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Abstract—In this paper, by using Mawhin’s continuation theorem
of coincidence degree and a method based on delay differential
inequality, some sufficient conditions are obtained for the existence
and global exponential stability of periodic solutions of cellular neural
networks with distributed delays and impulses on time scales. The
results of this paper generalized previously known results.

Keywords—periodic solutions, global exponential stability, coinci-
dence degree, M -matrix

I. INTRODUCTION

S
TABILITY and periodicity of cellular neural networks

have been paid much attention in the past decades[1-

10], due to its applicability in the image processing, pattern

recognition and associative memories and so on.

It is well known that most widely studied and used neural

networks can be classified as either continuous or discrete.

However, there has been a somewhat new category of neural

networks, which displays a combination of characteristics of

both the continuous-time and discrete-time systems, these are

called impulsive neural networks[11-14]. To our knowledge,

not many authors discuss stability and periodicity of cellular

neural networks with delays and impulses. Recently, Yongkun

Li and Zhiwei Xing have studied the existence and global

exponential stability of the periodic solution of the following

cellular neural networks with time delays and impulses [15]:





dxi(t)
dt

= −ai(t)xi(t) +
n∑

j=1

[bij(t)fj(xj(t))

+cij(t)fj(xj(t − τj(t)))] + Ii(t),
t ≥ 0, t 6= tk, i = 1, 2, . . . , n,

△xi(tk) = Ji(xi(tk)) = −γikxi(tk), i = 1, 2, . . . , n,
k = 1, 2, . . . ,

However, in most situations, delays are variable, and in fact

unbounded. So, in this paper, we will study the existence

and global exponential stability of the periodic solution of

cellular neural networks of the following with mixed delays

and impulses:





dxi(t)
dt

= −ai(t)xi(t) +
n∑

j=1

[aij(t)fj(xj(t))

+bij(t)fj(xj(t − τij(t)))

+cij(t)
∫ t

−∞
kij(t − s)fj(xj(s))ds] + Ii(t),

t ≥ 0, t 6= tk, i = 1, 2, . . . , n,
△xi(tk) = Ji(xi(tk)) = −γikxi(tk),

i = 1, 2, . . . , n, k = 1, 2, . . . , n.

(1)
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where △xi(tk) = xi(t
+
k ) − xi(t

−
k ), i = 1, 2, . . . , n are the

impulses at moments tk and 0 < t1 < t2 < . . . is a

strictly increasing sequence such that limt→∞ tk = +∞; xi(t)
(i = 1, 2, . . . , n) is the state of neuron and n is the number

of neurons; A(t) = (aij(t))n×n,
B(t) = (bij(t))n×n and C(t) = (cij(t))n×n are connection

matrix functions,

I(t) = (I1(t), I2(t), . . . , In(t))T : R+ 7→ Rn is con-

tinuous periodic function with period ω > 0, f(x) =
(f1(x1), f2(x2)), . . . , fn(xn))T is the activation function

of the neurons,F (t) = diag(a1(t), a2(t), . . . , an(t)) with

ai(t) > 0 (i = 1, 2, . . . , n). The delays 0 ≤ τij(t) ≤
τ(i, j = 1, 2, . . . , n) are bounded functions. Kernel function

kij : [0,∞) −→ [0,∞)(i, j = 1, 2, . . . , n) are all piecewise

continuous functions on [0,∞), and satisfy
∫ ∞

0
kij(s)ds =

1, i, j = 1, 2, . . . , n.

As usual in the theory of impulsive differential equations,

at the points of discontinuity tk of the solution t 7→ xi(t) we

assume that xi(tk) ≡ xi(t
−
k ). It is clear that, in general, the

derivatives x
′

i(tk) do not exist. On the other hand, according

to the first equality of (1) there exists the limits x
′

i(t
±
k ). So, we

assume that x
′

i(tk) ≡ x
′

i(t
−
k ), i = 1, 2, . . . , n; k = 1, 2, . . .

The initial conditions of system (1) are of the form xi(s) =
φi(s) 6= 0, s ≤ 0, i = 1, 2, . . . , n. where φi is bounded and

continuous function on (−∞, 0].
Throughout this paper, we impose the following assump-

tions:

(H1) The delays 0 ≤ τij(t) ≤ τ(i, j = 1, 2, . . . , n) are

bounded continuous ω-periodic functions.

(H2) ai(t), i = 1, 2, . . . , n are positive and bounded contin-

uous ω-periodic functions, and 0 ≤ ai ≤ ai(t) ≤ ai.

(H3) kernel function kij , i, j = 1, 2, . . . , n are all piecewise

continuous functions, and satisfy
∫ ∞

0
kij(s)ds = 1.

(H4) There exist positive constants Mj > 0 such that |
fj(x) |≤ Mj for j = 1, 2, . . . , n, x ∈ R.

(H5) aij(t), bij(t), cij(t), i, j = 1, 2, . . . , n are bounded

continuous ω-periodic functions.

(H6) There exists a positive integer q such that tk+q =
tk + ω, γi(k+q) = γik , for k = 1, 2, . . . , i = 1, 2, . . . , n.

(H7)
∏

0≤tk<t

(1 − γik), i = 1, 2, . . . , n are ω-periodic func-

tions.

(H8) fi ∈ C(R, R), j = 1, 2, . . . , n are Lipschitzian with

Lipschitz constants Lj > 0,

| fj(x) − fj(y) |≤ Lj | x − y | for all x, y ∈ R.

For convenience, we introduce the following notations:
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aij = sup{| aij(t) |, t ∈ [0, ω]}, bij = sup{| bij(t) |, t ∈
[0, ω]}, cij = sup{| cij(t) |, t ∈ [0, ω]}, Ii = sup{| Ii(t) |, t ∈
[0, ω]} Ni = (

∫ ω

0

∏
0≤tk<t

(1 − γik)−2dt)
1
2 , i, j = 1, 2, . . . , n.

The organization of this paper is as follows. In Section II,

we introduce some notations and definitions, and state some

preliminary results needed in later sections. In Section III,

we then study the existence of periodic solutions of system

(1) by using the continuation theorem of coincidence degree

proposed by Gains and Mawhin [16]. In Section IV, we shall

derive sufficient conditions to ensure that the periodic solution

of (1) is globally exponentially stable.

II. PRELIMINARIES

In this section, we shall introduce some notations and

definitions, and state some preliminary results.

Consider the impulsive system[15]:






x
′

(t) = f(t, x(t), x(t − τ1(t), . . . , x(t − τn(t))),
t 6= tk, k = 1, 2, . . . ,

△x(t) |t=tk
= Jk(x(t−k )) = −γikxi(tk),

(2)

where x ∈ Rn, f : R × Rn → Rn is continuous and f(t +
ω, x(t−τ1(t)), . . . , x(t−τn(t))) = f(t, x(t−τ1(t)), . . . , x(t−
τn(t))), Jk : Rn → Rn, k = 1, 2, . . . , n are continuous;

τi ∈ C(R, [0, τ ]), i = 1, 2, . . . , n are ω-periodic functions and

t − τi(t) → ∞, as t → ∞, i = 1, 2, . . . , n, and there exists a

positive integer q such that tk+q = tk + ω, Jk+q(x) = Jk(x)
with tk ∈ R, tk+1 > tk, limk⇀∞ tk = ∞,△x(t) |t=tk

=
x(t+k ) − x(t−k ). For tk 6= 0 (k = 1, 2, . . . ), [0, ω] ∩ {tk} =
{t1, t2, . . . , tq}. As we know, {tk} are called points of jump.

Definition2.1.[15] A function x ∈ ([0,∞), R) is said to

be a solution of system (2) in [0,∞) satisfying the initial

value condition x(s) = φ(s) 6= 0, s ∈ (−∞, 0], where

φ ∈ C((−∞, 0], Rn), if the following conditions are satisfied

(i) x(t) is absolutely continuous in each interval

(tk, tk+1) ⊂ [0,∞);

(ii) for any tk ∈ [0,∞), k = 1, 2, . . . , x(t+k ) and x(t−k ) exist

and x(t−k ) = x(tk);

(iii) x(t) satisfies (2) for almost everywhere in [0,∞)
and at impulsive points {tk} situated in [0,∞) may have

discontinuity of the first kind.

Definition 2.2.[14] The periodic solution of system (2) is

said to be globally exponentially stable (GES), if there exist

constants α > 0 and β > 0 such that

| xi(t) − x∗
i |≤ β ‖ φ − x∗ ‖ e−αt

for all t ≥ 0 , where

‖ φ − x∗ ‖= sup
s∈(−∞,0]

(
n∑

i=1

| φi(s) − x∗
i |).

Consider the nonimpulsive delay differential system

dyi(t)

dt
= − ai(t)yi(t) +

∏

0≤tk<t

(1 − γik)−1
n∑

j=1

[aij(t)

× fj(
∏

0≤tk<t

(1 − γjk)yj(t))

+ bij(t)fj(
∏

0≤tk<t−τij(t)

(1 − γjk)yj(t − τij(t)))

+ cij(t)

∫ t

−∞

kij(t − s)fj(
∏

0≤tk<s

(1 − γjk)yj(s))ds]

+
∏

0≤tk<t

(1 − γik)−1Ii(t), t ≥ 0, i = 1, 2, . . . , n.

(3)

with initial conditions yi(s) = φi(s) 6= 0, s ∈
(−∞, 0], i = 1, 2, . . . , n.

Lemma 2.1. Assume (H7) holds, then

(i) if y = (y1, . . . , yn) is a solution of (3), then

x = (
∏

0≤tk<t

(1 − γ1k)y1, . . . ,
∏

0≤tk<t

(1 − γnk)yn) is a

solution of (1);

(ii) if x = (x1, . . . , xn) is a solution of (1), then

y = (
∏

0≤tk<t

(1 − γ1k)−1x1, . . . ,
∏

0≤tk<t

(1 − γnk)−1xn) is a

solution of (3).

Proof. The proof is similar to that of Theorem 2.1 in [14]

and will be omitted here.

Let X, Y be real Banach spaces, L : DomL ⊂ X → dimY
be a linear mapping, and N : X → Y be a continuous

mapping. The mapping L will be called a Fredholm mapping

of index zero if dimKerL = codimImL < +∞ and ImL is

closed in Y . If L is a Fredholm mapping of index zero and

there exist continuous projectors P : X → X and Q : Y → Y
such that ImP = KerL,KerQ = Im(I −Q), it follows that

mapping L |DomL∩kerP : (I − P )X → ImL is invertible. We

denote the inverse of that mapping by KP . If Ω is an open

bounded subset of X , the mapping N will be called L-compact

on Ω. if QN(Ω) is bounded and Kp(I − Q)N : Ω → X is

compact. Since ImQ is isomorphic to KerL, there exists an

isomorphism J : ImQ → KerL.

Now, we introduce Mawhin’s continuation theorem as fol-

lows.

Lemma 2.2.[16] Let Ω ⊂ X be an open bounded set and let

N : X → Y be a continuous operator which is L-compact on

Ω . Assume

(a) for each λ ∈ (0, 1), x ∈ ∂Ω
⋂

DomL, Lx 6= λNx,

(b) for each x ∈ ∂Ω
⋂

KerL,QNx 6= 0, and

deg(JQN, Ω
⋂

kerL, 0) 6= 0.

Then Lx = Nx has at least one solution in Ω
⋂

DomL.

Definition 2.3.[15] Let the n×n matrix A = (aij)n×n have

nonpositive off-diagonal elements and all principal minors of

A are positive, then A is said to be an M -matrix.

Lemma 2.3.[17] Let x(t) = (x1(t), x2(t), . . . , xn(t))T be

a solution of the differential inequality:

x
′

(t) ≤ Ax(t) + Bx(t), t ≥ t0,
where
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x(t) = ( sup
t−τ≤s≤t

{x1(s)}, sup
t−τ≤s≤t

{x2(s)}, . . . ,

sup
t−τ≤s≤t

{xn(s)})T , A = (aij)n×n, B = (bij)n×n.

If

(A1)aij ≥ 0(i 6= j), bij ≥ 0, i, j = 1, 2, . . . , n;
n∑

j=1

xj(t0) > 0;

(A2) The matrix −(A + B) is an M -matrix.

Then there always exist constants λ > 0, ri > 0 (i =
1, 2, . . . , n) such that

xi(t) ≤ ri

n∑
j=1

xj(t0)e
λ(t−t0).

III. EXISTENCE OF PERIODIC SOLUTIONS

In this section, based on the Mawhin’s continuation the-

orem, we shall study the existence of at least one periodic

solution of (1). For convenience, we introduce the following

notations:

Gy
i =Gi(t, y1(t), . . . , yn(t))

= −ai(t)yi(t) +
∏

0≤tk<t

(1 − γik)−1
n∑

j=1

[aij(t)

× fj(
∏

0≤tk<t

(1 − γjk)yj(t))

+ bij(t)fj(
∏

0≤tk<t−τij(t)

(1 − γjk)yj(t − τij(t)))

+ cij(t)

∫ t

−∞

kij(t − s)fj(
∏

0≤tk<s

(1 − γjk)yj(s))ds]

+
∏

0≤tk<t

(1 − γik)−1Ii(t), t ≥ 0,

where y = (y1, y2, . . . , yn)T is ω-periodic function, i =
1, 2, . . . , n. Our main result of this section is as follows.

Theorem 3.1. Suppose (H1)-(H7) hold, then the system (1)

has at least one ω-periodic solution.

Proof. According to Lemma 2.1, we need only to prove

that the nonimpulsive delay differential system (3) has an ω-

periodic solution. In order to use the continuation theorem

of coincidence degree theory to establish the existence of a

solution of (3), we take

Y = Z = {y(t) ∈ C(R, Rn) : y(t + ω) = y(t), t ∈ R, y =
(y1, y2, . . . , yn)T }
with the norm

‖ y ‖=
n∑

k=1

| yk |0, | yk |0= sup
t∈[0,ω]

| yk(t) |, k =

1, 2, . . . , n
then Y and Z are Banach spaces.

Set

Ly = y
′

and Py = 1
ω

∫ ω

0
y(t)dt, y ∈ Y ; Qz =

1
ω

∫ ω

0
z(t)dt, z ∈ Z

and

Ny = (Gy
1(t), G

y
2(t), . . . , G

y
n(t))T , y ∈ Y.

Obviously, KerL = {y ∈ Y, y = h, h ∈ Rn}, ImL = {y ∈
Y,

∫ ω

0
y(s)ds = 0} and

dimKerL = n = codimImL.
So, ImL is closed in Z and L is a Fredholm mapping of

index zero. It is easy to show that P and Q are continuous

projectors satisfying

ImP = KerL, ImL = KerQ = Im(I − Q).
Furthermore, through an easy computation, we can find that

the inverse Kp : ImL → KerP ∩DomL of Lp has the form

Kp(z) =
∫ t

0
z(s)ds − 1

ω

∫ ω

0

∫ t

0
z(s)dsdt.

Thus

QNy = ( 1
ω

∫ ω

0
Gy

1(t)dt, . . . , 1
ω

∫ ω

0
Gy

n(t)dt)T , y ∈ Y
and

Kp(I − Q)Ny =





∫ t

0
Gy

1(s)ds
...∫ t

0
Gy

j (s)ds
...∫ t

0
Gy

n(s)ds





−





1
ω

∫ ω

0

∫ t

0
Gy

1(s)dsdt
...

1
ω

∫ ω

0

∫ t

0
Gy

j (s)dsdt
...

1
ω

∫ ω

0

∫ t

0
Gy

n(s)dsdt





−





( t
ω
− t

2 )
∫ ω

0
Gy

1(s)ds
...

( t
ω
− t

2 )
∫ ω

0
Gy

j (s)ds
...

( t
ω
− t

2 )
∫ ω

0
Gy

n(s)ds





Clearly, QN and KP (I − Q)N are continuous. Using

the Arzela-Ascoli theorem, it is not difficult to show that

QN(Ω),KP (I−Q)N(Ω) are relatively compact for any open

bounded set Ω ⊂ Y . Therefore, N is L-compact on Ω for

any open bounded set Ω ⊂ Y .

Now we reach the position to search for an appropriate

open, bounded subset Ω, for the application of the con-

tinuation theorem. Corresponding to the operator equation

Ly = λNy, λ ∈ (0, 1), we have

y
′

i(t) =λ{−ai(t)yi(t) +
∏

0≤tk<t

(1 − γik)−1
n∑

j=1

[aij(t)

× fj(
∏

0≤tk<t

(1 − γjk)yj(t))

+ bij(t)fj(
∏

0≤tk<t−τij(t)

(1 − γjk)yj(t − τij(t)))

+ cij(t)

∫ t

−∞

kij(t − s)fj(
∏

0≤tk<s

(1 − γjk)yj(s))ds]

+
∏

0≤tk<t

(1 − γik)−1Ii(t)},

y ∈ Y i = 1, 2, . . . , n. (4)

Suppose that y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ Y is a

solution of system (4) for some λ ∈ (0, 1). Integrating

yi(t)y
′

i(t) over the interval [0, ω] , we obtain

0 =
1

2
y2

i (t) |ω0 =

∫ ω

0

yi(t)y
′

i(t)dt

= λ

∫ ω

0

{−ai(t)yi(t)yi(t) +
∏

0≤tk<t

(1 − γik)−1yi(t)

×
n∑

j=1

[aij(t)fj(
∏

0≤tk<t

(1 − γjk)yj(t))
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+ bij(t)fj(
∏

0≤tk<t−τij(t)

(1 − γjk)yj(t − τij(t)))

+ cij(t)

∫ t

−∞

kij(t − s)fj(
∏

0≤tk<s

(1 − γjk)yj(s))ds]

+
∏

0≤tk<t

(1 − γik)−1yi(t)Ii(t)}dt

That is
∫ ω

0

ai(t)y
2
i (t)dt =

∫ ω

0

∏

0≤tk<t

(1 − γik)−1

× yi(t)
n∑

j=1

[aij(t)fj(
∏

0≤tk<t

(1 − γjk)yj(t))

+ bij(t)fj(
∏

0≤tk<t−τij(t)

(1 − γjk)yj(t − τij(t)))

+ cij(t)

∫ t

−∞

kij(t − s)fj(
∏

0≤tk<s

(1 − γjk)yj(s))ds]

+

∫ ω

0

(1 − γik)−1yi(t)Ii(t)dt, i = 1, 2, . . . , n

Obviously

∫ t

−∞

kij(t − s)ds = −
∫ t

−∞

kij(t − s)d(t − s)

= −
∫ 0

+∞

kij(u)du =

∫ +∞

0

kij(u)du = 1.

From conditions (H2), (H4) and (H5), it follows that

ai

∫ ω

0

| y2
i (t) | dt ≤

∫ ω

0

∏

0≤tk<t

(1 − γik)−1 | yi(t) |

×
n∑

j=1

[| aij(t) || fj(
∏

0≤tk<t

(1 − γjk)yj(t)) |

+ | bij(t) || fj(
∏

0≤tk<t−τij(t)

(1 − γjk)yj(t − τij(t))) |

+ | cij(t) |
∫ t

−∞

| kij(t − s)fj(
∏

0≤tk<s

(1 − γjk)yj(s))ds |]

+

∫ ω

0

(1 − γik)−1 | yi(t) || Ii(t) | dt

≤
∫ ω

0

n∑

j=1

(aij + bij + cij)Mj

∏

0≤tk<t

(1 − γik)−1 | yi(t) | dt

+ Ii

∫ ω

0

∏

0≤tk<t

(1 − γik)−1 | yi(t) | dt

≤ (

n∑

j=1

(aij + bij + cij)Mj + Ii)(

∫ ω

0

∏

0≤tk<t

(1 − γik)−2dt)
1
2

× (

∫ ω

0

| yi(t) |2 dt)
1
2

= Ni(

n∑

j=1

(aij + bij + cij)Mj + Ii)(

∫ ω

0

| yi(t) |2 dt)
1
2 ,

i = 1, 2, . . . , n.

Hence,

(
∫ ω

0
| y2

i (t) | dt)
1
2 ≤ Ni

ai

(
n∑

j=1

(aij + bij + cij)Mj + Ii))

:= Si, i = 1, 2, . . . , n (5)

Let ti ∈ [0, ω] 6= tk, k = 1, 2, . . . , m. such that | yi(ti) |=
inft∈[0,ω] | yi(t) |, i = 1, 2, . . . , n. Then, by (5), we have

| yi(ti) | √ω =| yi(ti) | (
∫ ω

0
dt)

1
2 ≤ (

∫ ω

0
| y2

i (t) | dt)
1
2 ≤

Si

thus,

| yi(ti) |≤
Si√
ω

(6)

From (6), and since yi(t) = yi(ti) +
∫ t

ti

y
′

i(s)ds, it follows

that

| yi(t) |≤
Si√
ω

+

∫ ω

0

| y
′

i(t) | dt (7)

On the other hand, from (4) and conditions (H2), (H4), (H5),

(H7), we have

∫ ω

0

| y
′

i(t | dt < ai

∫ ω

0

| yi(t) | dt + (

n∑

j=1

| aij(t) | + | bij(t) |

+ | cij(t) | Mj + Ii)

∫ ω

0

∏

0≤tk<t

(1 − γik)−1dt)

≤ ai

√
ω(

∫ ω

0

| yi(t) |2 dt)
1
2 + (

n∑

j=1

(aij + bij

+ cij)Mj + Ii)
√

ω

∫ ω

0

∏

0≤tk<t

((1 − γik)−2dt)
1
2

= ai

√
ω(

∫ ω

0

| yi(t) |2 dt)
1
2 + Ni

√
ω(

n∑

j=1

(aij + bij

+ cij)Mj + Ii)

Together with (5), we get

∫ ω

0

| y
′

i(t) | dt < ai

√
ωSi + Ni

√
ω(

n∑

j=1

(aij + bij

+ cij)Mj + Ii) := Di. (8)

in view of (7) and (8), we obtain

| yi(t) |<
Si√
ω

+ Di := Ri, i = 1, 2, . . . , n. (9)

Denote A =
∑m

i=1 Ri + K , where K is a sufficiently large

positive constant, clearly, A is independent of λ . Now, take

Ω = {y ∈ Y :‖ y(t) ‖< A} . It is clear that Ω satisfies the

requirement (a) in Lemma 2.2.

When y ∈ ∂Ω ∩ KerL, y = (y1, y2. . . . , yn)T is a

constant vector in Rn with ‖ y ‖= A. Then QNy =
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( 1
ω

∫ ω

0
Gy

1dt, . . . , 1
ω

∫ ω

0
Gy

ndt), y ∈ Y where

Gy
i = − ai(t)yi(t) +

∏

0≤tk<t

(1 − γik)−1
n∑

j=1

[aij(t)

× fj(
∏

0≤tk<t

(1 − γjk)yj(t))

+ bij(t)fj(
∏

0≤tk<t−τij(t)

(1 − γjk)yj(t − τij(t)))

+ cij(t)

∫ t

−∞

kij(t − s)fj(
∏

0≤tk<s

(1 − γjk)yj(s))ds]

+
∏

0≤tk<t

(1 − γik)−1Ii(t), i = 1, 2, . . . , n

Take J : ImQ → KerL, r → r. Then, if necessary, we can

let K be greater such that yT JQNy < 0 . So, for any y ∈
∂Ω ∩ KerL,QNy 6= 0 . Furthermore, let φ(γ; y) = −γy +
(1 − γ)JQNy, then for any y ∈ ∂Ω ∩ KerL, yT φ(γ; y) < 0,

we get

deg{JQN, Ω ∩ KerL, 0} = deg{−y, Ω ∩ KerL, 0} 6= 0.

So, condition (b) of Lemma 2.2 is also satisfied. We now know

that Ω satisfies all the requirements in Lemma 2.2. Therefore,

(3) has at least one ω-periodic solution. As a sequence system

(1) has at least one ω-periodic solution. The proof is complete.

IV. GLOBAL EXPONENTIAL STABILITY OF THE PERIODIC

SOLUTION

Suppose that x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)T is a periodic solution

of system (1). In this section, we will use a technique of

differential inequality to study the global exponential stability

of this periodic solution.

Theorem 4.1. Assume (H1)-(H8) hold. Moreover, suppose

that matrix

F − αβ(A + B + C)L is an M -matrix, where

F = diag(a1, a2, . . . , an), A = (aij)n×n, B =
(bij)n×n, C = (cij)n×n, L = diag(L1, L2, . . . , Ln), α =
max

1≤i≤n
{supt∈[0,ω]

∏
0≤tk<t(1 − γik)},

β = max
1≤i≤n

{supt∈[0,ω]

∏
0≤tk<t(1 − γik)−1}. Then the

ω-periodic solution of system (1) is globally exponentially

stable.

Proof. According to Theorem 3.1, we know that (1) has

an ω-periodic solution x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)T . Suppose that

x(t) = (x1(t), x2(t), . . . , xn(t))T is an arbitrary solution of

(1).

Let y(t) = x(t) − x∗, then (1) can be written as






dyi(t)
dt

= −ai(t)yi(t) +
n∑

j=1

[aij(t)gj(yj(t))

+bij(t)gj(yj(t − τij(t)))

+cij(t)
∫ 0

−∞
kij(t − s)gj(yj(s))ds], t 6= tk

∆yi(tk) = −γikyi(tk), t ≥ 0, i = 1, 2, . . . , n,
k = 1, 2, . . . ,

(10)

where

gj(yj(t)) = fj(xj(t)) − fj(x
∗
j ), j = 1, 2, . . . , n

Due to the assumption of (H8), we know that 0 ≤| gi(yi) |≤

Li | yi |, i = 1, 2, . . . , n. The initial condition of (10) is

Ψ(s) = φ(s) − x∗, s ∈ (−∞, 0].
Also according to Lemma 2.1, we consider the following

nonimpulsive delay differential system:

dui(t)

dt
= − ai(t)ui(t) +

∏

0≤tk<t

(1 − γik)−1
n∑

j=1

[aij(t)

× gj(
∏

0≤tk<t

(1 − γjk)uj(t))

+ bij(t)gj(
∏

0≤tk<t−τij(t)

(1 − γjk)uj(t − τij(t)))

+ cij(t)

∫ t

−∞

kij(t − s)gj(
∏

0≤tk<s

(1 − γjk)uj(s))ds],

i = 1, 2, . . . , n. (11)

with initial conditions u(s) = Ψ(s) = φ(s)−x∗, s ∈ (−∞, 0].
Let zi(t) =| ui(t) |, then the upper right derivative D+zi(t)

along the solutions of system (11) is as follows:

D+zi(t) = D+ | ui(t) |= ui(t)
′

sgn(ui(t))

≤ −ai | ui(t) | +
∏

0≤tk<t

(1 − γik)−1
n∑

j=1

[| aij(t)

× | Lj | uj(t) |
∏

0≤tk<t

(1 − γjk)

+ | bij(t) | Lj | uj(t) |
∏

0≤tk<t

(1 − γjk)

+ | cij(t) | Lj | uj(t) |
∏

0≤tk<t

(1 − γjk)]

≤ −ai | ui(t) | +
∏

0≤tk<t

(1 − γik)−1
n∑

j=1

[aijLj

× | uj(t) |
∏

0≤tk<t

(1 − γjk)

+ bijLj | uj(t) |
∏

0≤tk<t

(1 − γjk)

+ cijLj | uj(t) |
∏

0≤tk<t

(1 − γjk)], i = 1, 2, . . . , n.

Hence

D+zi(t) ≤ −ai | ui(t) | +β
n∑

j=1

[aijLj | uj(t) | α

+ bijLj | uj(t) | α + cijLj | uj(t) | α]

≤ −ai | ui(t) | +αβ

n∑

j=1

(aij + cij)Lj | uj(t) |

+ αβ
n∑

j=1

bijLj | uj(t) |

≤ −aizi(t) + αβ
n∑

j=1

(aij + cij)Ljzj(t)

+ αβ
n∑

j=1

bijLjzj(t), i = 1, 2, . . . , n.
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That is

D+zi(t) ≤ (−F + αβ(A + C)L)z(t) + αβBLz(t), t ≥
0, i = 1, 2, . . . , n.
where F = diag(a1, a2, . . . , an), A = (aij)n×n, B =
(bij)n×n, C = (cij)n×n,
L = diag(L1, L2, . . . , Ln).

By initial conditions xi(s) = φi(s) 6= 0, s ∈ (−∞, 0], i =
1, 2, . . . , n, we know that zi(0) > 0, according to Lemma 2.3,

if the matrix −[−F +αβ(A+C)L+αβBL] = F −αβ(A+
B + C)L is an M -matrix, then there must exist constants

µ > 0, ri > 0 (i = 1, 2, . . . , n) such that

zi(t) =| ui(t) |≤ ri

n∑
j=1

zj(0)e−µt = ri

n∑
j=1

| uj(0) |

e−µt, i = 1, 2, . . . , n.
By initial conditions, we have u(0) = Ψ(0) = φ(0) − x∗ ,

then the solution of (10) satisfies

| yi(t) | =
∏

0≤tk<t

(1 − γik) | ui(t) |

≤
∏

0≤tk<t

(1 − γik)ri

n∑

j=1

| uj(0) | e−µt

≤
∏

0≤tk<t

(1 − γik)ri

n∑

j=1

| φj(0) − x∗
j | e−µt

≤ αri

n∑

j=1

| φj(0) − x∗
j | e−µt

= αri

n∑

i=1

| φi(0) − x∗
i | e−µt, i = 1, 2, . . . , n.

That is

| xi(t) − x∗
i | ≤ αri

n∑

i=1

| φi(0) − x∗
i | e−µt

= αri[ sup
s∈(−∞,0]

(
n∑

i=1

| φi(s) − x∗
i |)]e−µt

= αri ‖ φ − x∗ ‖ e−µt, i = 1, 2, . . . , n.

From Definition 2.2, we can see the ω -periodic solution

x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)T of system (1) is globally exponentially

stable.
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