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Abstract—A topologically oriented neural network is very 

efficient for real-time path planning for a mobile robot in changing 
environments. When using a recurrent neural network for this 
purpose and with the combination of the partial differential equation 
of heat transfer and the distributed potential concept of the network, 
the problem of obstacle avoidance of trajectory planning for a 
moving robot can be efficiently solved. The related dimensional 
network represents the state variables and the topology of the robot's 
working space. In this paper two approaches to problem solution are 
proposed. The first approach relies on the potential distribution of 
attraction distributed around the moving target, acting as a unique 
local extreme in the net, with the gradient of the state variables 
directing the current flow toward the source of the potential heat. The 
second approach considers two attractive and repulsive potential 
sources to decrease the time of potential distribution. Computer 
simulations have been carried out to interrogate the performance of 
the proposed approaches. 
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I. INTRODUCTION 

N the past, numerous approaches has been done in solving 
the path-planning problem, mostly in static environments 

and unchangeable world space. In such planning some 
constraint conditions have to be met, such as the pass through 
via points, smoothness of the planned path when represented 
using spline, etc. There exists a number of global approaches, 
such as decomposition, road map, and retraction methods, 
randomized approaches, genetic algorithms as well as several 
local approaches, e.g., potential field methods. Recently, 
efforts have been directed toward, collision free, real-time 
trajectory planning in changing environments, [16, 17, 18]. 
Collision warning systems has been also implemented [6] and 
[9].   

The configuration of the world space was based on the 
principle of splitting cubes in 3D to provide a compact index. 
When a primitive comes too close to other, a warning is 
issued. For the sake of real time operation, checks were done 
at discrete time intervals where it should be ensured that 
collisions cannot take place during these intervals and cycle 
time was taken as short as possible. The same idea of collision 
warning systems was presented by [5] et al. (2002). The 
authors tried to build an intelligent vehicle system to reduce 
collisions in transit buses. Although the system can predict 
early mutual collisions but it is still different from the problem 
of path finding and real-time sake. 
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Other research interests were concerned in mobile 
manipulators and part orientation purposes with minimal 
sensing and manipulation, [10]. The study in [11] also 
presented a mobile manipulator that is used for manipulation 
as well as locomotion rather than motion panning. Such 
researches were dependent on geometrical relations and 
kinematics analysis. 

Some of available approaches were concerned with 
determining the area of potential collision possibility, for 
instance using a set of all configurations causing a trajectory 
intersection of two cooperative robots, [2]. The task of finding 
collision free trajectories for a coordinated motion was defined 
as finding the successive configurations connecting the target 
point with the initial point configuration. However, although 
the approach turns out to be relatively simple, requiring a 
minimal number of calculations, the approach is not universal 
enough to include a large number of different robot geometries 
and orientations.  

Movement synchronization, based on delaying actions, is a 
possible solution of mutual collision avoidance of two 
cooperative robots working in the same work place, as 
proposed by Roach (1987). However, later efforts have been 
focused on distributed potential approaches of attraction and 
repulsion, [1, 12, 13] and on hierarchical approaches using 
multi-pass dynamic programming, [13], or on genetic 
algorithms for real-time path planning, [1]. The approaches, 
however, still do not guarantee satisfactory collision-free real-
time planning performances in changing environment. Other 
path planning approaches, mainly based on heuristic search 
methods, such as generate-and-test paradigm, [4], Puntryagin's 
Maximum Principle, [7], which is applied to the optimal 
control of differential drive mobile robots with velocity 
bounds. Such approaches considerably depend on heuristic or 
hierarchical methods and/or geometric relationships between 
the objects.  

Topological maps for the robot workspace where efficient 
in determining successful routes. The study in [15] could use 
such maps accompanied with decision-theoretic approach in 
the robot navigation process. Topological and evaluation maps 
are the configuration system that will be used in the 
approaches presented in this paper. 

With the application possibilities of neural networks, new 
trajectory planning approaches have been introduced, [8]. 
Using massively parallel, multi-neuron computing 
architectures, the topologically ordered maps for the robot 
configuration space have been built with occupied nodes as 
obstacles and with the node clamped to the unit value as the 
target. A full interconnection of neurons within the network 
was used as the initial configuration. For instance, [3] 
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proposed trajectory planning using a two- layer neural 
network. For internal information exchange between the 
neighboring nodes related to their potentials, the lateral 
interconnections between the neurons were implemented in 
the upper network layer, whereas the lower layer neurons were 
used as  "special memory" in which the target and the obstacle 
positions are stored.  

Construction of an evaluation map mainly involves the 
values assignment to the individual system states, so that the 
route planning then consists, at each step, in finding the 
neighboring state that has a higher value than the current state 
in the resistive grid in which the state space is divided into a 
set of small n-dimensional cubes. Each cube corresponds to a 
node of the resistive grid. The method consists of finding the 
potential distribution within the grid, in which the nodes are 
represented by neurons that receive input from their "m" 
neighbors, and from one neuron in a "spatial memory". The 
path found is not necessarily the shortest one, however, it is 
smooth and avoids the obstacles. The method is applicable to 
the higher dimensionality problems, but its hardware 
implementation is difficult, its resolution is poor, and the 
required computational time is relatively long, particularly 
when the workspace is large, [3]. 

This paper will present two methods for finding the feasible 
path for a mobile robot using neural networks: Dirichlet and 
Neumann based boundary conditions. Section II presents the 
neuronal and workspaces for the proposed path planning 
method. This is followed by the description of network 
dynamics in Section III, and by the considerations of 
relationship between the potential field and boundary 
conditions in Section IV. Thereafter, in Section V, an 
overview about some priority rules is given. In Section VI and 
VII the construction of the knowledge of the working world 
and the computer simulation results are described. 
 

II.  NEURONAL REPRESENTATION OF ROBOT WORKSPACE 
In the following, the collision-free path planning of a mobile 

robot moving in a workspace cluttered with stationary and/or 
moving obstacles is considered. Such planning requires that 
the robot's workspace to be configured. This implies that each 
region in the space should have its own configuration. For 
instance, obstacles can be defined as the regions in the 
workspace that should not be crossed by the robot, while the 
trajectory of the robot is the set of regions that should not 
contact the restricted areas. Although the workspace can take 
any shape, a rectangular space is implemented here to simplify 
the simulation. The mobile robot can move in a determined 
area of a single horizontal plane, divided into small squares to 
form a matrix of blocks (X, Y), each block representing a 
single point reachable by the robot. Further, each block will 
have its own neural representative state, i.e., “0” if occupied 
with an object and a positive value other wise. 

That said, the problem of path planning can be considered as 
building an evaluation map that determines the priorities for 
the moves from a present block to a neighboring one. The 
collection of all the blocks will describe the real working 
environment. Associated with each block, a state that 

describes the current status (i.e. states of "0" value are 
obstacles while those of "≤ k" value are either a 
destination/start point or an empty block where k is any 
positive real value) as will be stated later. 

A topology of neurons is established to represent the robot’s 
workspace with the same dimensionality. The path finding 
approach taken here is based on the Laplacian method [3], 
where the gradient of different states will be used to simplify 
the search for a feasible robot path. The neural space consists 
of "n" neurons distributed in two-dimensional space topology. 
Each neuron is being connected to a set of neighbors N = {n1, 
.., nm} connected by a synaptic resistor (link), Fig. 1. 
  

         

Fig. 1 4 by 4 network 
 

For such topology, each neuron will accept a sum of inputs 
that will be processed by a transfer function resulting in some 
output. The outputs of individual neurons depend on:  

• State value of the neighboring neurons. 
• Number of neighbors included. 
• Value of synaptic weight of each link. 
• Transfer function of the neuron. 
• External input bias I. 

 
Each neuron receives inputs from its neighbors according to 

the value of the synaptic weight, and external input from the 
workspace topology, called the bias or threshold (I ). The 
weighted sum of the inputs to the neuron is passed through a 
transfer function to generate its output. Accordingly, the 
network consists of two layers: the workspace nodes as 
external inputs from the workspace, and the neural space 
nodes, Fig. 2. 

 
Fig. 2 Two-layer neural network 

 
III. DYNAMICS OF THE NETWORK 

Denote the output of each neuron by the state variable σi, 
(i=1... n), where σi ∈ [0, k]. The total input vi(t) for  neuron i 
can be determined from the following relation:  
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where, m is the number of neighboring neurons and I is the 
external input bias or threshold to the neuron i. 

The strength of the synaptic weight from the neighboring 
neuron j to neuron i is represented as ijw . The ijw  values are 

not symmetric, i.e., ijw  ≠ jiw . Furthermore, the neighboring 

neurons participate in equal shares to the input of neuron i, 
that is:  

m
wij

1
=                                         (2) 

where, j ∈(1, ..., m).  
This implies that if the neighbors of a neuron i are 8, then 

m=8 and 125.0=ijw , while at the vertices of the robot 

workspace, these values will differ. For instance, Fig. 3 
presents a corner where 3/1=ijw . This applies for any 

marginal neuron in the network. This condition should be kept 
to avoid any local extreme that may occur when summing the 
inputs to any neuron as will be illustrated later. 

 

 

Fig. 3 Synaptic weight representation 
 

For discrete time dynamics, the states of the neurons can 
change according to the relation.  
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where g(.) is a threshold function and t is the time parameter, 
with a unit delay operator for each iteration, Fig. 4. 
  The total input )(tvi  for any neuron generates the 
following output: 
 

 ))(()( tvgt ii =σ                                (4) 
 

 
Fig. 4 Architectural graph for a network with 4 neurons 

 
IV.  POTENTIAL FIELD AND BOUNDARY CONDITIONS 

Assume that the robot destination point as a single and 
unique maximal source of attractive potential in the net. The 
robot, wherever located, should be guided by the attractive 
potential to the maxima (i.e. to the destination points). This 
potential of attraction is represented by the gradients of the 
field power that flows from the obstacles toward the target 
according to some boundary conditions. This is analogous to 
the heat transfer problem, where the destination is considered 
as a source that dissipates the heat within the net, the potential 
gradients will guide the robot safely to the destined location 
while avoiding any object that may hinder the robot. The 
representation of the state variables of a robot workspace is 
illustrated in section VI. 

Hence, the above situation can be described using the two-
dimensional heat equation: 
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where the temperature distribution is given by u(x, y, t), c2is 
the thermal diffusivity, and ∇2 u is the Laplacian of u. Because 
of steady heat flow, i.e., no change in heat source over time, 
this implies that  
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The above equations are now considered in a region R of 
XY-plane for a given boundary condition on the boundary 
curve C of R. Two cases will result according to the following 
boundary conditions, those are: the Dirichlet problem if u is 
prescribed on C, or the Neumann problem if the normal 

derivative 
dn

du
un =  is prescribed on C.   

The Dirichlet boundary condition states that σi, which 
represents the heat value u at node i, is known at specific 
points, where these points are expected to be the targets and 
obstacles, i.e., 
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 0)( =σ ti  if neuron i is associate with an obstacle.  

kti =σ )(  if neuron i associated with a destination. 
 

These two conditions should stay true the entire time to 
conform to the above differential equation, and to avoid the 
occurrence of any local heat extremes except that of the robot 
target. To keep the value of iσ  equal to zero if neuron i is 
associated with an obstacle, the external input I  should be 
equal to (-k) while considering the transfer function shown in 
Fig. 5 (a), where k is any real positive value.  

Now iσ  that refers to an obstacle existence will always 

have a value of zero. Correspondingly, to have Tσ (target 
state of the destination point) equal to k, the external input I 
should have the value of (+k). These assumptions will show a 
potential flow toward the target, starting from the obstacles. 

In contrast, Neumann boundary condition does not include 
the neurons that are associated with occupied obstacles. In 
other words, the synaptic weights that connect to the 
neighboring neurons have to be modified to conform to the 
previous assumption defined by equation (2). Besides, the 
destination point should have constant state variable with a 
value of ( +k ), while the neuron associated with the robot 
position of a state value of  (-k ), Fig. 6. To implement the 
above assumptions, the external input bias from the workspace 
to the destination should be equal to +2k the entire time and 
the threshold term for the robot position should be -2k. The 
activation function for the Neumann case is shown in Fig. 5 
(b).  

 

 
(a)                                        (b) 

Fig. 5 (a) Typical transfer function for Dirichlet boundary condition, 
(b) Typical transfer function for Neumann boundary condition. 

 
Assigning a value of +k to the destination state variable and 

a value of –k to the current robot location state variable 
increases the margins the distributed attractive and repulsive 
potentials, that would considerably reduce the problem arising 
form small numerical gradients. Consequently, we should 
emphasize that the value of k has a great effect on the 
efficiency of the network. For instance, the larger the value of 
k, the more field diffusion attained over time. In other words, 
the value of k refers to the power of the potential source as 
well as the strength of the field absorption at the destination or 
obstacles. Finally, higher k values will help avoid the 
influence of small gradients that are far away from the 
potential source. 

 
(a)                                    (b) 

Fig. 6 (a) Disconnection in synaptic weights takes place between the 
empty nodes and obstacle-occupied nodes for Neumann boundary 

condition, (b) No disconnection occurs in Dirichlet boundary 
condition while the state variables of the occupied nodes are set to 

equal zero by the addition of an input threshold (I) which equals to -k 
 

V.   PRIORITY RULES OF STEP SELECTIONS 
When solving a problem using any of the above two 

methods and starting from any initial point, some rule should 
be selected for determining the next robot jump (step). A 
traditional way, based on Dirichlet boundary condition, is to 
select the neighboring state having the highest value as the 
winning state. This rule could result in relatively hard jumps 
and sharp curves along the planed path, specially when square 
movements are allowed.  

Below we present a step priority rule that calculate the 
proclivity at any point:   
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Equation 7 depends on the values of the neighboring state 

variables, where x and y are used as indices for neuron i in a 
squared topology. For instance, a step priority rule of the 
following class can be used: 
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In any case, the function slope refers to the field gradients 

where the priority rules are used to determine the winning 
states and moves. After determining a feasible path starting 
from an initial point P0 and ending at a final point Pf, the 
length of the path can be calculated using the following 
summation: 

),( 1
0

+
=
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where E is the Euclidean distance between Pi and Pi+1. 
 

VI. MODELING OF ROBOT’S WORKSPACE TOPOLOGY 
The main objective of the workspace partitioning is to help 

construct a topology of the real space in which the robot is 
moving.  The mobile robot will memorize its start position 
relative to the destination, while a scanning camera will feed 
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the robot with the required workspace patterns. These patterns 
should describe the workspace of the robot in a discrete 
manner as illustrated in earlier section. 

The frequent update of the robot workspace will keep the 
robot's configuration known and will record the changes in the 
robot world. The patterns that describe the workspace will be 
fed to the robot processor. The processor in turn will build the 
evaluation map topology and based on the current destination 
point and obstacles, a path will be planned as stated in the 
network dynamics. The robot then is allowed to move a step 
or more ahead. After the movement is done another input 
pattern should be processed again taking in consideration the 
new changes in the workspace. 

The above scheme is considered to be feasible if the 
following conditions are met the entire time: 
 
• Obstacles speed < Robot speed.  
• Initial nearest robot-to-obstacle distance > Robot speed× 

Pattern processing and computing time.  
 

The first condition is a must in the presented approaches in 
this paper, because the robot will not be able to avoid 
obstacles that can move faster than the robot speed. The 
second condition is essential for the startup of the path 
planning. Moving obstacles should not have the chance of 
getting collided with the robot while the robot is computing 
and planning the next move. This condition does not add any 
constraints to the approaches presented here since information 
processing times are fairly short as illustrated in the 
experimental simulation. 

As an example, if a robot moves as fast as 0.2m/s in speed 
and if it takes 0.1 sec to find out a next move then, 
hypothetically, the robot should not be closer than 0.02m in 
distance from the moving obstacles upon startup. Our 
suggestion for solving this problem is to keep the time 
intervals as small as possible between the runs and pattern 
updating.  

One of the significant contributions over such related work 
is the new transfer functions used which enhanced the ability 
to avoid small gradients of the state variables. In addition, the 
new approach used in deciding the robot future steps does not 
rely on hierarchical methods and therefore the path search 
span is small compared to others and the time required to find 
the path is relatively short. The presented approach is an 
intelligent decision making engine, which takes in 
consideration all the surrounding static and moving objects 
that are covered with the sensing zone. Addition to above, 
there are no restrictions on the shape of the obstacles nor the 
speed of the moving objects as long as their speed is lower 
than that of the robot. 

Target tracking is another achievement that can be held 
here, i.e. the target point is not necessarily static. The target is 
allowed to move with a speed less than that of the robot. Since 
the target is considered as a source of the distributed field 
within the net, it can be easily tracked if adequate and frequent 
patterns are fed to the robot processor. 
 

VII. SIMULATION 
To demonstrate the efficiency of the proposed methods, 

different simulation experiments have been conducted. The 
first experiment, shown in Fig. 7, the robot has to reach the 
target through a collision-free path within a room with a wall 
in the middle as an obstacle. It can be shown that for Neumann 
boundary condition the neural network has a higher 
convergence, i.e. it provides, for the same number of 
iterations, a higher performance than the Dirichlet boundary 
condition case. This is due to the existence of two 
attractive/repulsive sources that are diffusing at the same time 
in Neumann case. Besides, in Nuemann case, 20 iterations 
were enough for the robot to avoid collision with the existing 
obstacles, while in the Dirichlet case, the potential will not 
reach the start point by the same number of iterations since the 
minimum number of iterations required should be equal to at 
least the number of nodes passed by the path, as stated in 
relation (8). Furthermore, the simulation results show that for 
such space using Neumann boundary condition, fifty iterations 
are sufficient, whereas for Dirichlet condition the path 
obtained after fifty iterations is still not as smooth as in the 
Neumann case. 
  

 
 

(a) The generated path obtained after 50 iterations with Dirichlet 
boundary condition 

 

 
 

(b) Path generated with Neumann boundary condition after 50 
iterations 

 

Fig. 7 Path planning in a room of 20*20 blocks with a wall in the 
middle. Note the hollow square is the starting point 
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Fig. 8 State variables distribution in the network for the example 
shown in Fig. 7-b, (Neumann case). The two local extremes represent 

the target and the robot start points respectively 
 
 

Regarding the potential flow, Dirichlet boundary condition 
shows a flow starting from the obstacles in a normal direction 
towards the unique maximum (target), therefore the robot will 
first try to move away from the obstacles. However, in the 
case of Neumann boundary condition, the flow has a parallel 
direction with respect to obstacles which  forces the robot to 
move toward the wall until the flow direction is parallel to the 
wall , until then it will move in parallel to obstacles. This may 
increase the collision risk with the walls because of small 
tolerances maintained between the objects and the robot path. 

A unique property of Neumann case is that at external 
corners, when the robot tries to turn around, the tolerance is 
high enough. Dirichlet boundary condition, however, forces 
the robot to turn tightly close around the obstacle if 
insufficient number of iterations is allowed. Finally, it was 
noted that the path followed by the two methods is not 
necessarily the shortest, rather, it can be considered as a 
smooth path.  
 
 

 
 

(a) Path generated with Dirichlet boundary condition after 500 
iterations 

 
 

  

(b) Path generated with Neumann boundary condition after 500 
iterations 

Fig. 9 Path planning in a 40*40 room 
 

 
Fig. 10 Dirichlet case 
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Fig. 11 Neumann case 

 
Another example presented in Fig. 9. It shows the deference 

between the paths of the two boundary conditions. Here, 
Neumann boundary condition tries to force the robot to move 
ahead in parallel to the walls. In other words, the walls and the 
obstacles located in the working space are the guides for the 
robot path control.  

Fig. 10 presents an example for a dynamic workspace. The 
bottom block is moving to the left with a speed of 3 steps per 
unite of time while the robot can update its information every 
three steps and can move as fast as the speed of the obstacles. 

The first snapshot in Fig. 10 shows the first three steps that 
will be presented before the second update considering 

Dirichlet boundary condition. The second snapshot represents 
the next input pattern that includes three additional steps of the 
block towards the lift and three additional trajectory steps. 
Note since there is a small opening still found the robot would 
go down toward the moving bock. The third view shows the 
remaining path based on the third pattern update. In this 
configuration, the robot had to change its direction seeking for 
another path choice. 

The same example was used for the Neumann boundary 
condition, as illustrated in Fig. 11. The result was the same for 
the first 3 jumps. However, the second pattern update shows a 
different path. In Neumann case the robot could guess the 
right path faster than Dirichlet case where it could predict the 
path more precisely as compared to Dirichlet. 

 
VIII.  CONCLUSION 

This paper presented two different approaches to mobile 
robot path planning in an iterative manner. The two methods 
demonstrated successful trajectory planning of mobile robots 
in both stationary and dynamic environments. The ability to 
spread the heat potential around the destination point in 
Dirichlet boundary condition along with the new step priority 
rules helped find a collision free path. For the Neumann 
boundary condition case, the implementation of two source-to-
destination field diffusion decreases the time and the required 
number of iterations to achieve convergence to a feasible 
collision free path. The planned paths stay well away from the 
obstacles as illustrated by the conducted experiments. 

Dirichlet case is preferable when sufficient safety distance 
is required; however, it necessitates extra iterations to ensure 
good results, particularly at external edges and corners. In 
contrast, Neumann boundary condition provides safe turn-
around at external edges with less computational times.  

The most significant contribution of such work over the 
related effort is the use of a second order equation of the heat 
flow to model the robot attractiveness/repulsiveness to/from 
the destination/obstacles combined with topologically 
distributed neural network. In particular, the new transfer 
functions used to enhance the ability to evade small gradients 
of the state variables, the ability to plan the robot path in a 
dynamic environment, and the ability to track a moving target 
point. 

The combination of the two boundary conditions can be a 
valuable future extension where more short and safe paths can 
be found. Solving the second order differential heat equation 
in a continuous form over a continuous boundary conditions, 
and obstacle geometries will be a important future extension 
of such problem.  
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