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A Note on the Numerical Solution of Singular
Integral Equations of Cauchy type

M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long

Abstract—This manuscript presents a method for the numerical
solution of the Cauchy type singular integral equations of the first
kind, over a finite segment which is bounded at the end points
of the finite segment. The Chebyshev polynomials of the second
kind with the corresponding weight function have been used to
approximate the density function. The force function is approximated
by using the Chebyshev polynomials of the first kind. It is shown that
the numerical solution of characteristic singular integral equation is
identical with the exact solution, when the force function is a cubic
function. Moreover, it also shown that this numerical method gives
exact solution for other singular integral equations with degenerate
kernels.

Keywords—Singular integral equations, Cauchy kernel, Chebyshev
polynomials, Interpolation.

I. INTRODUCTION

Let us consider the singular integral equation of the first
kind on the finite segment∫ 1

−1

ϕ(t)
t − x

dt+
∫ 1

−1

K(x, t)ϕ(t)dt = f(x), −1 < x < 1, (1)

where K and f are assumed to be real-valued functions
belong to the class of Hölder continues functions on the
sets [−1, 1] × [−1, 1] and [−1, 1], respectively. ϕ is unknown
function to be determined and the singular integral is in-
terpreted as Cauchy principle value. Equation (1) is called
Cauchy type singular integral equation of first kind which has
many applications [2], [3]. The theory of this equation is well
known and it is presented in the monographs [5], [7]. The
characteristic singular integral equation of equation (1) is of
the form ∫ 1

−1

ϕ(t)
t − x

dt = f(x), −1 < x < 1. (2)

The solution of equation (2) which is bounded at the end points
x = ±1, is given by the following formula [1]

ϕ(x) = − 1
π2

√
1 − x2

∫ 1

−1

f(t)√
1 − t2 (t − x)

dt, (3)

provided that ∫ 1

−1

f(x)√
1 − x2

dx = 0 (4)

By solving equation (1) with respect to its characteristic part,
we find that it is equivalent to the Fredholm equation type of
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the second kind [2]

ϕ(t) +
∫ 1

−1

K0(t, τ)ϕ(τ) dτ = F (t),

K0(t, τ) = − 1
π2

√
1 − t2

∫ 1

−1

K(x, τ)√
1 − x2 (t − x)

dx,

F (t) = − 1
π2

√
1 − t2

∫ 1

−1

f(x)√
1 − x2 (t − x)

dx.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

which one can apply the Fredholm’s theorems to obtain the
solution of this equation.

In addition, the condition∫ 1

−1

1√
1 − x2

[
f(x) −

∫ 1

−1

K(x, t) ϕ(t) dt

]
dx = 0 (6)

must be implemented to obtain the bounded solution.
In this paper, we present a numerical method to solve

equation (1) for which the solution is bounded at the end
points x ± 1. And we will show that the present numerical
method gives exact solution for equation (2) when the force
function f is a cubic function. Moreover, it will be shown that
the numerical solution of equation (1) with some degenerate
kernels is identical with the exact one.

II. THE APPROXIMATE TECHNIQUE

In this section, the numerical solution of equation (1) will
be derived.

Approximating the known function f(x) by using the first
kind Chebyshev polynomial fn(x) of degree n

fn(x) =
n∑

k=0

′ fk Tk(x) (7)

where

fk =
2
π

∫ 1

−1

1√
1 − t2

f(t) Tk(t) dt, (8)

and the Chebyshev polynomial of first kind Tj can be defined
by the recurrence relation [6]

T0(x) = 1, T1(x) = x,

Tn(x) = 2x Tn−1(x) − Tn−2(x), n ≥ 2

}
. (9)

The dash in
∑ ′ denotes that the first term in the sum is to be

halved.
Now, we will approximate the unknown function ϕ by the

approximate function ϕn which is defined as follows

ϕn(x) =
√

1 − x2

n−1∑
j=0

αj Uj(x) (10)
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where Uj is the Chebyshev polynomial of second kind which
is defined by the following recurrence relation

U0(x) = 1, U1(x) = 2x,

Un(x) = 2x Un−1(x) − Un−2(x), n ≥ 2.

}
(11)

Substituting (10) into (1) and using the following well-known
relation

∫ 1

−1

√
1 − t2 Uj(t)

t − x
dt = −π Tj+1(x) (12)

we obtain

−π
n−1∑
j=0

αj Tj+1 (x) +
n−1∑
j=0

αj ηj(x) = f(x) (13)

where

ηj(x) =
∫ 1

−1

√
1 − t2 K(x, t) Uj(t) dt (14)

Approximating ηj(x) by the orthogonal system {T0, ..., Tn}
as

ηj(x) =
n∑

k=0

′ λj,k Tk(x) (15)

where

λj,k =
2
π

∫ 1

−1

1√
1 − x2

ηj(x) Tk(x) dx (16)

Due to (15) we have

n−1∑
j=0

αj ηj(x) =
n∑

k=0

′
n−1∑
j=0

αj λj,k(x) Tk(x) (17)

Now, the approximate solution of equation (1) is defined as
the solution of equation

∫ 1

−1

ϕn (t)
t − x

dt +
∫ 1

−1

K(x, t) ϕn(t) dt = fn(x) + χ (18)

where the parameter χ is chosen in such a way that the
following condition is satisfied,

∫ 1

−1

1√
1 − t2

[
Fn(t) −

∫ 1

−1

K(t, x) ϕn(x) dx

]
dt = 0, (19)

where

Fn(t) = fn(t) + χ

Due to (7), (10) and (17) equation (18) becomes

−π
n−1∑
j=0

αjTj+1(x)+
n∑

k=0

′
n−1∑
j=0

αjλj,kTk(x) =
n∑

k=0

′fkTk(x)+χ

Then the coefficients {αj}n−1
0 and parameter χ are obtained

by solving the following system of linear equations

0+
1
2

n−1∑
j=0

αj λj,0 =
1
2
f0 + χ,

α0− 1
π

n−1∑
j=0

αj λj,1 = − 1
π

f1,

α1− 1
π

n−1∑
j=0

αj λj,2 = − 1
π

f2,

. . . . . . . . .

...
...

...
. . . . . . . . .

αn−1− 1
π

n−1∑
j=0

αj λj,n = − 1
π

fn.

(20)

The coefficients {fk}n
1 and {λj,k}n−1,n

0,1 are given by (8) and
(16), respectively, which can be computed analytically, or
numerically using the following Gauss-Chebyshev formulas
[4]

fj ≈ 2
n + 1

n+1∑
i=1

f(xi) Tj (xi),

xi = cos

[
(2i − 1)π

2(n + 1)

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and

λj,k ≈ 2
n + 2

π

n + 1

n+1∑
i=1

n+1∑
�=1

(
1 − t2�

)
Ki,� Uj (t�) Tk (xi),

Ki,� = K(xi, t�), t� = cos

(
π 	

n + 2

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Note that, if system (20) is devoid of parameter χ then the
number of equations in it exceeds the number of unknown
variables so, in this case, the system has no solution. The
parameter χ is considered as the variable to make system
(20) well-posed and, therefore, will be called a regularizing
variable.

The value of parameter χ can be also fined by solving the
equation that is obtained by applying relations (7), (10) and
(15) into condition (19) wich will be equivalent to the first
equation in system (20).

Lemma 1: If f(x) in integral equation (2) is a cubic func-
tion, then the numerical solution (10) of equation (2) is exact.
Proof :

Let us consider the characteristic singular integral equation∫ 1

−1

ϕ(t)
t − x

dt = f(x), −1 < x < 1. (21)

Let f(x) be a cubic function, i.e,

f(x) = a0 + a1 x + a2 x2 + a3 x3, −1 < x < 1. (22)

Substituting (22) into (8) yields

fj =
2
π

∫ 1

−1

a0 + a1 t + a2 t2 + a3 t3√
1 − t2

Tj(t) dt (23)
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Using the Chebyshev recurrence relation of first kind (9) we
obtain

t3 =
1
4

[T3 (t) + 3 T1 (t)]

t2 =
1
2

[T2 (t) + T0 (t)]

t = T1 (t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(24)

Substituting (24) into (23) and using the following orthogonal
property

∫ 1

−1

1√
1 − t2

Ti(t)Tj(t) dt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i �= j,

π, i = j = 0,

π

2
, i = j �= 0.

(25)

we find {
f1 = a1 +

3 a3

4
f2 =

a2

2
f3 =

a3

4

}
(26)

Due to the system (20), when K(x, t) = 0, yields

αj = − 1
π

fj+1, j = 0, ..., n − 1. (27)

Letting n = 3 in approximate solution (10) we get

ϕn(x) = − 1
π

√
1 − x2

2∑
j=0

fj+1 Uj(x) (28)

Using (26 - 27) into (28) and taking into account (11), we
obtain the numerical solution of equation (21)

ϕn(x) = − 1
π

√
1 − x2

[
a1 +

a3

2
+ a2 x + a3 x2

]
(29)

Now, substituting (22) into the exact solution given by (3),
yields

ϕ(x) = − 1
π2

√
1 − x2

∫ 1

−1

a0 + a1 t + a2 t2 + a3 t3√
1 − t2 (t − x)

dt

(30)
It is easy to see that∫ 1

−1

1√
1 − t2 (t − x)

dt = 0,

∫ 1

−1

t√
1 − t2 (t − x)

dt = π,

∫ 1

−1

t2√
1 − t2 (t − x)

dt = π x∫ 1

−1

t3√
1 − t2 (t − x)

dt = π(x2 + 0.5).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(31)

Taking into account (31), the exact solution of equation (21)
is

ϕ(x) = − 1
π

√
1 − x2

[
a1 + a2 x + a3(x2 + 0.5)

]
(32)

By compering the approximate solution (29) with the exact
solution (32) we complete the proof.

III. PARTICULAR RESULT

Let us consider the integral equation of the form (1) with
degenerate kernel K(x, t) = x5 t5 and polynomial function
f(x) = x5 + x3 + x i.e.,∫ 1

−1

ϕ(t)
t − x

dt +
∫ 1

−1

(x5 t5)ϕ(t) dt = x5 + x3 + x (33)

Due to (8) we have

fj =
2
π

∫ 1

−1

1√
1 − t2

(
t5 + t3 + t

)
Tj(t) dt (34)

It is easy to see that

t5 =
1
16

[T5 (t) + 5 T3 (t) + 10 T1 (t)] (35)

Using (24) and (35) into (34) we obtain

fj =
1
8π

∫ 1

−1

[T5 (t) + 9 T3 (t) + 38 T1 (t)] Tj(t)√
1 − t2

dt (36)

Applying the orthogonal property (25) into (36) we find{
f1 =

19
8

, f2 = 0, f3 =
9
16

, f4 = 0, f5 =
1
16

}
(37)

From (16) with knowing that K(x, t) = x5 t5t we have

λj,k =
2
π

[∫ 1

−1

x5 Tk(x)√
1 − x2

dx

] [∫ 1

−1

√
1 − t2t5Uj(t)dt

]
(38)

Using recurrence relation (11), one can find that

t5 =
1
32

[U5 (t) + 4 U3 (t) + 5 U1 (t)] (39)

Due to (39) and applying the orthogonal property

∫ 1

−1

√
1 − t2 Ui(t) Uj(t) dt =

⎧⎨
⎩

0, i �= j,

π

2
, i = j.

(40)

we obtain

∫ 1

−1

√
1 − t2 t5 Uj(t) dt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j = 0,

5π

64
, j = 1,

0, j = 2,

π

16
, j = 3,

0, j = 4.

(41)

Similarly with helping of (9) and (25) yields

∫ 1

−1

x5

√
1 − x2

Tk(x) dx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5π

16
, k = 1,

0, k = 2,

5π

32
, k = 3,

0, k = 4,

π

32
, k = 5.

(42)
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From (41), (42) and (38) we obtain

λ0,k = 0, k = 1, ..., 5, λ1,1 =
50 π

(32)2
,

λ1,2 = 0, λ1,3 =
25 π

(32)2
, λ1,4 = 0,

λ1,5 =
5 π

(32)2
, λ2,k = 0, k = 1, ..., 5,

λ3,1 =
5 π

(2)7
, λ3,2 = 0, λ3,3 =

5 π

(16)2
,

λ3,4 = 0, λ3,5 =
π

(16)2
, λ4,k = 0, k = 1, ..., 5.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(43)

Due to system (20), when n = 5, and taking into accounts (37)
and (43), the coefficients αj , j = 0, ..., 4, will be obtained by
solving the following system of linear equations

α0 − 50
(32)2

α1 +0 − 10
(16)2

α3 +0 = − 19
8π

0 +α1 +0 +0 +0 = 0

0 − 25
(32)2

α1 +α2 − 5
(16)2

α3 +0 = − 9
16π

0 +0 +0 +α3 +0 = 0

0 − 5
(32)2

α1 +0 − 1
(16)2

α3 +α4 = − 1
16π

which are{
α0 =

−19
8π

, α1 = α3 = 0, α2 =
−9
16π

, α4 =
−1
16π

}
(44)

Substituting the values of the coefficients {αj}4
0 into approx-

imate solution (10) yields

ϕn(x) =
√

1 − x2

4∑
j=0

αj Uj(x) (45)

Using (11) into (45) we obtain the numerical solution of
equation (33)

ϕn(x) = −
√

1 − x2

π

[
x4 +

3
2

x2 +
15
8

]
(46)

which is exact.

IV. CONCLUSION

The known force function is approximated by using the
Chebyshev polynomial of first kind while the unknown den-
sity function which is bounded at the end points of the
finite segment [−1, 1] is approximated using the Chebyshev
polynomial of the second kind with corresponding weight
function. Existence of the present numerical method is shown
by Lemma 1 for characteristic singular integral equation when
the force function is a cubic function. Particular result also
shows that this numerical method gives the exact solution for
other singular integral equations.
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