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Abstract—In this contribution an innovative platform is being 

presented that integrates intelligent agents and evolutionary 
computation techniques in legacy e-learning environments. It 
introduces the design and development of a scalable and 
interoperable integration platform supporting: 

I) various assessment agents for e-learning environments, 
II) a specific resource retrieval agent for the provision of 

additional information from Internet sources matching the 
needs and profile of the specific user and 

III) a genetic algorithm designed to extract efficient information 
(classifying rules) based on the students’ answering input 
data. 

The agents are implemented in order to provide intelligent 
assessment services based on computational intelligence techniques 
such as Bayesian Networks and Genetic Algorithms.  

The proposed Genetic Algorithm (GA) is used in order to extract 
efficient information (classifying rules) based on the students’ 
answering input data. The idea of using a GA in order to fulfil this 
difficult task came from the fact that GAs have been widely used in 
applications including classification of unknown data. 

The utilization of new and emerging technologies like web 
services allows integrating the provided services to any web based 
legacy e-learning environment. 
 

Keywords—Bayesian Networks, Computational Intelligence 
techniques, E-learning legacy systems, Service Oriented Integration, 
Intelligent Agents, Genetic Algorithms.  
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I. INTRODUCTION 
HE wide adoption of e-learning environments in all levels 
of human education has leaded scientific research in the 

field of adaptive and intelligent e-learning systems to provide 
higher quality services towards the end users of the e-learning 
systems. 

Adaptive and intelligent e-learning systems is more than 
clear that satisfy the demanding need of e-learning users for 
personalization. It is widely known that the most efficient 
products are tailored made to the needs of the client. The same 
applies in the e-learning market. People are eager to bye 
products or services that fit exactly to their personal needs and 
interests. 

That is the main reason for the huge scientific effort in all 
market sectors to introduce features in products or services 
that satisfy the need for personalization. The same applies to 
the new and emerging sector of e-learning. 

E-learning systems need to introduce the aforementioned 
features in terms of functionalities in order to meet the market 
trends and user requirements. This aspect comprises the key 
aspect for success in all e-learning environments. 

Our proposal introduces a scalable and interoperable 
integration platform supporting: 

I) various assessment agents for e-learning 
environments, 

II) a specific resource retrieval agent for the 
provision of additional information from Internet 
sources matching the needs and profile of 
specific users and 

III) a genetic algorithm designed to extract efficient 
information (classifying rules) based on the 
students’ answering input data. 

The agents are implemented in order to provide intelligent 
assessment services based on computational intelligence 
techniques such as Bayesian Networks and Genetic 
Algorithms.  

The proposed Genetic Algorithm (GA) is used in order to 
extract efficient information (classifying rules) based on the 
students’ answering input data. The idea of using a GA in 
order to fulfil this difficult task came from the fact that GAs 
have been widely used in applications including classification 
of unknown data. 
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The utilization of new technologies such as web services 
allows to integrate the provided services to any web based 
legacy e-learning environment. A first approach to the 
integration of computational intelligence techniques in order 
to assist e-learning process has been presented in [1]. 

The paper is structured as follows. Section II includes a 
brief presentation of the related work in the field of adoption 
of intelligent agents in e-learning systems. In section III the 
architecture and the functionalities of the proposed agent 
platform are described. Section IV presents an example of a 
query assessment agent based on Bayesian Networks, which is 
integrated in a legacy e-learning system. Section V presents 
the resource retrieval agent that anticipates the lack of 
additional information for a specific subject taking into 
account the special needs and interests of the specific student. 
Section VI presents the utilization of a Genetic Algorithm in 
order to extract efficient information (classifying rules) based 
on the students’ answering input data. Finally, section VII 
summarizes the conclusions and suggests future applications 
and extensions of the proposed e-learning platform. 

II.  RELATED WORK 
Utilization of agents is significant for providing intelligence 

in e-learning environments. Thus, a lot of work has been done 
concerning these fields, mainly focusing on adoption of 
intelligent agents to integrate e-learning systems. Buraga [2] 
proposes an agent-oriented extensible framework based on 
XML family for building a hypermedia e-learning system 
available on the world-wide web. It deploys mobile agents 
that can exchange information in a flexible way via XML-
based documents. The intelligent tutoring system is composed 
of four major components. The information processed by each 
component can be stored by XML documents. Some of the 
components have been implemented as intelligent agents. 

Angehrn et al. [3] suggest the use of K-InCA to provide a 
personalized e-learning system. K-InCA is an agent-based 
system designed to assist people in adopting new behaviors. 
The agents within the system examine users’ actions and 
maintain a "behavioral profile" reflecting the level of adoption 
of the desired behaviors. Based on the user profile, and 
relying on a model borrowed from change management 
theories, the agents provide at different stages customized 
guidance, including mentoring, motivation or stimulus, in 
order to support real learning and smooth adoption of new 
behaviors. 

In order to recommend useful learning material to students 
Andronico et al. [4] proposed a multi-agent recommendation 
system that suggests educational resources to students into a 
mobile learning platform that supports mobile learning 
processes. They have first extended the Learning Management 
System (LMS) in order to incorporate mobile technologies, 
allowing users to interact with the systems using mobile 
devices like PDAs, cellular phones etc. This extension arises 
the problem of designing new learning models that will be 
able to adapt to the changes of student’s performance during 

the learning process. Another extension of an LMS presented 
in that paper regards the integration of a multi-agent 
recommendation system, whose aim is to collect data about 
the users’ behavior and preferences and then suggest 
educational resources to them according to their profile. 

Zaiane [5] suggests the use of web mining techniques to 
build such an agent that could recommend on-line learning 
activities or shortcuts in a course web site based on learners’ 
access history to improve course material navigation as well 
as assist the online learning process. The automatic 
recommendation system takes into account profiles of on-line 
learners, their access history and the collective navigation 
patterns, and uses simple data mining techniques. 

According to the service-oriented integration for e-learning 
systems based on web services, Pankratius [6] provide a 
related architecture and describes the extensions to support 
software agents. It focuses on using intelligent software agents 
for the distributed retrieval of educational content. In this 
architecture intelligent software agents can be used to acquire 
user specifications of learning content and search for matching 
Learning Objects on behalf of the user. The work utilizes the 
web services as a wrapper around Learning Objects. 

III. AGENT PLATFORM 
The contribution presented introduces a scalable 

implementation architecture that is based on an agent 
platform. This platform is used in order to manage the 
execution of the various intelligent agents for supporting 
legacy e-learning systems. In this section, a detailed 
description of the functionalities and the implementation of 
the agent platform architecture are presented. Furthermore, the 
web services technology is utilized in order to provide 
communication and interoperability between the proposed 
agent platform and e-learning legacy systems. 

A.  Platform Architecture 
The Agent Platform Architecture that this contribution 

proposes is based in open and interoperable standards, since  
main effort has been given in the reusability perspective of the 
specific platform. The main idea behind the specific 
architecture is to use a multi-agent platform to design and 
develop the features (agents) that will provide the added value 
to legacy e-learning systems. In order to follow the 
international standards in the implementation of multi-agent 
systems, the proposed agent platform is developed utilizing 
Java Agent DEvelopment Framework (JADE) [7]. JADE is a 
java-based platform that provides the basic mechanism for the 
implementation of peer-to-peer agent based applications 
according to the FIPA [8] guidelines for the development of 
multi-agent systems.  

The main concept is to exploit the features of the proposed 
agent platform and develop agents that will implement the 
features that are needed. The basic aspect for the architecture 
is the fact that the agent platform architecture (Fig. 1) 
communicates with the legacy e-learning system through the 
use of web services and more specifically by using the SOAP 
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protocol.  

 

 
Fig. 1 Agent Platform Architecture 

 
The requests coming from the e-learning system are being 

processed by the Dispatcher Agent. This specific agent is the 
front end of the agent platform and is responsible for 
identifying the requests coming from the e-learning system 
and for allocating them to the appropriate agent in order to be 
processed. Each agent is designed to implement functionalities 
that arise from the user requirements. 

The communication within the agent platform is being 
realized with the ACL (Agent Communication Language) [9] 
that is part of the FIPA template. It is important to emphasize 
that the Dispatcher Agent is the most important component of 
the agent platform. The reason for this is its multiple behavior 
and usefulness. It serves as process identifier, process 
distributor and communication handler. Thus, it is a critical 
agent for the proper operation of the agent platform.  

The Dispatcher Agent is “informed” by the agents with the 
functionalities that they provide. Its main responsibility is to 
recognize the incoming requests from the e-learning systems 
through a SOAP Interface and translate them to ACL 
messages in order to reroute them to the corresponding agent.  

The utilization of the JADE framework allows affective  
communication between different agents. It is possible that an 
agent will require the execution of functionalities belonging to 
another agent. In that case, ACL messages are exchanged 
between the involved agents establishing interoperability 
features between different agents.  

B.  Communication with the E-learning Environment 
For the interconnection of the agent platform with the 

legacy e-learning systems Web Services [10] technology is 
utilized. Web Services are referred as “software applications 

identified by a Uniform Resource Identifier (URI), whose 
interfaces and binding are capable of being defined, described 
and discovered by XML artifacts and support direct 
interactions with other software applications using XML-
based messages via Internet-based protocols”. Web services 
are loosely coupled, communicating through XML based 
documents. According to the above description, a web service 
is given in terms of the messages it sends and receives. At the 
concrete level, a binding specifies transport and wire format 
details for one or more interfaces. An endpoint associates a 
network address with a binding. Finally, a service groups 
together endpoints that implement a common interface.  

According to the prospects that are supported by the web 
services, the main agent platform is enhanced with a SOAP 
server in order to provide a flexible and standard based 
service for accessing the agents’ capabilities and functions. A 
client script is also installed in each of the integrated systems 
in order to invoke the provided web services from agent 
platform. 

The utilization of web services is based on the capability of 
“easy” integration that is achieved through an intermediate 
adapter layer that relays commands and data between the web 
and the system. A big part of the implementation has been 
realized using technologies such as .NET framework and 
Common Object Model (COM) for Microsoft based 
applications, Enterprise JavaBeans (EJB) for java based 
applications and PHP classes for web based applications. 

IV. QUESTIONER ASSESSMENT AGENT 
The use case example presented in this section shows the 

utilization of the proposed platform for assessment of students 
in a questioner-based examination process. In order to manage 
the student’s answers given to the questioner, a Questioner 
Assessment Agent is implemented. This agent uses Bayesian 
Networks in order to determine the sequence of  questions that 
are given to the student according to his/her  possible answers. 

A.  Bayesian Network for Questioner Optimization 
The agent is based on Bayesian Networks’ techniques in 

order to manage the questioners of an e-learning system. 
Bayesian Networks [11], [12] are compact networks of 
probabilities that capture the probabilistic relationship 
between variables, as well as historical information about their 
relationships. They are very effective in modelling cases 
where some information is already known and incoming data 
is uncertain or partially unavailable [13]-[15]. These networks 
also offer consistent semantics for representing causes and 
effects (and likelihoods) via an intuitive graphical 
representation.  

According to the presented approach the questions are 
structured in a decision tree that denotes the relevance 
between two successive questions. A graphical representation 
of a questioner used to explain the functionality of our module 
is depicted in Fig. 2. 
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Fig. 2 Graphical Representation of a Questioner 

 
Each of the questions in the Bayesian network is 

represented by a node. Each node can be in several states. 
Each state corresponds to a different set of probable values for 
each variable of the node. In our case, for example, each 
question is represented by a 2-state variable that can be either 
true (correct answer) or false (false answer). Nodes are 
connected to show causality with an arrow (edge) indicating 
the direction of influence. 

The Bayesian network also contains probabilistic 
relationships among some of the states of the domain. These 
relationships are used to answer questions like the following: 
If the student answered correctly the fourth question, was it 
more likely to have answered correctly the first question or 
not? 

The probability of any node in the Bayesian network being 
in one state or another without current evidence is described 
using a conditional probability table. Probabilities on some 
nodes are affected by the state of other nodes, depending on 
causality. Prior information about the relationships among 
nodes may indicate that the likelihood that a node is in a 
specific state is dependent on the specific state of another 
node. For example, prior information may show that if the 
student answered correctly the first question, the likelihood of 
answering correctly the fourth question is higher. An example 
of the conditional probabilities for the Bayesian network 
applied in this work is shown in the following table. 

 
TABLE I 

CONDITIONAL PROBABILITIES 
Child (Q4) Parent (Q1) 

True False 
True 0.8 0.2 
False 0.6 0.4 

 
The table shows that the likelihood of giving a correct 

answer at the fourth question is 0.8 if a correct answer was 
given at the first question and 0.6 if a false answer was given 
at the first question respectively. Similarly the likelihood of 
giving a false answer at the fourth question is 0.2 if a correct 
answer was given at the first question and 0.4 if a false answer 
was given at the first question respectively. In cases where a 
node does not have a parent, the table has only two values that 

show the likelihood of giving a true or a false answer (Table 
II). 

 
TABLE II 

NODE WITH NO PARENT 
true False Q1 
0.5 0.5 

 
 

After storing all the essential history information stored in 
the conditional probability tables, Bayesian networks can be 
used either to help making decisions or as a way to automate a 
decision-making process. Someone can use Bayesian 
networks to perform inductive reasoning (diagnosing a cause, 
given an effect) and deductive reasoning (predicting an effect, 
given a cause). The operation of Bayesian networks is based 
on a well known mathematical rule, the Bayes’ rule. Most 
simply, Bayes’ rule can be expressed as follows [16]: 
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where ωi is a state of nature, x is the vector of the monitored 
characteristics, P(ωi) is the a priori probability, P(x/ωi) is the 
probability density function (likelihood), P(ωi/x) is the a 
posteriori probability and p(x), which is known as marginal 

likelihood, equals ( ) ( )∑
=
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different states of nature). 
According to our implementation, an xml file is created 

which contains all the information needed for handling the 
questioners; such as the questions, the correct answers, a 
decision-threshold, the initial likelihood for each node and the 
values of the conditional probability table (for example 0.8, 
0.6, 0.2, 0.4). The system retrieves the first question from the 
xml file and prompts it to the student. Based on the answer of 
each student and according to the Bayes’ rule, the system 
estimates the likelihood of being correct for the next 
consecutive answers (based on the respective Bayesian tree 
structure).  

Questions that are considered to be answered correctly 
easily, according to a decision-threshold which is initially 
configured by the administrator, are by-passed and never 
prompted to the user of the e-learning system. The decision-
threshold denotes the difficulty of a particular question. This 
is implemented by using a Black List in which all the 
questions to be skipped are deposited. 

The benefit of this scheme is that the student does not have 
to spend time by answering questions that are considered to be 
far easy for his/her knowledge level. 

B.  Implementing Questioner Assessment Agent 
In order to provide the questioner assessment functionalities 

according to the Βayesian network - based approach,  
introduced in this paper, a Questioner Assessment Agent is 
implemented. This agent is developed using the Java 
programming language and the JavaBayes [17] class library. 
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This library comprises a set of tools for the creation and 
manipulation of Bayesian networks. The Questioner 
Assessment Agent functionalities are implemented in a java 
class that includes the following methods:  

Initialize_Questioner(xml_file): This method has as input 
an xml file that is structured according to the XMLBIF xml 
schema and is used from the JavaBayes class in order to pass 
to the Bayesian network the probabilities of the questions and 
the decisions’ thresholds that are assigned from the tutor to 
each specific questioner. Also, there are additional 
information such as the questioner id and the student id that 
are used by the agent in order to identify the requests. 
Furthermore this initialization function creates the necessary 
log files for storing the student answers in order to be utilized 
from the proposed genetic algorithms. Two log files are 
initialized:  

o The “question_reportdata” log file that stores for 
each question the answers of each student, the next 

question that is selected and the threshold of the 
question.  

o The “student_reportdata” log file that stores a 
history for the questioners and the associated 
answers that have been executed from a particular 
student. 

Get_Questioner_Answer(student_id,questioner_id,query_id, 
answer): This method is used in order to execute the Bayes 
inference rule and calculate the next question that will appear 
to the student according to the answer that he/she gave to the 
previous question. The student’s answer and the result of the 
algorithm executed on Bayesian network are logged in  

Get_Questioner_Result(student_id,questioner_id): This 

method is executed when the students are finished with the 
questioner. It processes the wrong and correct answers and, by 
taking accounts the questions that do not appear to him/her, it 
calculates the result of the questioner exam for the specific 
student. In addition this function is executing the Genetic 
Algorithm for student classification. The genetic algorithm 
parses the log files and according to the rules described above 
decides the level of classification of the student that has 
answered the questioner.  

The next step of the implementation is to publish the 
functionalities of the Questioner Assessment Agent to the 
Dispatcher Agent. This works by adding references of the 
corresponding methods to the initialization function of the 
Dispatcher Agent. 

The Questioner Assessment Agent is communicating 
directly with the Dispatcher Agent of the proposed agent 
platform through ACL messages. Using the Bayesian_Logic 
library the Query Assessment Agent is responsible to react to 

the requests coming from the Dispatcher Agent. 
The main processes are: 

1. Initialization of the questioner for the user. 

2. Identification of the next question that the user has 
to answer. 

3. Calculation and provision to the e-learning legacy 
system whether the user has passed the questioner 
or not. 

4. Execution of a Genetic Algorithm that classifies 
the users (students) in categories (eg. good, 
intermediate, novice) and updates the respective 

 
Fig. 3 Dispatcher Agent SOAP Request – Response example 
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user model. 

C.   E-learning Platform Integration 
Using the Eclipse Web Tools Platform [18] a SOAP 

wrapper is generated on the Dipsatcher Agent in order to 
publish the functionalities of the Questioner Assessment 
Agent through the Internet infrastructure. The Web Service 
that is generated has three operations similar to the 
functionalities of the Questioner Assessment Agent: 

• initialize_questioner(). 

• get_questioner_answer(). 

• get_questioner_result(). 

Additionally, the corresponding WSDL document is 
created, having the invocation and grounding description of 
the above operation. Both the WSDL document and the SOAP 
server code are deployed in an application server (in our case 
the Apache Tomcat has been used) in order to be accessed 
through the Internet. Fig. 3 presents an example of the SOAP 
messages (request and response) that are exchanged between 
the e-learning system and the Dispatcher Agent in order to 
invoke the functionality Get_Questioner_Answer of the 
Questioner Assessment Agent. 

The three mentioned operations can be easily invoked from 
a legacy e-learning system with a SOAP client which can be 
implemented in any of the well known programming 
languages. A legacy e-learning system can use these 
functionalities and interoperate with the Questioner 
Assessment Agent through the Internet by adding some lines 
of code. The legacy e-learning system used in our application 
was implemented using the PHP language. Some blocks of 
code were added to the e-learning system in order to allow the 
tutor to assign probabilities and threshold values to the 
questions of a questioner. Also, a SOAP client is adjusted to 
the routines implementing the exam for the communication 
with the Dispatcher Agent. Furthermore, the e-learning system 
is capable of retrieving the results of the agent’s execution and 
uses it in order to assess the examination process of a 
particular student. 

V.   RESOURCES RETRIEVAL AGENT 
Another problem that is usually presented in the classical e-

learning environments is the lack of additional information 
about a particular educational subject that could not be found 
in the course’s notes nor presentations. In order to face this 
problem, a second agent is proposed in this paper, specifically, 
the Resource Retrieval Agent. The Resource Retrieval Agent 
is an agent that takes advantage of the well known Google 
search engine in order to search the Internet for information 
about a specific educational subject. The agent is initiated for 
the following method: 

Retrieve Data (search_string): This function has as input a 
query string that comes from the e-learning environment and 
includes the description of the educational subject for which a 

student needs more information. The next step of the agent is 
to send a search request to the Google search engine using a 
SOAP client to invoke the Google API [19]. The SOAP 
response is filtered from the agent and the results that can be 
both web-site links and file links are forwarded to the e-
learning system.  

In order to publish the functionalities of the Resource 
Retrieval Agent to the legacy e-learning environments we 
utilize the same methodology for creating the appropriate web 
services in the Questioner Assessment Agent example. Using 
the Eclipse Web Tools Platform a new method named 
retrieve_data() is added to the methods of the web service that 
is published from the Dispatcher Agent.  

The overall process that is executed from the Resource 
Retrieval Agent is depicted in Fig. 4. 

 

 
Fig. 4 Resources Retrieval Agent 

 

VI. THE GENETIC ALGORITHM MODULE 

A.  Evolutionary Computation Techniques 
Evolutionary computation techniques have been developed 

by attempting to imitate the mechanisms of natural selection 
and natural genetics. They have been around for quite some 
time, but have recently gained popularity, due to the advances 
in computing equipment, which make their implementation 
feasible and efficient. One of the most popular approaches to 
evolutionary computation is Genetic Algorithms (GAs) 
initially introduced by John H. Holland [20]. GAs operate on 
binary string structures, analogous to biological creatures. 
These structures are evolving in time according to the rule of 
survival of the fittest by using a randomized, yet structured 
information exchange scheme. Thus, in every generation, a 
new set of binary strings is created, using parts of the fittest 
members of the old set [21, 22, 25]. 

GAs process a binary coding of the parameter space and 
work on it. This coding (which is an essential part of the GA 
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design procedure) results in formation of binary strings. 
Having decided on the binary coding to be used, an initial set 
of strings (a population) is created at random. Next, a set of 
operators is applied to this initial population to generate 
successive generations that hopefully will improve over time. 
An objective function (usually referred to as fitness function 
in GA terminology) serves as a measure of goodness of a 
string, and is a functional of the function that we are trying to 
optimize. Several operators have been proposed at times; 
however, three simple operators perform well in a wide 
variety of search and optimization problems. These are the 
Selection operator, the Crossover operator and the Mutation 
operator [23, 24, 26]. 

Since this approach is significantly different from others, 
GAs have been successfully applied to search and 
optimization problems where other approaches failed [28]. 
GAs have proven to be well suited to optimization of specific 
non-linear multivariable systems and are being used in a 
variety of real – world applications including scheduling [29, 
30], resource allocation [29, 31], training of ANNs [29, 32, 
33, 34] and selecting rules for fuzzy systems [29, 34]. 

GA techniques are also included in the agent platform 
presented in this contribution. The GA Module of the 
proposed platform will be better described in the following 
sections.  

 

 
Fig. 5 The Process Model used in the GA Module 

 

B. The Structure and Operation of the GA module 
1.  Modeling Students’ Performance 
The proposed module uses a GA in order to extract efficient 

information (classifying rules) based on the students’ 
answering input data. The idea of using a GA in order to fulfil 
this difficult task came from the fact that GAs have been 
widely used in applications including classification of 
unknown data [29, 35]. 
 

2.  Extracting Classifying Models 
The process model used in the GA module is shown in Fig. 

5. The system initially, gathers the following information: 
1. The percentage of correct answers in the student’s 

last attempt to answer the questioner. 
2. The mean time for all answers a student has 

attempted to answer. 

3. How many times a student has attempted to answer 
the questioner. 

4. The mean number of times a student has attempted to 
answer each question of the questioner. 

 
TABLE III 

CLASSIFYING RULES USED IN THE GA MODULE 
1st Criterion: Percentage of correct answers in the 
student’s last attempt to answer the questioner. 
Value: Α Value: Β Value: C 
>85% >65% and <=85% >50% and <=65% 
   
2nd Criterion: Mean time for all answers a student has 
attempted to answer 
Value: Α Value: Β Value: C 
<=1 minute >1 and <=2 minutes >2 minutes 
   
3rd Criterion: Number of times a student has attempted 
to answer the questioner 
Value: Α Value: Β Value: C 
>=1 and <4 >=4 and <7 >=7 
   
4th Criterion: Mean numbers of times a student has 
attempted to answer each question of the questioner 
Value: Α Value: Β Value: C 
>=1 and <4 >=4 and <7 >=7 

 
Next, the system codes the gathered information in order to 

create the initial population of the GA and starts the GA 
evolution procedure. After a few generations, the GA provides 
many different binary strings each corresponding to one of the 
different students that have answered the questioner. Each 
binary string constitutes an efficient classifier for each 
respective student. Each such classifier comprises a binary 
string matching all the features that characterize a specific 
student. In this way, every classifier can describe the 
knowledge and answering performance of each student and all 
together can constitute a system for extracting models, 
according to each student’s performance data. After that, the 
classification procedure is taking place. Each model resulted 
by the proposed module is compared with the classification 
rules given by the tutor. The classification rules used in the 
presented work, which are based on four major criteria, are 
shown in Table III. 

In order each student to be classified; his/her model is 
compared with the rules presented above. The result of this 
comparison is a proposal to the tutor to classify a student to a 
specific knowledge level. The relational matrix of the above 
classification rules used for the final classification of each 
student is shown in Table IV. 
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TABLE IV 
THE  RELATIONAL MATRIX OF THE CLASSIFICATION RULES 

 

1st 
Crite
rion 

2nd 
Crite
rion 

3rd 
Criterion 

4th 
Crite
rion 

Final 
Classificatio

n 
1 Α Α Α Α Good 
2 Α Α Α Β Good 
3 Α Α Α C Good 
4 Α Α Β Α Good 
5 Α Α Β Β Good 
6 Α Α Β C Good 
7 Α Α C Α Good 
8 Α Α C Β Good 
9 Α Α C C Good 

10 Α Β Α Α Good 
11 Α Β Α Β Good 
12 Α Β Α C Good 
13 Α Β Β Α Good 
14 Α Β Β Β Good 
15 Α Β Β C Good 
16 Α Β C Α Good 
17 Α Β C Β Good 
18 Α Β C C Good 
19 Α C Α Α Intermediate 
20 Α C Α Β Intermediate 
21 Α C Α C Intermediate 
22 Α C Β Α Intermediate 
23 Α C Β Β Intermediate 
24 Α C Β C Intermediate 
25 Α C C Α Intermediate 
26 Α C C Β Intermediate 
27 Α C C C Intermediate 
28 Β Α Α Α Good 
29 Β Α Α Β Good 
30 Β Α Α C Good 
31 Β Α Β Α Good 
32 Β Α Β Β Good 
33 Β Α Β C Good 
34 Β Α C Α Intermediate 
35 Β Α C Β Intermediate 
36 Β Α C C Intermediate 
37 Β Β Α Α Intermediate 
38 Β Β Α Β Intermediate 
39 Β Β Α C Intermediate 
40 Β Β Β Α Intermediate 
41 Β Β Β Β Intermediate 
42 Β Β Β C Intermediate 
43 Β Β C Α Intermediate 
44 Β Β C Β Intermediate 
45 Β Β C C Intermediate 
46 Β C Α Α Novice 
47 Β C Α Β Novice 

48 Β C Α C Novice 
49 Β C Β Α Novice 
50 Β C Β Β Novice 
51 Β C Β C Novice 
52 Β C C Α Novice 
53 Β C C Β Novice 
54 Β C C C Novice 
55 C Α Α Α Intermediate 
56 C Α Α Β Intermediate 
57 C Α Α C Intermediate 
58 C Α Β Α Intermediate 
59 C Α Β Β Intermediate 
60 C Α Β C Intermediate 
61 C Α C Α Intermediate 
62 C Α C Β Intermediate 
63 C Α C C Intermediate 
64 C Β Α Α Novice 
65 C Β Α Β Novice 
66 C Β Α C Novice 
67 C Β Β Α Novice 
68 C Β Β Β Novice 
69 C Β Β C Novice 
70 C Β C Α Novice 
71 C Β C Β Novice 
72 C Β C C Novice 
73 C C Α Α Novice 
74 C C Α Β Novice 
75 C C Α C Novice 
76 C C Β Α Novice 
77 C C Β Β Novice 
78 C C Β C Novice 
79 C C C Α Novice 
80 C C C Β Novice 
81 C C C C Novice 

 
3. Variables and Values 
The definition of the set of parameters that play major role 

in the modeling and classification procedure, for each of the 
entities in the process model that represent students’ 
performance data (Fig. 5), was based mostly on our expert 
tutor. In the GA module, there are only input and output 
parameters (no intermediate ones). So, the parameters used by 
the GA module are the following: 

Input parameters: percentage of correct answers in the 
student’s last attempt to answer the questioner, mean time for 
all answers a student has attempted to answer, number of 
times a student has attempted to answer the questioner, mean 
number of times a student has attempted to answer each 
question of the questioner. 

Final output parameter: final classification. It is the only 
final output parameter with three possible values: Good, 
Intermediate and Novice. 
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The domain of each parameter has been determined by the 
aid of the tutor, the statistical analysis of input data and the 
literature. 
 

4.  Architecture and Design 
In this section, the basic structure and operation of the GA 

module is described. Specifically, the coding parameter unit, 
the GA evolution structure and the models extractor unit are 
presented.  

The coding parameter unit operates as follows: The 
students’ performance input data, which comprises of four 
input parameters, is coded into a binary string. This binary 
string is in fact the genome of the GA that will be evolved. 
Each parameter is coded using 31 bits. As a result the whole 
genome length equals 124 bits (Fig. 6). A set of such genomes 
constitutes the GA’s population. 
 

44444 344444 21
4342143421

4

3131

1100...1100...0011...1010  

Fig. 6 The structure of the genome used in the evolution procedure 
 

The structure of the GA used in the GA module is presented 
in Fig. 7. 

Fig. 7 General structure of the GA used 
 

The initial population is generated using a set of random 
binary strings taken from the coding parameter unit. The 
objective function, estimates the goodness (fitness) of each 
individual (binary string). The fitness of each individual is: the 
number of cases that the individual has the same value, for 
specific input parameters, with instances (students’ 
performance data) belonging to a specific student and is 
calculated as shown in Fig. 8. 
 

for each students’ performance data in the input set 
belonging to a specific student do 
 genome_fitness = 0; 

for each genome do 
if the value of the first gene is the same with the 
value of the first input parameter then  
    genome_fitness = genome_fitness + 1; 
if the value of the second gene is the same with 
the value of the second input parameter then  
    genome_fitness = genome_fitness + 1; 
if the value of the third gene is the same with the 
value of the third input parameter then  
    genome_fitness = genome_fitness + 1; 
if the value of the fourth gene is the same with the 
value of the fourth input parameter then  
    genome_fitness = genome_fitness + 1;… 

return genome_fitness  
end 

end 

Fig. 8 Genomes’ fitness computation procedure for a student 
 

This procedure is repeated for each different student. The 
termination criterion is the number of generations, that is, the 
evolution procedure is terminated when a specific number of 
generations (in our case 5) are completed. While the 
termination criterion is not met, the whole evolution procedure 
is taking place for the current population, that is, selection, 
crossover and mutation. When the termination criterion is met, 
the GA evolution procedure is terminated and results to many 
classifying models, one for each different student. 
 

5.  Implementation Issues 
As stated before, the type of GA used in the GA module is 

the classic simple GA [23, 24]. The representation used for the 
genomes of the genetic population is the classic binary string. 
As far as the reproduction operator is concerned, the classic 
biased roulette wheel selection is used. The crossover operator 
used is uniform crossover (with crossover probability equal to 
0.9), while the mutation operator is the flip mutator (with 
mutation probability equal to 0.001. Except of that, the size of 
the population is set to 50 while the GA uses linear scaling 
and elitism [21, 22, 27].  

The GA module is implemented using the C++ Library of 
Genetic Algorithms GAlib [36] and especially the 
GASimpleGA class for the implementation of the GA (non-
overlapping populations) and the GABin2DecGenome class 
for the binary string genomes (an implementation of the 
traditional method for converting binary strings to decimal 
values). All the experiments were carried out on an Intel 
Pentium IV 2.7GHz PC with 256 MB RAM. 

VII. CONCLUSION 
The proposed agent platform provides an integrated 

approach towards achieving the utilization of various 
assessment and retrieval agents and computational intelligence 
techniques such as genetic algorithms in legacy e-learning 
environments. Our proposal enhances significantly the overall 
system in terms of flexibility and efficiency while it 
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introduces a high degree of agents and e-learning platforms 
interoperability utilizing web services technology. The 
presented multi-agent platform can support various intelligent 
agents that provide assessment services and information 
retrieval based on computational intelligence techniques such 
as Bayesian Networks and Genetic Algorithms.  

The specific contribution establishes the basis for a 
continuous scientific work in the field of e-learning systems 
and more specifically in intelligent and adaptive e-learning 
environments. The utilization of artificial and computational 
intelligence techniques can be extended and provide even 
more sophisticated intelligent services as components of e-
learning systems. 

More specifically, the utilization of a multi-agent platform 
with more sophisticated agents that extend the intelligent and 
adaptive services to the learners and tutors is in progress. The 
use of Genetic Algorithms in order to identify more suited 
threshold values to the questions, a more sophisticated 
Genetic Algorithm for the updating procedure of the user 
model and, of course, designing more sophisticated agents that 
facilitate not only the process of the exam, but also the 
learning content, will be the main issues of our future work. 
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