B3 … Bn |. 

   A.syni=

   f(B1.a1,B2.a2,…, Bn.an); 

(enc(A),1):

temp1[current]= a1[sub];

(enc(A),2):

temp2[current]= a2[sub];

…

(enc(A),n-1):

tempn[current]= an-1[sub];

(enc(A),n): 

syni[current]=f(temp1[current], 

temp2[current], 

…,tempn[current] , an[sub]) 

A B C |. 

       C.inhi=f(B.inhj); 

(enc(A),1):

inhi[sub]=f(inhj[sub]); 

A B C D E|. 

        D.inhi=f(B.inhj); 

(enc(A),1):

temp[l]=inhj[sub]; 

(enc(A),2):

inhi[sub]=f(temp[current]); 

The instruction memory is divided into blocks where each 

block holds the attribute evaluation rules of a specific syntax 

rule (referenced by the value of x in the tuple (x,i)). This block 

is further subdivided into sub-blocks holding the attribute 

evaluation rules for every position within the rule (indicated 

by the index i in the tuple (x,i)). Those blocks and sub-blocks 

can either be organized with fixed sizes or a mapping table 

can be used that points to the memory location for every tuple 

of the form (x,i). The resulting memory organization for the 

AG evaluation rules for the “successor” example is illustrated 

in Table III. (Fixed block sizes are used in this example 

reserving 256bytes per block (for every syntax rule) and 

32bytes per sub-block (for every position within the syntax 

rule). 

TABLE III

MEMORY LAYOUT OF THE ATTRIBUTE EVALUATION RULES.

Address Content 

Base to Base+999 Sequential Code 

Base+1000 to Base+1031 
Attribute Evaluation 

Rules (enc(G),0)

Base+1031 to Base+1063 
Attribute Evaluation 

Rules (enc(G),1)

Base+1064 to Base+1095 
Attribute Evaluation 

Rules (enc(G),2)

Base+1096 to Base+1255 UNUSED 

Base+1256 to Base 1287 
Attribute Evaluation 

Rules (enc(S),0)

Base+1288 to Base 1319 
Attribute Evaluation 

Rules (enc(S),1)

Base+1320 to Base 1351 
Attribute Evaluation 

Rules (enc(S),2)

Base+1352 to Base+1383 
Attribute Evaluation 

Rules (enc(S),3)

Base+1384 to Base+1415 
Attribute Evaluation 

Rules (enc(S),4)

Base+1416 to Base+1447 
Attribute Evaluation 

Rules (enc(S),5)

Base+1448 to Base+1511 UNUSED 

Base+1512 to Base 1543 
Attribute Evaluation 

Rules (enc(P),0)

… … 

Base+1768 to Base+xxxx Sequential Code 

C. Extended RISC Instruction Set 

The memory for attribute instances values is also divided 

into blocks, where each block corresponds to a node located in 

the stack of the hardware parser and can be referenced by its 

NID.  In order for the RISC to be able to access attribute 

instances values of current and neighboring nodes whenever a 

tuple (x,i) is dispatched from the parser for attribute 

evaluation, additional information is needed from the 

hardware parser indicating the position of the parent, son, 

sibling and son’s sibling node of the currently visited node. 

Those can be used in the microprocessor’s attribute evaluation 

rules for accessing attributes of neighboring nodes. For that 

reason we have extended the RISC microprocessor’s 

instruction set to incorporate additional instructions related to 

attribute referencing. Moreover, additional instructions are 

needed for implementing the required switching mechanism 

between procedural and declarative code and for uploading 

the rules to the parser’s “Rules Memory”. Finally, two 

additional instructions are used for controlling the meta-

variable flag indicating the success/failure of semantic 

conditions on attribute instance values. The complete table of 
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the added instructions is illustrated in Table IV. 

(Implementation issues for the incorporation of this extended 

instruction set to the RISC microprocessor will be given in 

Section 6 where hardware implementation issues are 

explained in detail) 

TABLE IV 

ADDED INSTRUCTIONS TO THE RISC MICROPROCESSOR’S INSTRUCTION SET 

FOR ATTRIBUTE REFERENCING

Instruction Description 

ldsub addr,dest 

ldsup addr, dest 

ldsib addr, dest 

ldssib addr, dest 

ldcur addr, dest 

Load the value at memory location 

addr+(index depending on position 

in stack) and store it to register dest. 

(index positions refer to current(cur), 

son(sub), sibling(sib), parent(sup) 

and son’s sibling node(ssib)). 

stsub addr,value 

stsup addr,value 

stsib addr,value 

stssib addr,value 

stcur addr,value 

Store to memory location 

addr+(index depending on position 

in stack) the value “value”.  (index 

positions refer to current(cur), 

son(sub), sibling(sib), parent(sup) 

and son’s sibling node(ssib)). 

prgdecl addr 

Performs the switch between 

declarative and procedural code. 

Specifically, the assembly 

instruction loads to the PC the base 

memory address where AG 

evaluation rules are stored and 

pushes into the stack the return value 

of the PC (after all logic derivations 

have taken place and all solutions 

have been found) 

setflag/clrflag 

Allows the manipulation of the 

previously described meta-variable 

flag which is dispatched to the 

Hardware parser in order to indicate 

a successful/unsuccessful derivation 

ldrules index,addr 

Load the 32bit value located at 

memory address “addr” to the” 

Rules Memory” of the hardware 

parser at position “index”.

initstk 
Assembly instruction used to 

initialize the parser’s stack contents 

D. C-Code with Inline Assembly 

As previously mentioned, the end-product of the 

preprocessing stage is software code written in C with specific 

inline assembly blocks related to the extended 

microprocessor’s instruction set. During the preprocessing 

phase the C-AG code is transformed as follows: 

Initially the preprocessor extracts the grammar from the C-

AG code and inserts a global array of 32bit encodings of the 

rules of the grammar (logic formulas) following the encoding 

presented in Subsection V(B):  

The call to the attribute evaluation function through the use 

of “switchdecl” is transformed to a conventional call to a 

function: 

For every attribute used within the attribute evaluation 

rules, a space is reserved in the global section of the final C 

program: 

The initial attribute evaluation rules, based on syntax rules, 

are transformed to attribute evaluation rules based on nodes of 

the constructed tree following the rules specified in Table II: 

(The notation [i] denotes the index number i of the register in 

the register file) 

Inline assembly is added at the location of the attribute 

evaluation rules which initializes the “Rules Memory” and the 

parser’s stack and initiates the declarative mode. The 

assembly instruction “prgdecl” pushes into the stack the 

location of the PC and then jumps to the attribute evaluation 

RULE: G::=S EEND {
     G.ia1=p; 
     S.ia1=G,ia1; 
     {successors[i++]=G.sa2}     } 
  RULE: S::= P S EEND {
     P.ia1=S[1].ia1; 
     S[2].ia1=P.sa1;    } 
  RULE: S::= P EEND {

P.ia2=S.ia1; 
    S.sa2=P.sa1;    } 
  RULE: P::=  EEND {
     if ((P.ia1!=’j’)&&(P.ia1!=nil)) clrflag; 
     else  P.sa1=’j’; 
     if ((P.ia2!=’b’)&&(P.ia2!=nil)) clrflag; 
     else  P.sa1=’b’;    }  

void AG_successor_asm_rules() 
{
  _asm{ 

/*(enc(G),0)*/  
stcur ia1, p;   

 stsub ia1, p; 
(nop until end of subblock) 

/*(enc(G),1)*/ 
(nop until end of subblock)

/*(enc(G),2)*/     
ld [0],i 

 inc [0] 
 stcur sa2, successors+[0] 

(nop until end of subblock) 
... … 
           } 
}

ia1, ia2, sa1, sa2 (integer attributes) 

int ia1[100],ia2[100],sa1[100],sa2[100] 

switchdecl(AG_successor (successors,’p’’));

AG_successor (successors,’p’’);

RULE: G::=S  END  
RULE: S::= P S  END  
RULE: S::= P  END  
RULE: P::=   END  
RULE: P::=  END  
RULE: P::=   END  
RULE: P::=   END  
RULE: P::=   END  

int AG_successor_rules[18]= 
{ 2, 0, F, F, F, F, 
  3, 2, 0, 3, 0, F, 
  0. 0, 0, 0, 0, F} 
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function. 

The whole purpose of the preprocessing stage is to provide 

a final C-program which, when compiled and executed by the 

microprocessor handles both the declarative and procedural 

code. In specific, the microprocessor can be functioning at 

two modes of operation. The procedural one follows the 

conventional steps of program execution. At the declarative 

one, (call to an AG evaluation function in the program) the 

processor switches to the declarative mode. The flowchart of 

the two mode switching mechanism is illustrated in Fig. 9. 

Fig. 9 Flowchart of the two modes of operation of the microprocessor 

During the declarative mode, the processor initially loads 

the grammar rules into the hardware parser’s “Rules 

Memory”, specifies the base address of the AG evaluation 

rules (the address of the AG evaluation function after the 

completion of the “C-AG to C” preprocessor), pushes into the 

stack the return address of the PC (when declarative mode 

completes) and waits for a signal from the hardware parser 

indicating that AG evaluation is required. The processor at 

each such call, jumps to the AG evaluation block related to the 

non terminal associated with the currently parsed node, 

performs the AG computation and waits for further requests. 

At the end of the derivation process, the processor pops from 

the stack the return address and resumes normal, procedural 

execution. In the next section all hardware implementation 

issues required for the hardware parser and the extended RISC 

microprocessor, in order to support such operation, are clearly 

defined. 

VI. HARDWARE IMPLEMENTATION ISSUES

A. The Hardware Parser 

An overview of the parser’s flowchart is illustrated in Fig. 

10.

Fig. 10 The implemented parser's flowchart 

The parser uses a stack to hold the nodes of the constructed 

parse tree. Those nodes are defined as five-tuples of the form

(goal , i , sup , sub , pred ) in a stack S. goal , is the non 

terminal which is currently tried,  is the element of the stack 

(current node) which is currently active, v is the new empty 

position in the stack, i is the place in the definition of the non 

terminal goal at which tree derivations have reached so far, 

sup is the location in the stack S of the goal’s superior and 

sub , pred  are the locations in the stack S of the goal’s most 

recent subordinate and sibling respectively. The parsing that 

takes place is degenerate. The parser has been extended to 

incorporate calls to an attribute evaluator procedure (EVAL)

for attribute evaluation whose results control tree derivations 

through the use of the meta-variable flag. A more detailed 

description of a similar software implementation of the 

extended parser can be found in [20][8]. 

An overview of the proposed programmable hardware 

implementation of the parser is illustrated in Fig. 11. The 

grammatical rules are encoded and stored within the parser in 

the “Rules Memory”. Another memory element within the 

parser is used as the stack S that stores nodes visited of the 

constructed tree. The stack is a two-input, two-output memory 

allowing two memory read/write operations to be executed 

simultaneously. We have chosen to integrate this stack within 

the hardware parser in the effort of increasing performance in 

the construction of the tree. 

Declarative 

Mode ? 

Push 

RetAddress 

Load 

Rules Base 

Address 

PC=DeclPC 

Enable Parser 

Fetch 

Decode 

Execute 

MemAccess 

PC=PC+4 

End of AG eval ? PC=PC+4 

Evaluate ? 
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Execute 

Instruction 
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Instruction 
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void AG_Successor (char successors[10], char p)
{
   int i; 
   i=-1; 

_asm {  
      ld [0],0 
      ldrules [0],AG_successor_rules+[0]; 
      … 
      initstk; 
      prgdecl AG_succesor_asm_rules; 
             } 
   … 
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Fig. 11 A general overview of the extended RISC microprocessor’s hardware 

parser 

Two additional registers are used to store the current and 

new position in the stack: the  register and the v register 

respectively. The detailed hardware implementation of the 

parser is provided in Fig. 12 and has been obtained by the 

implementation of the hardware in the XILINX ISE 6.0 

environment [27]. 

(a) Top Most Level 

(b) Extended Stack

(c) Extended Rules 

(d) Extended Registers 

Fig. 12 Detailed implementation of the datapath of the hardware parser. (a) 

Top level design (b) The Stack’s implementation (c) The “Rules Memory 

implementation (d) The register’s implementation 

A Finite State Machine controller drives the control signals 

and implements the parsing algorithm. The design is driven by 

the microprocessor’s clock. Since the operations that occur in 

a single cycle in the parser are primitive RTL operations, the 

hardware parser’s computations within a single cycle do not 

impose any upper limit to the microprocessor’s clock, 

provided that they are implemented using the same technology 

used for the implementation of the microprocessor. At any 

moment, the sub-goal’s encoding and the index, within the 

current syntax rule in the current stack line, is used to 

determine the next symbol to be evaluated (Value at the 

output port of the “Rules Memory”). The new symbol is either 

a new non terminal causing a new node to be added to the 

stack line or defines the end of the syntax rule. After the 

addition of a new node, the hardware parser triggers the 

microprocessor for attribute evaluation and monitors the value 

of the flag. If the derivation is unsuccessful or a new symbol 

represents the end of the rule, new alternatives are evaluated. 

The “Rules Memory” is of k*32bit size where k is its 

maximum size. The non terminal symbols of each syntax rule 

are stored in consecutive memory positions at fixed intervals. 

Each stack line holds information on a specific node of the 

constructed parse tree as described by the software parser. 

This means that with a P bit encoding of non terminal symbols 

and k at maximum symbols allowed at the RHS of a 

production, each stack line is of  4*log2N + log2k bits. For an 

efficient and realistic implementation, a typical size for the 

stack is 1,5KB and for the “Rules Memory” 2KB. This means 

that for an 8bit encoding of non terminal symbols, the 

hardware can support up to 300 nodes in each tree, 254 non 

terminals and up to 254 syntax rules with a maximum of 8 non 
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terminals at the RHS of each rule. 

In order for this hardware implementation to support 

attribute instance referencing, the parser has been extended to 

dispatch attribute referencing base addresses of neighboring 

nodes (their positions in the stack).  

B. RISC Modifications 

For our analysis and experimental evaluation we have used 

the description of the RISC microprocessor presented in [26]. 

Based on this description we have implemented a soft-core in 

VHDL of a traditional microprocessor, which we have 

extended for AG evaluations. The hardware parser takes 

control of the PC and dispatches the tuple (x,i) to define the 

attribute evaluation computations to be executed for each 

node. The modification in the PCs datapath for such action is 

illustrated in Fig. 13. 

Fig. 13 The Program Counter’s new Datapath 

 If more than one computation instructions are defined for a 

visited node, those are executed sequentially. Attributes 

associated with every node in the parse tree are stored in a 

designated area in the microprocessor’s data memory. We 

have chosen to use this memory for attribute storage in order 

to enable other parts of the program’s code (sequential or 

declarative) to be able to access them. Attributes in this 

memory area are also organized into blocks. The RISC 

microprocessor’s instruction set is extended to support such 

attribute referencing instructions. Those are assigned their 

own encodings and introduce additional hardware to the 

microprocessor’s soft core for their implementation (since 

those instructions are similar to any other indexed memory 

access instructions, they do not impose any additional delay in 

the designated microprocessor’s clock cycle time). In Fig.14 

additional registers are introduced storing the NIDs of 

neighboring nodes which are accessed upon execution of the 

additional introduced attribute referencing instructions. 

Fig. 14 Added Registers for attribute referencing instruction support 

VII. CASE STUDY AND BENCHMARKING

As an illustrative example , we want to implement a logic 

program for finding paths from an arbitrary node x to another 

node z in a directed acyclic graph For a graph of k nodes with 

each node represented by a number i, where 0<i<k we define 

the predicate connected (i, j) which is true whenever there is a 

directed edge leading from i to j. Such program is illustrated 

in Fig. 15.   

Fig. 15 Example directed acyclic graph and Logic Program for finding a path 

in a directed acyclic graph 

We want the program to be able to answer questions of the 

form “path(1,4)?” that is, “are there any paths from 1 to 4 

and if so, which are these?”. Based on the previously 

mentioned transformations, we can transform this logic 

program to its AG equivalent written in the C-AG language 

(Fig. 16) where the non-terminal G corresponds to Goal, P to 

Path, C to Connected and the formed syntax rules correspond 

to the logical formulas of the initial logic program. The initial 

attribute evaluation rules are determined by the application of 

the “Logic Preprocessor” to the initial logic program. An 

additional attribute index is then added and used in order to 

determine the number of steps taken for visiting a specific 

node. A two-dimensional array called “paths[i][j]” is used,  

where at each i we hold the nodes that should be visited for a 

solution and at each j we store the actual nodes. The index

attribute is used to determine the location of a newly visited 

node that has led to a successful derivation. Whenever a node 

is added to the array, the next position in the array is filled 

with the value “-1”. This is chosen in order to denote the end 
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of the created path so far, since backtracking could have left 

“garbage” in the next locations in the array. There is also a 

variable np which is initially 0 and is incremented whenever a 

succesful tree deriation i.e a succesful path from 1 to 4 has 

been found. It should be noted that, although the 

implementation of the graph finding example may seem 

complicated, we deliberately followed such solution to the 

problem in order to clearly emphasize the intertwining 

achieved between procedural-declarative code and their data 

sharing possibilities. A simpler solution would also be 

possible, that allows the attribute grammar evaluation process 

itself to present the solutions in a form of a linked list of 

visited nodes. 

Fig. 16 Program in C-AG 

The program specification remains simple and expressive 

enough while procedural and declarative constructs are 

combined in a single program Such a path finding mechanism 

can be used in robotic applications in embedded systems (Fig. 

17) where the graph represents visiting paths of a space 

separated in rooms. A robot uses the extended microprocessor 

to locate possible paths for reaching a specific room while the 

procedural part receives input from sensors (function 

rcv_sensor_input()), decides which path to follow from the 

ones found (function selectpath()) and controls the motors 

(function control_motors()). 

Fig. 17 Embedded system with proposed implementation 

In order to evaluate the performance of the proposed 

implementation, we have used this implementation and 

simulated it for various sizes of graphs. The time required for 

the evaluation of attribute has not been considered. This does 

not affect the correctness of the results, since in both 

approaches (proposed and conventional) attribute evaluation 

occurs in the microprocessor. Therefore, attribute evaluation 

time does not get affected by our proposed implementation 

(and therefore no improvement in this time is achieved). For a 

various number of tree derivations (size of the parse tree 

constructed) instruction-level simulation with exact execution 

times has given the results illustrated in Fig.18, Fig.19 

compared to both a conventional RISC implementation and a 

RISC with a pipeline with 5 stages. We have not considered 

any additional delay for memory I/O references.  
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Fig. 18 Performance analysis in clock cycles for possible implementations 
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Fig. 19 Increase in performance achieved by our method compared to 

conventional approaches 

Performance using the proposed programmable attribute 

grammar evaluator has increased by an average of 1000% 

compared to the purely software approach in a conventional 

microprocessor. Apparently the increase in performance is 

larger if we take into consideration memory I/O delays. 

MEM

RISC

HW

Parser 

Processor Bus 

Sensors

Control

int paths [10][10]; int np; 
void AG_findpath (int paths[ ] [10],int start,int end) { 

RULE: G::=P EEND {
      P.inh1=start;P.inh2=end;P.index=0; 
      {np++;} 
   } 
  RULE: P::= C P EEND {

C.inh1=P[1].inh1;P[2].inh2=P[1].inh2; 
P[1].inh1=C.syn2;  
     P[2].index=P[1].index+1; C.index=P[1].index;
  } 
  RULE: P::= C EEND {

C.inh1=P.inh1;C.inh2=P.inh2; C.index=P.index; 
  } 
  RULE: C::= EEND {
     if ((C.inh1!=1)&&(C.inh1!=nil)) clrflag; 
     else  
    {C.syn2=2;paths[np][C.index]=2; 
       paths[np][C.index+1]=-1;} 
  }  … (Other facts) }
int main (int argc,char argv[]) { 
 int i,j; 

for (i=0;i<100;i++)  
                 for (j=0;j<100;j++) paths[i][j]=-1; 

rcv_sensor_input(); 
switchdecl(AG_findpath (paths),1,4); 
selectpath(); control_motors(); 
for (i=0;i<np;i++) { 
  j=0;  
 while (j!=-1) printf (“%d “,paths[i][j++]); 
exit(0); }
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VIII. IMPLEMENTATION DETAILS

The proposed approach has initially been verified for its 

correctness in a testing and evaluation environment that we 

have implemented in software, using the VISUAL C++ 6.0 

environment [28] (Fig. 20). The implemented program accepts 

as input the syntax and attributes evaluation rules for a given 

grammar and provides graphically, the way tree derivation 

process is carried out. It additionally estimates the time 

required for the completion of the tree derivation for the 

simple RISC approach, the RISC with pipeline approach and 

the proposed Hardware Parser-RISC hybrid approach  

Having verified the correctness of our approach and getting 

encouraging results in estimated performance we achieve, we 

focused on the actual hardware implementation of the intial 

idea. The proposed implementation has been implemented in 

synthesizable Verilog in the XILINX ISE 6.0 environment 

[27] and has been simulated for various FPGA technologies at 

the net-list level. RISC times have been accurately simulated 

by a similar implementation of a RISC architecture in 

synthesizable Verilog in the same environment. The actual 

optimization results have completely verified our initial 

expectations.  

Fig. 20 Two Snapshots of the execution of the software implementation 

IX. CONCLUSION AND FUTURE WORK

In this paper we have proposed an extended RISC 

microprocessor for logic programming applications. Towards 

this goal we have presented a RISC extension that supports 

the execution of hybrid combinations of declarative-

procedural code and a C-extended language that allows such 

programs to be written. We have also proposed, a hardware 

programmable implementation of a parser that is attached to 

the microprocessor, in order to define the execution sequence 

of attribute evaluation rules creating a programmable 

semantically driven parser to be used for knowledge 

representation. As a result, we proposed a complete extended 

RISC microprocessor, which while supporting all 

conventional facilities for the execution of procedural 

programs, is capable of increasing the performance of logic 

programming computations and allows design flexibility 

required in embedded system applications. In the case where 

there is the need of reducing the final proposed system’s size 

and cost, one possible modification to the presented extension 

is illustrated in Fig. 21. It is possible for the “Stack Memory”

of the hardware parser to reside in the system’s memory and 

not within the parser. Such an approach reduces the total 

space required for the implementation but also results in a 

negative impact to the maximum possible increase in 

performance. 

Fig. 21 Abstract architecture when the hardware parser's stack resides in 

Memory 

Another possible modification to the proposed 

implementation concerns improving the extended 

microprocessor with pipelining capabilities. In other words, 

the hardware parser after each call to an EVAL function for 

the evaluation of attribute instances does not block until 

attribute instances are evaluated to determine the value of the 

flag, but continues execution. In that case the hardware parser 

assumes that the derivation has been successful and continues 

creating the corresponding derivation tree. In the case where 

attribute evaluation has been successful the hardware parser 

will have already computed a part of the rest of the derivation 

tree. In the different case the computed derivations are flushed 

and a new alternative is evaluated. Such pipelining technique 

is expected to improve even more the system’s performance 

and is one of our main focus points in future releases of the 

implementation. Our current efforts are also focused in 

increasing the efficiency of the implemented hardware parser 

by using different more efficient parsing algorithms such as 

programmable modifications of the ones presented in [21] 
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space were drawn from the Cauchy distribution, mainly 

because its fatter tails are more likely than the Gaussian 

distribution to produce the rapid and/or large shift in attention 

allocation that has been reported by some empirical studies.  

However, with a proper experimenter-defined parameter 

setting (e.g., initial temperature & temperature decreasing rate), 

such shifts in attention might have been achieved with the 

Gaussian distribution.  Moreover, it may be possible that shifts 

could be drawn from other types of distributions, including 

rectangular, skewed, or multi-modal distributions.  Further 

simulation and empirical studies seem useful for investigating 

this issue. 
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