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Oscillation criteria for nonlinear second-order
damped delay dynamic equations on time scales

Da-Xue Chen and Guang-Hui Liu

Abstract—In this paper, we establish several oscillation criteria for
the nonlinear second-order damped delay dynamic equation

(

r(t)|xΔ(t)|β−1xΔ(t)
)Δ

+ p(t)|xΔσ(t)|β−1xΔσ(t)

+ q(t)f(x(τ(t))) = 0

on an arbitrary time scale T, where β > 0 is a constant. Our results
generalize and improve some known results in which β > 0 is
a quotient of odd positive integers. Some examples are given to
illustrate our main results.

Keywords—Oscillation, Damped delay dynamic equation, Time
scale.

I. INTRODUCTION

IN this paper, we investigate the oscillation of the nonlinear
second-order damped delay dynamic equation

(

r(t)|xΔ(t)|β−1xΔ(t)
)Δ

+ p(t)|xΔσ(t)|β−1xΔσ(t)

+ q(t)f(x(τ(t))) = 0 (1)

on an arbitrary time scale T, where β > 0 is a constant,
r, p and q are positive rd-continuous functions on time scale
interval [t0,∞), and τ : T → T satisfies τ(t) ≤ t for t ∈ T

and limt→∞ τ(t) = ∞. The function f ∈ C(R,R) is assumed
to satisfy uf(u) > 0 and |f(u)| ≥ K|uβ |, for u �= 0 and for
some K > 0. Since the oscillatory behavior of solutions near
infinity is our primary concern, we make the assumption that
sup T = ∞.

Recall that a solution of (1) is a nontrivial real function
x such that x ∈ C1

rd[tx,∞) and r(t)|xΔ(t)|β−1xΔ(t) ∈
C1

rd[tx,∞) for a certain tx ≥ t0 and satisfying (1) for t ≥ tx.
Our attention is restricted to those solutions of (1) which exist
on the half-line [tx,∞) and satisfy sup{|x(t)| : t > t∗} > 0
for any t∗ ≥ tx. A solution x of (1) is said to be oscillatory
if it is neither eventually positive nor eventually negative;
otherwise it is nonoscillatory. Equation (1) is said to be
oscillatory if all its solutions are oscillatory.

Recently, much interest has focused on obtaining sufficient
conditions for the oscillation and nonoscillation of solutions
of different classes of dynamic equations on time scales, and
we refer the reader to [1]–[27]. In particular, much work
has been done on second-order damped dynamic equations.
For example, Guseinov and Kaymakçalan [21] considered the
linear damped dynamic equation

xΔΔ(t) + p(t)xΔ(t) + q(t)x(t) = 0, (2)

Da-Xue Chen and Guang-Hui Liu are with the College of Science, Hunan
Institute of Engineering, 88 East Fuxing Road, Xiangtan 411104, Hunan, P.
R. China.

Corresponding author: Da-Xue Chen, e-mail: cdx2003@163.com.

where p and q are positive rd-continuous functions, and
established some sufficient conditions for nonoscillation. They
proved that if

∫ ∞

t0

p(t)Δt <∞ and
∫ ∞

t0

tq(t)Δt <∞,

then (2) is nonoscillatory.
In [22], Erbe et al. considered (2) and the nonlinear damped

dynamic equation

xΔΔ(t) + p(t)xΔσ(t) + q(t)(f ◦ xσ)(t) = 0, (3)

where p and q are positive rd-continuous functions and f ∈
C(R,R) is assumed to satisfy

{

xf(x) > 0 for x �= 0,
|f(x)| ≥ K|x| for some K > 0, (4)

and established some sufficient conditions for oscillation by
reducing the equations to the self-adjoint form and employing
the generalized Riccati transformation technique.

In [23], Erbe and Peterson considered (3) and obtained
an oscillation criterion when p is nonnegative rd-continuous
function and

f ′(x) ≥ f(x)
x

≥ λ > 0 for |x| ≥ L > 0. (5)

No explicit sign assumptions are made with respect to the coef-
ficient q and the oscillation criterion is obtained by comparing
the oscillation of (3) with the self-adjoint equation

(ep(t, t0)xΔ(t))Δ + λep(t, t0)q(t)xσ(t) = 0,

when
∫ ∞

t0
e−p(t, t0)Δt = ∞.

Bohner et al. [24] considered (3) when

f ′(x) > 0 and xf(x) > 0 for x �= 0 (6)

and established some new oscillation criteria in which no
explicit sign assumptions on p and q are required. The results
are obtained by reducing the equation to the nonlinear equation

(ep(t, t0)xΔ(t))Δ + ep(t, t0)q(t)(f ◦ xσ)(t) = 0.

Saker et al. [25] gave some oscillation criteria for the
second-order nonlinear damped dynamic equation

(r(t)xΔ(t))Δ + p(t)xΔσ(t) + q(t)(f ◦ xσ)(t) = 0,

where r, p and q are positive rd-continuous functions and f ∈
C(R,R) satisfies (4) or

f ′(x) ≥ K for x �= 0 and some K > 0.
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The results are essentially new and complement the nonoscil-
lation conditions for (2) for the linear case that has been
established in [21].

Very recently, Erbe et al. [26] presented several oscillation
criteria for the second-order nonlinear damped delay dynamic
equation

(

r(t)(xΔ(t))β
)Δ

+ p(t)(xΔσ(t))β + q(t)f(x(τ(t))) = 0,

where β is a quotient of odd positive integers.
However, all the results in [21]–[25] cannot be applied to

(1) when β �= 1. Also, the results in [26] cannot be applied to
(1) when β is not equal to a quotient of odd positive integers.
Furthermore, in the case when f(x) = x

(

1
9 + 1

1+x2

)

, the
conditions (5) and (6) do not hold and the results in [23],
[24] cannot be applied, since f ′(x) = (x2−2)(x2−5)

9(1+x2)2 changes
sign four times (see Saker et al. [25]). Therefore, it is of great
interest to study (1) when β > 0 is a constant. The main goal
of this paper is to establish some new criteria for the oscillation
of (1) when β > 0 is a constant. Our results are essentially
new and extend and improve the results in [21]–[26].

This paper is organized as follows: In the next section, we
present some preliminaries on time scales and several lemmas
which enable us to prove our main results. In Section 3, we
establish several new oscillation criteria for (1). In the last
section, we illustrate our results with some examples to which
the oscillation criteria in [21]–[26] fail to apply.

In what follows, for convenience, when we write a func-
tional inequality without specifying its domain of validity we
assume that it holds for all sufficiently large t.

II. PRELIMINARIES ON TIME SCALES AND LEMMAS

For completeness, we recall the following concepts related
to the notion of time scales. More details can be found in [5],
[6].

A time scale T is an arbitrary nonempty closed subset of
the real numbers R. We assume throughout that T has the
topology that it inherits from the standard topology on the
real numbers R. Some examples of time scales are as follows:
the real numbers R, the integers Z, the positive integers N,
the nonnegative integers N0, [0, 1] ∪ [2, 3], [0, 1] ∪ N, hZ :=
{hk : k ∈ Z, h > 0} and qZ := {qk : k ∈ Z, q > 1} ∪ {0}.
But the rational numbers Q, the complex numbers C and the
open interval (0, 1) are no time scales. Many other interesting
time scales exist, and they give rise to plenty of applications
(see [5]).

For t ∈ T, the forward jump operator and the backward
jump operator are defined by:

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
where inf ø = sup T (i.e., σ(t) = t if T has a maximum t)
and sup ø = inf T (i.e., ρ(t) = t if T has a minimum t), here
ø denotes the empty set.

Let t ∈ T. If σ(t) > t, we say that t is right-scattered, while
if ρ(t) < t, we say that t is left-scattered. Points that are right-
scattered and left-scattered at the same time are called isolated.
Also, if t < sup T and σ(t) = t, then t is called right-dense,

and if t > inf T and ρ(t) = t, then t is called left-dense. The
graininess function μ : T → [0,∞) is defined by

μ(t) := σ(t) − t.

We also need below the set T
κ: If T has a left-scattered

maximum m, then T
κ = T − {m}. Otherwise, T

κ = T. Let
f : T → R, then we define the function fσ : T

κ → R by

fσ(t) := f(σ(t)) for all t ∈ T
κ,

i.e., fσ := f ◦ σ.
For a, b ∈ T with a < b, we define the interval [a, b] in T

by
[a, b] := {t ∈ T : a ≤ t ≤ b}.

Open intervals and half-open intervals, etc. are defined accord-
ingly.

Fix t ∈ T
κ and let f : T → R. Define fΔ(t) to be the

number (provided it exists) with the property that given any
ε > 0, there is a neighbourhood U of t such that

|[f(σ(t))−f(s)]−fΔ(t)[σ(t)−s]| ≤ ε|σ(t)−s| for all s ∈ U.

In this case, we say that fΔ(t) is the (delta) derivative of f
at t and that f is (delta) differentiable at t.

Assume that f : T → R and let t ∈ T
κ. If f is (delta)

differentiable at t, then

f(σ(t)) = f(t) + μ(t)fΔ(t). (7)

A function f : T → R is said to be right-dense continuous
(rd-continuous) provided it is continuous at each right-dense
point in T and its left-sided limits exist (finite) at all left-
dense points in T. The set of all such rd-continuous functions
is denoted by

Crd(T) = Crd(T,R).

The set of functions f : T → R that are (delta) differentiable
and whose (delta) derivative is rd-continuous is denoted by

C1
rd(T) = C1

rd(T,R).

We will make use of the following product and quotient
rules for the (delta) derivative of the product fg and the
quotient f/g (where ggσ �= 0, here gσ = g ◦σ) of two (delta)
differentiable functions f and g:

(fg)Δ = fΔgσ + fgΔ = fΔg + fσgΔ (8)

and
(f

g

)Δ

=
fΔg − fgΔ

ggσ
. (9)

For a, b ∈ T and a (delta) differentiable function f , the
Cauchy (delta) integral of fΔ is defined by

∫ b

a

fΔ(t)Δt = f(b) − f(a).

The integration by parts formula reads
∫ b

a

f(t)gΔ(t)Δt = f(b)g(b)− f(a)g(a)−
∫ b

a

fΔ(t)gσ(t)Δt

(10)
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or
∫ b

a

fσ(t)gΔ(t)Δt = f(b)g(b)−f(a)g(a)−
∫ b

a

fΔ(t)g(t)Δt.

(11)
The infinite integral is defined as

∫ ∞

a

f(s)Δs = lim
t→∞

∫ t

a

f(s)Δs.

Next we present some lemmas which we will need in the
proof of our main results.

Throughout this paper, we let

E(t) := e p(t)
rσ(t)

(t, t0), g(t) :=
∫ ∞

τ(t)

( 1
E(s)r(s)

)1/β

Δs,

and

α(t, u) :=
∫ τ(t)

u

(

1
r(s)

)1/β

Δs
/

∫ σ(t)

u

(

1
r(s)

)1/β

Δs.

Lemma 1. Suppose that
∫ ∞

t0

( 1
E(t)r(t)

)1/β

Δt = ∞ (12)

holds and x is an eventually positive solution of (1). Then

xΔ(t) > 0 and
(

r(t)(xΔ(t))β
)Δ

< 0.

Proof. Take t1 ≥ t0 such that

x(τ(t)) > 0, t ∈ [t1,∞). (13)

Therefore, from (1) we have
(

r(t)|xΔ(t)|β−1xΔ(t)
)Δ

+ p(t)|xΔσ(t)|β−1xΔσ(t)

= −q(t)f(x(τ(t))) < 0, t ∈ [t1,∞), (14)

which implies
(

r(t)|xΔ(t)|β−1xΔ(t)
)Δ

E(t)

+
(

r(t)|xΔ(t)|β−1xΔ(t)
)σ

E(t)
p(t)
rσ(t)

< 0, t ∈ [t1,∞).

Since EΔ(t) = E(t) p(t)
rσ(t) , we obtain

(

E(t)r(t)|xΔ(t)|β−1xΔ(t)
)Δ

< 0, t ∈ [t1,∞). (15)

Now, we claim xΔ(t) > 0 for t ∈ [t1,∞). If not, then there
exists t2 ≥ t1 such that xΔ(t2) ≤ 0. Take t3 > t2. Since (15)
implies that E(t)r(t)|xΔ(t)|β−1xΔ(t) is strictly decreasing on
[t1,∞), we get, for t ≥ t3

E(t)r(t)|xΔ(t)|β−1xΔ(t)

≤ c1 := E(t3)r(t3)|xΔ(t3)|β−1xΔ(t3)

< E(t2)r(t2)|xΔ(t2)|β−1xΔ(t2)
≤ 0.

Thus, for t ≥ t3 we conclude that xΔ(t) < 0,
−E(t)r(t)(−xΔ(t))β ≤ c1 and

xΔ(t) ≤ −(−c1)1/β
( 1
E(t)r(t)

)1/β

.

Integrating from t3 to t, we find

x(t) ≤ x(t3)−(−c1)1/β

∫ t

t3

( 1
E(s)r(s)

)1/β

Δs, t ∈ [t3,∞).

Therefore, from (12) we obtain that x(t) is eventually negative,
which is a contradiction. Hence, we have xΔ(t) > 0 for t ∈
[t1,∞) and thus, from (14) we get
(

r(t)(xΔ(t))β
)Δ

= −p(t)(xΔσ(t))β − q(t)f(x(τ(t))) < 0

for t ∈ [t1,∞). The proof is complete. �

Lemma 2. Suppose that
∫ ∞

t0

[

1
E(v)r(v)

∫ v

t0

E(u)q(u)gβ(u)Δu
]1/β

Δv = ∞ (16)

holds and x is an eventually positive solution of (1). Then

xΔ(t) > 0 and
(

r(t)(xΔ(t))β
)Δ

< 0.

Proof. We proceed as in the proof of Lemma 1 to get that
(13)–(15) hold. Now, we claim xΔ(t) > 0 for t ∈ [t1,∞). If
not, then we proceed as in the proof of Lemma 1 to obtain that
there exists t3 ≥ t1 such that xΔ(t) < 0 for t ∈ [t3,∞). Take
t4 ≥ t3 such that τ(t) ≥ t3 for t ∈ [t4,∞). Using the fact
that −E(t)r(t)(−xΔ(t))β is strictly decreasing on [t1,∞), we
have

− x(τ(t)) ≤ x(∞) − x(τ(t))

= −
∫ ∞

τ(t)

[E(s)r(s)(−xΔ(s))β ]1/β

[E(s)r(s)]1/β
Δs

≤ −[E(τ(t))r(τ(t))(−xΔ(τ(t)))β ]
1
β

∫ ∞

τ(t)

1
[E(s)r(s)]1/β

Δs

≤ −[E(t3)r(t3)(−xΔ(t3))β ]1/β

∫ ∞

τ(t)

1
[E(s)r(s)]1/β

Δs

= c2g(t), t ∈ [t4,∞),

where x(∞) := limt→∞ x(t) ≥ 0 and c2 :=
−[E(t3)r(t3)(−xΔ(t3))β ]1/β < 0. Thus, from (14) we obtain

−
(

E(t)r(t)(−xΔ(t))β
)Δ

= −E(t)q(t)f(x(τ(t)))

≤ −KE(t)q(t)xβ(τ(t))

≤ −K(−c2)βE(t)q(t)gβ(t)

for t ∈ [t4,∞). Integrating from t4 to t, we get

−E(t)r(t)(−xΔ(t))β ≤ −E(t4)r(t4)(−xΔ(t4))β

−K(−c2)β

∫ t

t4

E(u)q(u)gβ(u)Δu

≤ −K(−c2)β

∫ t

t4

E(u)q(u)gβ(u)Δu
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for t ∈ [t4,∞). From the last inequality, we have

xΔ(t) ≤ K
1
β c2

[

1
E(t)r(t)

∫ t

t4

E(u)q(u)gβ(u)Δu
]1/β

for t ∈ [t4,∞). Integrating from t4 to t, we find

x(t) ≤ x(t4)

+K
1
β c2

∫ t

t4

[

1
E(v)r(v)

∫ v

t4

E(u)q(u)gβ(u)Δu
]

1
β

Δv

for t ∈ [t4,∞). Therefore by (16), we obtain limt→∞ x(t) =
−∞, which contradicts the fact that x is an eventually positive
solution of (1). Hence, we have xΔ(t) > 0 for t ∈ [t1,∞) and
thus, from (14) we get
(

r(t)(xΔ(t))β
)Δ

= −p(t)(xΔσ(t))β − q(t)f(x(τ(t))) < 0

for t ∈ [t1,∞). The proof is complete. �

Lemma 3. Assume that
∫ ∞

t0

( 1
E(v)r(v)

∫ v

t0

E(u)q(u)Δu
)1/β

Δv = ∞ (17)

holds and x is an eventually positive solution of (1). Then either

xΔ(t) > 0 and
(

r(t)(xΔ(t))β
)Δ

< 0

or limt→∞ x(t) = 0.

Proof. We consider two cases: (i) xΔ(t) > 0; (ii) xΔ(t) ≤ 0.
Case (i): suppose xΔ(t) > 0. In this case, it follows from

(1) that
(

r(t)(xΔ(t))β
)Δ

= −p(t)(xΔσ(t))β − q(t)f(x(τ(t))) < 0.

Case (ii): suppose xΔ(t) ≤ 0. In this case, we get
limt→∞ x(t) := l ≥ 0 and x(τ(t)) ≥ l. Therefore, from (1)
there exists t1 ≥ t0 such that

−
(

E(t)r(t)(−xΔ(t))β
)Δ

= −E(t)q(t)f(x(τ(t)))

≤ −KE(t)q(t)xβ(τ(t))

≤ −KlβE(t)q(t), t ∈ [t1,∞).

Integrating from t1 to t, we have

− E(t)r(t)(−xΔ(t))β

≤ −E(t1)r(t1)(−xΔ(t1))β −Klβ
∫ t

t1

E(u)q(u)Δu

≤ −Klβ
∫ t

t1

E(u)q(u)Δu, t ∈ [t1,∞).

Thus, for t ∈ [t1,∞) we obtain

xΔ(t) ≤ −K 1
β l

( 1
E(t)r(t)

∫ t

t4

E(u)q(u)Δu
)1/β

.

Integrating from t1 to t, we get

x(t) ≤ x(t1)−K
1
β l

∫ t

t1

( 1
E(v)r(v)

∫ v

t1

E(u)q(u)Δu
)1/β

Δv

for t ∈ [t1,∞). If l > 0, then by (17) we obtain
limt→∞ x(t) = −∞, which contradicts the fact that x
is an eventually positive solution of (1). Hence, we have
l = 0, i.e., limt→∞ x(t) = 0. The proof is complete. �

Lemma 4. Assume that there exists T ≥ t0 such that

x(t) > 0, xΔ(t) > 0 and
(

r(t)(xΔ(t))β
)Δ

< 0

for t ∈ [T,∞). Then x(τ(t)) ≥ α(t, T )xσ(t) for t ∈ [T1,∞),
where T1 > T satisfies that τ(t) > T for t ∈ [T1,∞).

Proof. Since r(t)(xΔ(t))β is strictly decreasing on [T,∞), for
t ∈ [T1,∞) we have

xσ(t) − x(τ(t)) =
∫ σ(t)

τ(t)

[r(s)(xΔ(s))β ]1/β

r1/β(s)
Δs

≤ [r(τ(t))(xΔ(τ(t)))β ]1/β

∫ σ(t)

τ(t)

1
r1/β(s)

Δs

and

xσ(t)
x(τ(t))

≤ 1 +
[r(τ(t))(xΔ(τ(t)))β ]1/β

x(τ(t))

∫ σ(t)

τ(t)

1
r1/β(s)

Δs.

(18)
Also, for t ∈ [T1,∞) we get

x(τ(t)) > x(τ(t)) − x(T ) =
∫ τ(t)

T

[r(s)(xΔ(s))β ]1/β

r1/β(s)
Δs

≥ [r(τ(t))(xΔ(τ(t)))β ]1/β

∫ τ(t)

T

1
r1/β(s)

Δs

and

[r(τ(t))(xΔ(τ(t)))β ]1/β

x(τ(t))
<

(

∫ τ(t)

T

1
r1/β(s)

Δs
)−1

. (19)

Therefore, (18) and (19) imply

xσ(t)
x(τ(t))

≤ 1 +
∫ σ(t)

τ(t)

1
r1/β(s)

Δs
(

∫ τ(t)

T

1
r1/β(s)

Δs
)−1

=
∫ σ(t)

T

1
r1/β(s)

Δs
(

∫ τ(t)

T

1
r1/β(s)

Δs
)−1

,

for t ∈ [T1,∞). Hence, we obtain x(τ(t)) ≥ α(t, T )xσ(t)
for t ≥ T1. The proof is complete. �

Lemma 5. (Bohner and Peterson [5], p. 32, Theorem 1.87)
Let f : R → R be continuously differentiable and suppose
g : T → R is delta differentiable. Then f ◦ g : T → R is delta
differentiable and satisfies

(f ◦ g)Δ(t) =
{

∫ 1

0

f ′(g(t) + hμ(t)gΔ(t))dh
}

gΔ(t).

Lemma 6. (Hardy et al. [28]) If X and Y are nonnegative,
then

λXY λ−1 −Xλ ≤ (λ− 1)Y λ when λ > 1,

where the equality holds if and only if X = Y.
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III. MAIN RESULTS

Theorem 1. Suppose one of the conditions (12) or (16)
holds. Furthermore, suppose that there exists a positive Δ-
differentiable function ϕ(t) such that for all sufficiently large
T ≥ t0,

lim sup
t→∞

∫ t

T1

[

Kαβ(s, T )ϕ(s)q(s) − r(s)(Q+(s))β+1

(β + 1)β+1ϕβ(s)

]

Δs

= ∞, (20)

where T1 > T satisfies that τ(t) > T for t ∈ [T1,∞) and
Q+(t) := max{0, Q(t)}, here Q(t) := ϕΔ(t)− ϕ(t)p(t)

rσ(t) . Then
every solution of (1) is oscillatory.

Proof. Suppose that x is a nonoscillatory solution of (1).
Without loss of generality, we may assume that x is an
eventually positive solution of (1). Then, by Lemma 1 and
2.2 there exists T ≥ t0 such that

x(τ(t)) > 0, xΔ(t) > 0 and
(

r(t)(xΔ(t))β
)Δ

< 0

for t ∈ [T,∞). Define the function w by the generalized
Riccati substitution

w(t) = ϕ(t)
r(t)(xΔ(t))β

xβ(t)
. (21)

It is easy to see that w(t) > 0 for t ∈ [T,∞). By the product
and quotient rules (8) and (9) for the Δ-derivative of two Δ-
differentiable functions, we have

wΔ(t) = ϕΔ(t)
(r(t)(xΔ(t))β

xβ(t)

)σ

+ ϕ(t)
(r(t)(xΔ(t))β

xβ(t)

)Δ

= ϕΔ(t)
(r(t)(xΔ(t))β

xβ(t)

)σ

+ ϕ(t)
[r(t)(xΔ(t))β ]Δ

(xβ(t))σ

− ϕ(t)
r(t)(xΔ(t))β(xβ(t))Δ

xβ(t)(xβ(t))σ
, t ∈ [T,∞).

Hence, from (1), (21) and the definition of Q(t) we obtain

wΔ(t) ≤ Q(t)
ϕσ(t)

wσ(t) −Kϕ(t)q(t)
(x(τ(t))
xσ(t)

)β

− ϕ(t)
r(t)(xΔ(t))β(xβ(t))Δ

xβ(t)(xβ(t))σ
, t ∈ [T,∞). (22)

Since t ≤ σ(t) and
(

r(t)(xΔ(t))β
)Δ

is strictly decreasing

on t ∈ [T,∞), we get r(t)(xΔ(t))β ≥
(

r(t)(xΔ(t))β
)σ

for
t ∈ [T,∞). Thus, from (21) and (22), we have

wΔ(t) ≤ Q(t)
ϕσ(t)

wσ(t) −Kϕ(t)q(t)
(x(τ(t))
xσ(t)

)β

− ϕ(t)
wσ(t)
ϕσ(t)

(xβ(t))Δ

xβ(t)
, t ∈ [T,∞).

Taking T1 > T such that τ(t) > T for t ∈ [T1,∞), it follows
from Lemma 4 that

wΔ(t) ≤ Q(t)
ϕσ(t)

wσ(t) −Kαβ(t, T )ϕ(t)q(t)

− ϕ(t)
wσ(t)
ϕσ(t)

(xβ(t))Δ

xβ(t)
, t ∈ [T1,∞).

By Lemma 5, for t ∈ [T1,∞) we obtain

(xβ(t))Δ = β

{
∫ 1

0

[x(t) + hμ(t)xΔ(t)]β−1dh

}

xΔ(t)

= β

{
∫ 1

0

[(1 − h)x(t) + hxσ(t)]β−1dh

}

xΔ(t)

≥
{

β(x(t))β−1xΔ(t), β > 1,
β(xσ(t))β−1xΔ(t), 0 < β ≤ 1.

Therefore, for t ∈ [T1,∞), if 0 < β ≤ 1, we get

wΔ(t) ≤ Q(t)
ϕσ(t)

wσ(t) −Kαβ(t, T )ϕ(t)q(t)

− βϕ(t)
wσ(t)
ϕσ(t)

xΔ(t)
xσ(t)

(xσ(t)
x(t)

)β

, (23)

whereas if β > 1, we get

wΔ(t) ≤ Q(t)
ϕσ(t)

wσ(t) −Kαβ(t, T )ϕ(t)q(t)

− βϕ(t)
wσ(t)
ϕσ(t)

xΔ(t)
xσ(t)

xσ(t)
x(t)

. (24)

Using the fact that x(t) is strictly increasing and r(t)(xΔ(t))β

is strictly decreasing, we have

xσ(t) ≥ x(t), xΔ(t) ≥
(rσ(t)
r(t)

)1/β

(xΔ(t))σ, t ∈ [T1,∞).

(25)
From (23), (24) and (25), we obtain

wΔ(t) ≤ Q(t)
ϕσ(t)

wσ(t) −Kαβ(t, T )ϕ(t)q(t)

− βϕ(t)
wσ(t)
ϕσ(t)

(rσ(t)
r(t)

)1/β (xΔ(t))σ

xσ(t)
, t ∈ [T1,∞).

In view of (21), we get

wΔ(t) ≤ Q+(t)
ϕσ(t)

wσ(t) −Kαβ(t, T )ϕ(t)q(t)

− βϕ(t)(wσ(t))λ

(ϕσ(t))λr1/β(t)
, t ∈ [T1,∞), (26)

where λ := 1 + 1
β . Taking

X =
(βϕ(t))1/λwσ(t)
ϕσ(t)r1/(β+1)(t)

and Y =
(βr(t))1/λ(Q+(t))β

(β + 1)βϕβ/λ(t)
,

by Lemma 6 and (26) we have

wΔ(t) ≤ r(t)(Q+(t))β+1

(β + 1)β+1ϕβ(t)
−Kαβ(t, T )ϕ(t)q(t)

for t ∈ [T1,∞). Integrating from T1 to t, we obtain
∫ t

T1

[

Kαβ(s, T )ϕ(s)q(s) − r(s)(Q+(s))β+1

(β + 1)β+1ϕβ(s)

]

Δs

≤ w(T1) − w(t) < w(T1), t ∈ [T1,∞),

which implies a contradiction to (20). The proof is complete.
�

The following theorem gives a Philos-type oscillation
criterion for (1).
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Theorem 2. Suppose one of the conditions (12) or (16) holds.
Furthermore, suppose that there exist a positive function ϕ ∈
C1

rd([t0,∞),R) and a function H ∈ Crd(D,R), where D :=
{(t, s) ∈ T × T : t ≥ s ≥ t0}, such that

H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for (t, s) ∈ D0,

where D0 := {(t, s) ∈ T × T : t > s ≥ t0}, and H has
a nonpositive rd-continuous delta partial derivative HΔs(t, s)
on D0 with respect to the second variable and satisfies, for all
sufficiently large T ≥ t0,

lim sup
t→∞

1
H(t, T1)

∫ t−1

T1

[

KH(t, s)αβ(s, T )ϕ(s)q(s)

− r(s)(h+(t, s)ϕσ(s))β+1

(β + 1)β+1(H(t, s)ϕ(s))β

]

Δs = ∞, (27)

where T1 is defined as in Theorem 1 and h+(t, s) :=
max{0,HΔs(t, s) + H(t, s)Q+(s)

ϕσ(s) }, here Q+(t) is defined as
in Theorem 1. Then all solutions of (1) are oscillatory.

Proof. Suppose that x is a nonoscillatory solution of (1).
Without loss of generality, we may assume that x is an
eventually positive solution of (1). We proceed as in the proof
of Theorem 1 to get that (26) holds. Multiplying (26) by
H(t, s) and integrating from T1 to t− 1, we find
∫ t−1

T1

H(t, s)Kαβ(s, T )ϕ(s)q(s)Δs

≤ −
∫ t−1

T1

H(t, s)wΔ(s)Δs+
∫ t−1

T1

H(t, s)
Q+(s)
ϕσ(s)

wσ(s)Δs

−
∫ t−1

T1

H(t, s)
βϕ(s)(wσ(s))λ

(ϕσ(s))λr1/β(s)
Δs, t ∈ [T1 + 1,∞).

(28)

Applying the integration by parts formula (10), for t ∈ [T1 +
1,∞) we get

−
∫ t−1

T1

H(t, s)wΔ(s)Δs

=
[

−H(t, s)w(s)
]s=t−1

s=T1

+
∫ t−1

T1

HΔs(t, s)wσ(s)Δs

< H(t, T1)w(T1) +
∫ t−1

T1

HΔs(t, s)wσ(s)Δs. (29)

Substituting (29) in (28), for t ∈ [T1 + 1,∞) we obtain
∫ t−1

T1

H(t, s)Kαβ(s, T )ϕ(s)q(s)Δs

< H(t, T1)w(T1)

+
∫ t−1

T1

{[

HΔs(t, s) +H(t, s)
Q+(s)
ϕσ(s)

]

wσ(s)

−H(t, s)
βϕ(s)(wσ(s))λ

(ϕσ(s))λr1/β(s)

}

Δs

≤ H(t, T1)w(T1)

+
∫ t−1

T1

[

h+(t, s)wσ(s) −H(t, s)
βϕ(s)(wσ(s))λ

(ϕσ(s))λr1/β(s)

]

Δs.

(30)

Therefore by using Lemma 6 in (30) with

X =
(H(t, s)βϕ(s))1/λwσ(s)

ϕσ(s)r1/(β+1)(s)

and

Y =
r1/λ(s)(h+(t, s)ϕσ(s))β

λβ(H(t, s)βϕ(s))β/λ
,

we have for t ∈ [T1 + 1,∞),
∫ t−1

T1

H(t, s)Kαβ(s, T )ϕ(s)q(s)Δs

< H(t, T1)w(T1) +
∫ t−1

T1

r(s)(h+(t, s)ϕσ(s))β+1

(β + 1)β+1(H(t, s)ϕ(s))β
Δs.

Therefore, we obtain for t ∈ [T1 + 1,∞),

1
H(t, T1)

∫ t−1

T1

[

H(t, s)Kαβ(s, T )ϕ(s)q(s)

− r(s)(h+(t, s)ϕσ(s))β+1

(β + 1)β+1(H(t, s)ϕ(s))β

]

Δs < w(T1),

which implies a contradiction to (27). Thus, this completes
the proof. �

Remark 1. From Theorems 1 and 2, we can obtain many
different sufficient conditions for the oscillation of (1) with
different choices of ϕ(t) and H(t, s).

For example, let ϕ(t) = t, then Theorem 1 yields the
following results.

Corollary 1. Suppose one of the conditions (12) or (16) holds
and for all sufficiently large T ,

lim sup
t→∞

∫ t

T1

[

Ksαβ(s, T )q(s) − r(s)(V+(s))β+1

(β + 1)β+1sβ

]

Δs = ∞,

(31)
where T1 is defined as in Theorem 1 and V+(t) :=
max{0, 1 − tp(t)

rσ(t)}. Then every solution of (1) is oscillatory.

Let ϕ(t) = 1, then from Theorem 1 we obtain the following
results.

Corollary 2. Suppose one of the conditions (12) or (16) holds
and for all sufficiently large T ,

∫ ∞

T1

αβ(t, T )q(t)Δt = ∞, (32)

where T1 is defined as in Theorem 1. Then every solution of
(1) is oscillatory.

Let ϕ(t) = 1 and H(t, s) = (t − s)m, (t, s) ∈ D, where
m ≥ 1 is a constant, then HΔs(t, s) ≤ −m(t−σ(s))m−1 ≤ 0
for (t, s) ∈ D0 (see Saker [27]). Therefore, from Theorem 2
we obtain the following Kamenev-type oscillation criteria for
(1).
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Corollary 3. Suppose one of the conditions (12) or (16) holds
and for all sufficiently large T ,

lim sup
t→∞

1
(t− T1)m

∫ t

T1

(t− s)mαβ(s, T )q(s)Δs = ∞, (33)

where T1 is defined as in Theorem 1 and m ≥ 1 is a constant.
Then all solutions of (1) are oscillatory.

Also, by Lemma 3, we obtain another oscillation criterion
for (1) as in Theorems 1 and 2 and Corollaries 1–3 as follows.

Corollary 4. Assume that (17) and (20) hold. Then every
solution of (1) is oscillatory or tends to zero as t→ ∞.

Corollary 5. Assume that (17) and (27) hold. Then every
solution of (1) is oscillatory or tends to zero as t→ ∞.

Corollary 6. Assume that (17) and (31) hold. Then every
solution of (1) is oscillatory or tends to zero as t→ ∞.

Corollary 7. Assume that (17) and (32) hold. Then every
solution of (1) is oscillatory or tends to zero as t→ ∞.

Corollary 8. Assume that (17) and (33) hold. Then every
solution of (1) is oscillatory or tends to zero as t→ ∞.

IV. SOME EXAMPLES

Example 1. Consider the second-order nonlinear damped
delay dynamic equation
( tβ−1

b(t)
|xΔ(t)|β−1xΔ(t)

)Δ

+
(σ(t))β−1

tbσ(t)
|xΔσ(t)|β−1xΔσ(t)

+
1

αβ(t, t∗)t2
|x(τ(t))|β−1x(τ(t)) = 0,

(34)

where β > 0 is a constant, t∗ satisfies that t0 > t∗ > 0 and
τ(t) > t∗ for t ∈ [t0,∞), and b(t) := e 1

t
(t, t0). In (34),

r(t) = tβ−1

b(t) , p(t) = (σ(t))β−1

tbσ(t) , q(t) = 1
αβ(t,t∗)t2

and f(u) =
|u|β−1u.

We will apply Corollary 1. We have
∫ ∞

t0

( 1
E(t)r(t)

)1/β

Δt =
∫ ∞

t0

1

t1−
1
β

Δt = ∞,

which implies (12) holds. Furthermore, we see that V+(t) :=
max{0, 1 − tp(t)

rσ(t)} = 0 and

lim sup
t→∞

∫ t

T1

[

Ksαβ(s, T )q(s) − r(s)(V+(s))β+1

(β + 1)β+1sβ

]

Δs

= lim sup
t→∞

∫ t

T1

K

(

α(s, T )
α(s, t∗)

)β 1
s
Δs

= lim sup
t→∞

∫ t

T1

K
1
s
Δs

= ∞,

since limt→∞
α(t,T )
α(t,t∗) = 1. Therefore by Corollary 1, every

solution of (34) is oscillatory.

Example 2. Consider the second-order nonlinear damped
delay dynamic equation
( (tσ(t))β

b(t)
|xΔ(t)|β−1xΔ(t)

)Δ

+
(σ(t))β

bσ(t)
|xΔσ(t)|β−1xΔσ(t)

+
tβ

αβ(t, t∗)
|x(τ(t))|β−1x(τ(t)) = 0,

(35)

where 0 < β ≤ 1 is a constant, t∗ satisfies that t0 > t∗ > 0
and τ(t) > t∗ for t ∈ [t0,∞), b(t) := e 1

(σ(σ(t)))β
(t, t0) and we

suppose
∫ ∞

t0

1

t1−
1
β σ(t)

Δt = ∞, (36)

for those time scales T. This holds for many time scales, for
example when T = qN0

0 := {qk
0 : k ∈ N0, q0 > 1}.

In (35), r(t) = (tσ(t))β

b(t) , p(t) = (σ(t))β

bσ(t) , q(t) = tβ

αβ(t,t∗)
and

f(u) = |u|β−1u. It is clear that
∫ ∞

t0

( 1
E(t)r(t)

)1/β

Δt =
∫ ∞

t0

1
tσ(t)

Δt =
∫ ∞

t0

(

− 1
t

)Δ

Δt

=
1
t0
<∞,

which implies (12) does not hold. Now we prove that (16)
holds. We have

∫ ∞

t0

[

1
E(v)r(v)

∫ v

t0

E(u)q(u)gβ(u)Δu
]1/β

Δv

≥
∫ ∞

t0

[

1
(vσ(v))β

∫ v

t0

( ug(u)
α(u, t∗)

)β

Δu
]1/β

Δv

≥
∫ ∞

t0

[

v − t0
(vσ(v))β

]1/β

Δv, (37)

since for t ∈ [t0,∞), E(t) := e 1
(σ(σ(t)))β

(t, t0) ≥ 1 and

g(t) :=
∫ ∞

τ(t)

( 1
E(s)r(s)

)1/β

Δs =
∫ ∞

τ(t)

1
sσ(s)

Δs

=
∫ ∞

τ(t)

(

− 1
s

)Δ

Δs =
1
τ(t)

≥ 1
t
≥ α(t, t∗)

t
.

Take 0 < c < 1 such that t − t0 > ct for t ≥ tc > t0, then
from (37) and (36) we obtain

∫ ∞

t0

[

1
E(v)r(v)

∫ v

t0

E(u)q(u)gβ(u)Δu
]1/β

Δv

≥ c
1
β

∫ ∞

tc

1

v1− 1
β σ(v)

Δv = ∞,

which implies (16) holds. To apply Corollary 2, it remains to
prove that (32) holds. We get

∫ ∞

T1

αβ(t, T )q(t)Δt =
∫ ∞

T1

(

α(t, T )
α(t, t∗)

)β

tβΔt

=
∫ ∞

T1

tβΔt = ∞,

since limt→∞
α(t,T )
α(t,t∗) = 1. Thus, for those time scales where

(36) holds, every solution of (35) is oscillatory by Corollary
2.
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