
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:6, No:1, 2012

102

M.Sushanth Babu, P.Krishna, U.Venu and M.Ranjith 

Abstract—In this paper, we evaluate the choice of suitable 
quantization characteristics for both the decoder messages and the 
received samples in Low Density Parity Check (LDPC) coded 
systems using M-QAM (Quadrature Amplitude Modulation) 
schemes. The analysis involves the demapper block that provides 
initial likelihood values for the decoder, by relating its quantization 
strategy of the decoder. A mapping strategy refers to the grouping of 
bits within a codeword, where each m-bit group is used to select a 
2m-ary signal in accordance with the signal labels. Further we 
evaluate the system with mapping strategies like Consecutive-Bit 
(CB) and Bit-Reliability (BR). A new demapper version, based on 
approximate expressions, is also presented to yield a low complexity 
hardware implementation.  
 

Keywords—Low Density parity Check, Mapping, Demapping, 
Quantization, Quadrature Amplitude Modulation 

 

I. INTRODUCTION 

OW DENSITY PARITY CHECK (LDPC) codes are state-
of-art error correcting codes, included in several standards 
for broadcast transmissions.  Iterative soft-decision 

decoding algorithms for LDPC codes reach excellent error 
correction capability.  Great attention has been paid, in recent 
literature, to the topic of quantization for LDPC decoders, but 
mostly focusing on binary modulations and analyzing finite 
precision of the receiver.  

The LDPC error correcting code has gained immense 
attraction over turbo codes in second generation satellite 
transmission of digital television (European 
Telecommunication Standards Institute (ETSI)) and has 
already been proposed for the next generation digital terrestrial 
television standards (Digital Video Broadcasting (DVB))[1]. 
Modern telecommunication standards, often adopt high order 
modulation schemes, e.g. M-QAM, with the aim to achieve 
large spectral efficiency [2].   
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The aim of the paper is to study the effect of uniform and 
non-uniform quantization in SISO and reduce the complexity 
of the decoder with suitable approximations. 

The organization of the paper is as follows.  In Section II we 
describe the system model .We provide detail theoretical 
analysis of both Encoder and Decoder of LDPC with Tanner 
graph, in Section III. Section IV we describe the quantization 
for Irregular LDPC with Bit reliability Mapping Strategies.  
Section V provides different approximation strategies to reduce 
Look up table size. Finally, Section VI Second order 
approximation of Demapper is analysized. Section VII 
concludes the paper. 

II. SYSTEM MODEL 

 

 

Fig. 1  Block diagram of a LDPC-coded system 

 
The Fig. 1 depicts the general block diagram of a 

communication system with higher order modulation. The 
LDPC encoder maps each k–bit word produced by the source 
into an n-bit LDPC codeword. Each codeword is then passed to 
the mapper and modulator block, that transforms groups of 

Mt 2log= code bits into a symbol of the bi-dimensional M-

QAM constellation. The modulated signal is then transmitted 
over an Additive White Gaussian Noise (AWGN) channel. At 
the receiver side, the demapper block works as Maximum A- 
Posteriori (MAP) symbol-to-bit metric calculator, that is able to 
produce an initial likelihood value for each received bit. These 
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messages serve as input for the Sum-Product Algorithm (SPA), 
that starts iterating and, at each iteration, produces updated 
versions of the extrinsic and the a posteriori messages [3] 
which are further used as input for the subsequent iteration (if 
needed), which represents the decoder output, and serve to 
obtain an estimated codeword that is subject to the hard 
decision and the parity-check test.  

III.  LOW DENSITY PARITY CHECK CODES 

A.  Construction of G 

A generator matrix G is used for constructing the code. The 
generator matrix may be found from the parity check matrix H. 
First we note that     

                               
TT

X HXH =                                         (1) 

The code word x may be split into one information part i and 
one parity check part c. The code word may then be Written as 

                           ][ ci|X T =                                         (2) 

Correspondingly, the parity check matrix may be split into two 
matrices: 

                          ][A|BH =                                         (3) 

From (1), we note that vector i is multiplied with matrix A, 
whereas vector c is multiplied with matrix B. 

                        0=+ BcAi                                         (4) 

If the matrix B is non-singular, (4) may be inverted and the 
check bits c may be found from (5) 

                        AiBc 1−=                            (5) 

In practice, it may be necessary to swap over some of the 
columns in H  in order to become non-singular matrix B and  
the product AB 1− makes out the generator matrixG . This 
matrix is calculated once and used for all encoding. The parity 
check matrix is used for constructing a graph structure in the 
decoder. 

B.  Graph Structure 

The decoding of LDPC codes may be efficiently performed 
through the use of a graph structure. In this work, Tanner 
graphs will be used for the decoding [4]. The graph is 
constructed from the parity check matrix H. Each row in the 
matrix is represented by a check node, whereas each 1 in the 
row is represented by an edge into a bit node. Each column is 
represented by a bit node, and each 1 in the column 
corresponds to an edge into a check node. This is illustrated in 
Fig. 2 and Fig. 3. In this manner, a graph is constructed which 
contains a total of N bit nodes and M check nodes. The 
numbers of edges are decided by the number of 1’s in the 
parity check matrix. All edges are connected to a check node 
and to a bit node. The number of edges connected to a node 
denotes the degree of the node. 

 

 

Fig. 2  Check Nodes. 

 

Fig. 3  Bit Nodes. 

C.  Decoding 

In this context, the decoder is soft-decision input decoder, 
implying that it operates on the channel symbols, denoted by 

                                nxr +−= 12                                    (6) 

Where n is the AWGN noise vector added in the channel and x 
is the code word. Finding the probability of the parity of a 
vector is a central concept in the decoding of LDPC codes. 
Each parity check may be regarded as vector of even parity [5]. 
First, we define the Likelihood Ratio (LR) as the ratio between 
the two probabilities P(x = 1) and P(x = 0): 
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The symbol λ  is used for the Log Likelihood Ratio, 
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If x is a vector of bits and the LLR of a bit i in that vector is 
given by iλ  
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The notation   Φ(x)  is used for the vector parity. The LLR of 

the parity of the vector x is then given by: 

                       
)P(Φ

)P(Φ
λ

x

x
Φ(x) 0

1

=
=

=                        (10) 

Φ(x)λ Can be computed with (10) 
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Equation (11) is modified with respect to
Φ(x)λ : 
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The posteriori LLR of a bit n is given by: 
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The vector r may be split into two parts: nr   refers to the 

systematic part of the code word, and { }nir ≠ refers to the parity 

bits: 
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Where, Bayes rule is given by: 

                
P(b)

P(b,a)
p(a|b)=          (15) 

We use this rule in order to re-express the numerator of (14) 

              { } { }
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Further simplification based on the equality             

                               
P(b)

P(b,a)
p(a|b)=                                          

                     

{ }
{ }

n})})f({r|{rf(r

n}),{r)f(xr|xf(r

)r|rP(x

inin,

inninn,

nin,n

≠
≠==

=

=

≠

≠

≠

11

1

                (17) 

Where,  
2

2

2

12

22

1
σ

)x(r

nn

nn

e
πσ

)|xf(r
+−−

=             (18) 

              and  
n}],{rP[x

n}],{rP[x
r

σ
λ

in

in
nn ≠=

≠=
+=

0

1
log

2
2

             (19) 

If the parity of a vector x is 0 (even parity), the probability 
that a bit xn is 1, given the received values of the rest of the 
vector nri ≠ , is the same as the probability that the rest of the 

vector n}{r i ≠ has odd parity. 
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 If the vectors j321 x,......x,x,x are independent and n}{r i ≠ , 

then 
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In the graph, li,λ   is the message (contribution) from bit node 

i to check node l: 
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and the expression for LLR for nth bit can be simplified as 
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In the above equation first intrinsic message is added to 
previously calculate extrinsic message from j vector, which 
consists of n bits.  

IV.   BIT RELIABILITY MAPPING STRATEGY  

An irregular LDPC is characterized by  degree of 
distribution pair (λi ,ρj), where λi is the fraction of edges 
connected to variable nodes with degree i and ρj is the fraction 
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of edges connected to check nodes with degree j. Different 
variable node degrees imply different reliabilities after 
decoding. One way to explain this is to first note that the 
degree of a variable node is equal to the number of ones in the 
corresponding column of the code’s parity-check matrix H. 
The column of a parity-check matrix can be considered to be a 
repetition code with the number of ones corresponding to the 
number of repetitions. 

For M-ary modulation, we transmit m bits, ( 1−mc ... c1, c0), 

in different levels (or “bit planes”). Bits transmitted at 
different levels are protected differently. The LSB level has 
the weakest protection than MSB. Based on this knowledge, 
we propose a Bit-reliability mapping strategy. We map the 
less reliable LDPC code bits to the lower level modulation bits 
and the more reliable bits to the higher level bits. 

V. QUANTIZATION OF THE RECEIVED SIGNALS 

The effect of the quantization on the input received samples 
can be related, through a simple analytical approach of 
decoder message quantization. An estimate of the number of 

quantization bits for the input signals sm  can be easily found 

that is compatible with the resolution ed adopted for the 

messages, to further avoid the performance degradation. 

A. Estimation of the Maximum Quantization Error 

Once having obtained qx and qy , as the results of an 

analog-to-digital conversion, these values are used to calculate 
the σ),y,(xf qqk  for each set of codeword bits (k=1,..,4, in  

the considered 16-QAM). Noting by sT2  the dynamic range 

of the input x and y ( sT =4) and by sm the number of 

quantization bits adopted, under the hypothesis of using 
uniform midrise quantization, the quantization step 

is 12 −= sm
ss /Td . The maximum quantization error at the 

input, for x and y, respectively, is 2/d∆y∆x s== , and it 

reflects on a maximum error k∆z on the LLR of the k-th bit. 

Obviously, this propagated error depends onsm , and a 

suitable design criterion should satisfy the condition:  

                                   
2
e

k
d

∆z ≤                                         (24) 

Where, ed represents the constant interval amplitude in  

uniform LLR quantization, while it can be replaced by the 

minimum interval amplitude ( min
ed ) when non-uniform LLR 

quantization is adopted. If equation (24) is verified, the signal 
quantization has no impact on the decoder messages 
quantization, and the BER performance is exactly the same 

achievable with unquantized input samples.k∆z Can be 

approximated through the following expression:          
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Partial derivatives appearing in (25) can be easily computed, 
and the final result is:  
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Where ms , Ts are implicit in ds and the noise variance 2σ    
influences the results. 

B. Optimization of the Signal Quantization Parameters 

By computing max k∆z through (26) and inserting it in (5), 

we are able to find couples of values (ms ,Ts) that, regardless 
of x and y , ensure an error on the LLRs, as induced by the 
quantization of the received samples, not larger than that 
permitted for extrinsic messages quantization. Noting by 2a 
the distance between adjacent symbols in the 16-QAM 
constellation, the following relationship holds:  

                        
25

04

252
1

a

/Nb.k/n.E

a

SNR

σ
==                          (27) 

Therefore, ms for fixed Ts, depends on the average signal-
to-noise ratio per bit. The required value of ms for each bit is a 
step-wise increasing function of  Eb / N0 . Clearly, in order to 
satisfy condition (24) in a given range of values and for all the 
bit positions, it is necessary to assume the greatest (i.e., most 
stringent) value of ms.  

This estimate can be used to forecast the actual 
performance. For the sake of verification, we have considered 
uniform quantization of the decoder messages (that is the most 
critical case, having constant resolution) and repeated, in Fig. 
4, the simulation in Fig. 5, but now considering also the 
quantization of the received samples for different numbers of 
quantization bits ms [ ]105,∈ . Coherent with the theory, the 
curve with ms = 10 is exactly superposed to the unquantized 
one. Anyway, we also see that the simulated performance 
degradation for a lower ms can be very small, and even with 
ms = 5 it remains below 0.2 dB. 
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(a) 

 

(b) 

Fig. 4  Performance of the considered LDPC code for uniform (Msg 
me- Te) and non uniform (Msg me-Te-F) midtread decoder messages 

quantization:(a)BER versus Eb/No (b) FER versus Eb/No. 

 

The value of ms obtained by imposing (24) is quite 
conservative; it aims to ensure that the error on the received 
samples is always not greater than that on the decoder 
messages. When such a condition is unsatisfied, it is not 
realistic to think that performance becomes immediately bad: 
first of all the threshold at the right hand side of (24) could be 
exceeded for a small fraction of time and by a limited amount; 

 

(a) 

 

(b) 

Fig. 5 Performance of the considered LDPC code for uniform midrise 
samples quantization (Sig me-Te) and  uniform midtread decoder 
messages quantization(Msg me-Te):(a)BER versus Eb/No (b) FER 

versus Eb/No 

 

secondly, the sensitivity of the decoding algorithm on the 
initial condition should be taken into account, so that it is not 
sure that any excess translates into an additional error. For this 
reason, the value of ms calculated by means of (5) only 
represents a “sufficient” condition to obtain the desired good 
performance. On the other hand, one can object that such an 
overestimate (in the specified sense) of the value of ms obliges 
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to operate with a number of quantization bits unacceptably 
high. However, it should be noticed that the value of ms only 
affects the demapper, not the decoder (whose registers are 
involved in the message passing algorithm) [8].  

VI .    DEMAPPER BASED ON APROXIMATION EXPRESSION 

A. Second Order Approximation      

The value of SNR (and then of ob /NE ) is sufficiently high, 

can be greatly simplified by considering, in each sum. This 
dominant contribution is due to the 

signals ky Ajsss ∈+= 000 and ky Bjsss ∈+= 111 for which k, 

are at minimum distance from the received sample. This 
technique coincides with the log-sum approximation and has 
been successfully applied for both product codes [6] and 
convolutional codes [7]. Actually, by imposing this 
simplification and taking into account becomes:  

               .
d
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yyxxk 25
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−+−≈          (28) 

It is easy to see thats0  and s1  have always in common the in-

phase component (i.e., 10
xx ss = ) or the quadrature component 

(i.e., 10
yy ss = ) and that the maximum difference between the 

unequal components is 4a.Together with the highlighted 
maximum value, with simple algebra we find:  
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where [x] is the smallest integer greater than x.  

The same simplification used in (28) can be also introduced 
in the LLR expression. This looks like the classic max-log 
approximation. Under the same hypotheses:  
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 The residual difference between )L(bk and )L'(bk , is 

appreciable for small signal-to-noise ratios. An example is 
shown in Fig. 6, for ob /NE =0 dB, where )L(b1 and )L(b2 are 

plotted as a function of x, for an arbitrary y. The difference 
becomes smaller and smaller for increasing signal-to-noise 
ratios and, at the values of ob /NE of interest (i.e., those 

required to have low error rates), it is usually acceptable for all 
bits. An example is shown in Fig. 7 for ob /NE =8dB; in this 

case the exact and approximate curves are almost overlaid. In 
comparison with Fig. 6, it is interesting to observe the very 
different LLRs dynamics. 

B.  Simplified Demapper 

The acceptability of the approximation suggests a simple 
solution to reduce considerably the complexity of the 
demapper block. The exact expression for )L(bk , in fact, 

requires the implementation of a processor to calculate 
σ)y,(x,f k  , for given inputs. An alternative solution would be 

to store the values of σ)y,(x,f k  in a Look Up Table (LUT) 

indexed on xq,yq,σ q (i.e. the quantized versions of x ,y,σ , 
respectively). Due to the linearity in the SNR from the 
equation (30), the mc bit level indexes the quantized version of 

20202121 )s(y)s(x)s(y)s(x(x,y)f yxyxk −−−−−+−=  to be stored in the 

LUT, in place of those of )(' kbL  . 

 

Fig. 6  Comparision between the exact and approximate LLRs for the 
first two bits,as a function of x (fixed y),at o/NbE =0dB 

 
The dependence on the SNR is eliminated, and the mc bit 

output words only depend on the ms bit input words, regardless 
of the channel. To reconstruct the value of )L'(bk from each 

mc bit value, if needed, the circuit shown in Fig. 8 can be 
adopted. It multiplies each level index by the fixed point 

representation of )aSNR/( 210 . This circuit uses an SNR value 

that is continuously estimated at the receiver side, by using the 
Signal / Mean Square Error (S/MSE) ratio. When 
multiplication is performed, it is easy to show that, if l is the 
number of bits used to represent (the always positive quantity) 

)aSNR/( 210 and the mc bit index includes one sign bit, then 

output value of )L'(bk  can be represented through m’=mc+l  

bits, at the most. 
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Fig. 7  Comparision between the exact and approximate LLRs for the   

first two bits,as a function of x (fixed y),at ob/NE =8dB. 

VI. CONCLUSION 

We studied the performance of LDPC-coded modulation 
systems with 8PSK and 16QAM. With the proposed Second 
order approximation demapper strategy, a 0.15 dB - 0.2 dB 
performance improvement over the conventional mapping 
method is achieved. The performance of LDPC-coded 
modulation systems with Gray and natural labeling are 
studied. For natural labeling, iterative decoding/demodulation 
is required whereas demodulating is necessary for Gray 
labeling. We showed that mapper and demapper involved 
systems are always superior to systems. 
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