
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3959

Abstract—In this contribution an innovative platform is being

presented that integrates intelligent agents and evolutionary
computation techniques in legacy e-learning environments. It
introduces the design and development of a scalable and
interoperable integration platform supporting:

I) various assessment agents for e-learning environments,
II) a specific resource retrieval agent for the provision of

additional information from Internet sources matching the
needs and profile of the specific user and

III) a genetic algorithm designed to extract efficient information
(classifying rules) based on the students’ answering input
data.

The agents are implemented in order to provide intelligent
assessment services based on computational intelligence techniques
such as Bayesian Networks and Genetic Algorithms.

The proposed Genetic Algorithm (GA) is used in order to extract
efficient information (classifying rules) based on the students’
answering input data. The idea of using a GA in order to fulfil this
difficult task came from the fact that GAs have been widely used in
applications including classification of unknown data.

The utilization of new and emerging technologies like web
services allows integrating the provided services to any web based
legacy e-learning environment.

Keywords—Bayesian Networks, Computational Intelligence
techniques, E-learning legacy systems, Service Oriented Integration,
Intelligent Agents, Genetic Algorithms.

We thank the European Social Fund (ESF), Operational Program for
Educational and Vocational Training II (EPEAEK II), and particularly the
Program HERAKLITOS, for funding the above work.

K. C. Giotopoulos is with the Pattern Recognition Laboratory, Department
of Computer Engineering & Informatics, University of Patras, Rio 26500,
Patras, Greece (corresponding author); phone: 0030-2610-997520; fax: 0030-
2610-969001; e-mail: kgiotop@ceid.upatras.gr).

C. E. Alexakos is with the Pattern Recognition Laboratory, Department of
Computer Engineering & Informatics, University of Patras (e-mail:
alexakos@ceid.upatras.gr).

G. N. Beligiannis is with the Pattern Recognition Laboratory, Department
of Computer Engineering & Informatics, University of Patras (e-mail:
beligian@ceid.upatras.gr).

S. D. Likothanassis is with the Pattern Recognition Laboratory,
Department of Computer Engineering & Informatics, University of Patras (e-
mail: likothan@ceid.upatras.gr).

I. INTRODUCTION
HE wide adoption of e-learning environments in all levels
of human education has leaded scientific research in the

field of adaptive and intelligent e-learning systems to provide
higher quality services towards the end users of the e-learning
systems.

Adaptive and intelligent e-learning systems is more than
clear that satisfy the demanding need of e-learning users for
personalization. It is widely known that the most efficient
products are tailored made to the needs of the client. The same
applies in the e-learning market. People are eager to bye
products or services that fit exactly to their personal needs and
interests.

That is the main reason for the huge scientific effort in all
market sectors to introduce features in products or services
that satisfy the need for personalization. The same applies to
the new and emerging sector of e-learning.

E-learning systems need to introduce the aforementioned
features in terms of functionalities in order to meet the market
trends and user requirements. This aspect comprises the key
aspect for success in all e-learning environments.

Our proposal introduces a scalable and interoperable
integration platform supporting:

I) various assessment agents for e-learning
environments,

II) a specific resource retrieval agent for the
provision of additional information from Internet
sources matching the needs and profile of
specific users and

III) a genetic algorithm designed to extract efficient
information (classifying rules) based on the
students’ answering input data.

The agents are implemented in order to provide intelligent
assessment services based on computational intelligence
techniques such as Bayesian Networks and Genetic
Algorithms.

The proposed Genetic Algorithm (GA) is used in order to
extract efficient information (classifying rules) based on the
students’ answering input data. The idea of using a GA in
order to fulfil this difficult task came from the fact that GAs
have been widely used in applications including classification
of unknown data.

 Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis and Spiridon D.
Likothanassis

Integrating Computational Intelligence
Techniques and Assessment Agents in E-

Learning Environments

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3960

The utilization of new technologies such as web services
allows to integrate the provided services to any web based
legacy e-learning environment. A first approach to the
integration of computational intelligence techniques in order
to assist e-learning process has been presented in [1].

The paper is structured as follows. Section II includes a
brief presentation of the related work in the field of adoption
of intelligent agents in e-learning systems. In section III the
architecture and the functionalities of the proposed agent
platform are described. Section IV presents an example of a
query assessment agent based on Bayesian Networks, which is
integrated in a legacy e-learning system. Section V presents
the resource retrieval agent that anticipates the lack of
additional information for a specific subject taking into
account the special needs and interests of the specific student.
Section VI presents the utilization of a Genetic Algorithm in
order to extract efficient information (classifying rules) based
on the students’ answering input data. Finally, section VII
summarizes the conclusions and suggests future applications
and extensions of the proposed e-learning platform.

II. RELATED WORK
Utilization of agents is significant for providing intelligence

in e-learning environments. Thus, a lot of work has been done
concerning these fields, mainly focusing on adoption of
intelligent agents to integrate e-learning systems. Buraga [2]
proposes an agent-oriented extensible framework based on
XML family for building a hypermedia e-learning system
available on the world-wide web. It deploys mobile agents
that can exchange information in a flexible way via XML-
based documents. The intelligent tutoring system is composed
of four major components. The information processed by each
component can be stored by XML documents. Some of the
components have been implemented as intelligent agents.

Angehrn et al. [3] suggest the use of K-InCA to provide a
personalized e-learning system. K-InCA is an agent-based
system designed to assist people in adopting new behaviors.
The agents within the system examine users’ actions and
maintain a "behavioral profile" reflecting the level of adoption
of the desired behaviors. Based on the user profile, and
relying on a model borrowed from change management
theories, the agents provide at different stages customized
guidance, including mentoring, motivation or stimulus, in
order to support real learning and smooth adoption of new
behaviors.

In order to recommend useful learning material to students
Andronico et al. [4] proposed a multi-agent recommendation
system that suggests educational resources to students into a
mobile learning platform that supports mobile learning
processes. They have first extended the Learning Management
System (LMS) in order to incorporate mobile technologies,
allowing users to interact with the systems using mobile
devices like PDAs, cellular phones etc. This extension arises
the problem of designing new learning models that will be
able to adapt to the changes of student’s performance during

the learning process. Another extension of an LMS presented
in that paper regards the integration of a multi-agent
recommendation system, whose aim is to collect data about
the users’ behavior and preferences and then suggest
educational resources to them according to their profile.

Zaiane [5] suggests the use of web mining techniques to
build such an agent that could recommend on-line learning
activities or shortcuts in a course web site based on learners’
access history to improve course material navigation as well
as assist the online learning process. The automatic
recommendation system takes into account profiles of on-line
learners, their access history and the collective navigation
patterns, and uses simple data mining techniques.

According to the service-oriented integration for e-learning
systems based on web services, Pankratius [6] provide a
related architecture and describes the extensions to support
software agents. It focuses on using intelligent software agents
for the distributed retrieval of educational content. In this
architecture intelligent software agents can be used to acquire
user specifications of learning content and search for matching
Learning Objects on behalf of the user. The work utilizes the
web services as a wrapper around Learning Objects.

III. AGENT PLATFORM
The contribution presented introduces a scalable

implementation architecture that is based on an agent
platform. This platform is used in order to manage the
execution of the various intelligent agents for supporting
legacy e-learning systems. In this section, a detailed
description of the functionalities and the implementation of
the agent platform architecture are presented. Furthermore, the
web services technology is utilized in order to provide
communication and interoperability between the proposed
agent platform and e-learning legacy systems.

A. Platform Architecture
The Agent Platform Architecture that this contribution

proposes is based in open and interoperable standards, since
main effort has been given in the reusability perspective of the
specific platform. The main idea behind the specific
architecture is to use a multi-agent platform to design and
develop the features (agents) that will provide the added value
to legacy e-learning systems. In order to follow the
international standards in the implementation of multi-agent
systems, the proposed agent platform is developed utilizing
Java Agent DEvelopment Framework (JADE) [7]. JADE is a
java-based platform that provides the basic mechanism for the
implementation of peer-to-peer agent based applications
according to the FIPA [8] guidelines for the development of
multi-agent systems.

The main concept is to exploit the features of the proposed
agent platform and develop agents that will implement the
features that are needed. The basic aspect for the architecture
is the fact that the agent platform architecture (Fig. 1)
communicates with the legacy e-learning system through the
use of web services and more specifically by using the SOAP

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3961

protocol.

Fig. 1 Agent Platform Architecture

The requests coming from the e-learning system are being

processed by the Dispatcher Agent. This specific agent is the
front end of the agent platform and is responsible for
identifying the requests coming from the e-learning system
and for allocating them to the appropriate agent in order to be
processed. Each agent is designed to implement functionalities
that arise from the user requirements.

The communication within the agent platform is being
realized with the ACL (Agent Communication Language) [9]
that is part of the FIPA template. It is important to emphasize
that the Dispatcher Agent is the most important component of
the agent platform. The reason for this is its multiple behavior
and usefulness. It serves as process identifier, process
distributor and communication handler. Thus, it is a critical
agent for the proper operation of the agent platform.

The Dispatcher Agent is “informed” by the agents with the
functionalities that they provide. Its main responsibility is to
recognize the incoming requests from the e-learning systems
through a SOAP Interface and translate them to ACL
messages in order to reroute them to the corresponding agent.

The utilization of the JADE framework allows affective
communication between different agents. It is possible that an
agent will require the execution of functionalities belonging to
another agent. In that case, ACL messages are exchanged
between the involved agents establishing interoperability
features between different agents.

B. Communication with the E-learning Environment
For the interconnection of the agent platform with the

legacy e-learning systems Web Services [10] technology is
utilized. Web Services are referred as “software applications

identified by a Uniform Resource Identifier (URI), whose
interfaces and binding are capable of being defined, described
and discovered by XML artifacts and support direct
interactions with other software applications using XML-
based messages via Internet-based protocols”. Web services
are loosely coupled, communicating through XML based
documents. According to the above description, a web service
is given in terms of the messages it sends and receives. At the
concrete level, a binding specifies transport and wire format
details for one or more interfaces. An endpoint associates a
network address with a binding. Finally, a service groups
together endpoints that implement a common interface.

According to the prospects that are supported by the web
services, the main agent platform is enhanced with a SOAP
server in order to provide a flexible and standard based
service for accessing the agents’ capabilities and functions. A
client script is also installed in each of the integrated systems
in order to invoke the provided web services from agent
platform.

The utilization of web services is based on the capability of
“easy” integration that is achieved through an intermediate
adapter layer that relays commands and data between the web
and the system. A big part of the implementation has been
realized using technologies such as .NET framework and
Common Object Model (COM) for Microsoft based
applications, Enterprise JavaBeans (EJB) for java based
applications and PHP classes for web based applications.

IV. QUESTIONER ASSESSMENT AGENT
The use case example presented in this section shows the

utilization of the proposed platform for assessment of students
in a questioner-based examination process. In order to manage
the student’s answers given to the questioner, a Questioner
Assessment Agent is implemented. This agent uses Bayesian
Networks in order to determine the sequence of questions that
are given to the student according to his/her possible answers.

A. Bayesian Network for Questioner Optimization
The agent is based on Bayesian Networks’ techniques in

order to manage the questioners of an e-learning system.
Bayesian Networks [11], [12] are compact networks of
probabilities that capture the probabilistic relationship
between variables, as well as historical information about their
relationships. They are very effective in modelling cases
where some information is already known and incoming data
is uncertain or partially unavailable [13]-[15]. These networks
also offer consistent semantics for representing causes and
effects (and likelihoods) via an intuitive graphical
representation.

According to the presented approach the questions are
structured in a decision tree that denotes the relevance
between two successive questions. A graphical representation
of a questioner used to explain the functionality of our module
is depicted in Fig. 2.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3962

Fig. 2 Graphical Representation of a Questioner

Each of the questions in the Bayesian network is

represented by a node. Each node can be in several states.
Each state corresponds to a different set of probable values for
each variable of the node. In our case, for example, each
question is represented by a 2-state variable that can be either
true (correct answer) or false (false answer). Nodes are
connected to show causality with an arrow (edge) indicating
the direction of influence.

The Bayesian network also contains probabilistic
relationships among some of the states of the domain. These
relationships are used to answer questions like the following:
If the student answered correctly the fourth question, was it
more likely to have answered correctly the first question or
not?

The probability of any node in the Bayesian network being
in one state or another without current evidence is described
using a conditional probability table. Probabilities on some
nodes are affected by the state of other nodes, depending on
causality. Prior information about the relationships among
nodes may indicate that the likelihood that a node is in a
specific state is dependent on the specific state of another
node. For example, prior information may show that if the
student answered correctly the first question, the likelihood of
answering correctly the fourth question is higher. An example
of the conditional probabilities for the Bayesian network
applied in this work is shown in the following table.

TABLE I

CONDITIONAL PROBABILITIES
Child (Q4) Parent (Q1)

True False
True 0.8 0.2
False 0.6 0.4

The table shows that the likelihood of giving a correct

answer at the fourth question is 0.8 if a correct answer was
given at the first question and 0.6 if a false answer was given
at the first question respectively. Similarly the likelihood of
giving a false answer at the fourth question is 0.2 if a correct
answer was given at the first question and 0.4 if a false answer
was given at the first question respectively. In cases where a
node does not have a parent, the table has only two values that

show the likelihood of giving a true or a false answer (Table
II).

TABLE II

NODE WITH NO PARENT
true False Q1
0.5 0.5

After storing all the essential history information stored in
the conditional probability tables, Bayesian networks can be
used either to help making decisions or as a way to automate a
decision-making process. Someone can use Bayesian
networks to perform inductive reasoning (diagnosing a cause,
given an effect) and deductive reasoning (predicting an effect,
given a cause). The operation of Bayesian networks is based
on a well known mathematical rule, the Bayes’ rule. Most
simply, Bayes’ rule can be expressed as follows [16]:

() () ()
()x

xx
p

PPP ii
i

ωωω ⋅
=

//

where ωi is a state of nature, x is the vector of the monitored
characteristics, P(ωi) is the a priori probability, P(x/ωi) is the
probability density function (likelihood), P(ωi/x) is the a
posteriori probability and p(x), which is known as marginal

likelihood, equals () ()∑
=

⋅
n

j
jj PxP

1

/ ωω (n is the number of

different states of nature).
According to our implementation, an xml file is created

which contains all the information needed for handling the
questioners; such as the questions, the correct answers, a
decision-threshold, the initial likelihood for each node and the
values of the conditional probability table (for example 0.8,
0.6, 0.2, 0.4). The system retrieves the first question from the
xml file and prompts it to the student. Based on the answer of
each student and according to the Bayes’ rule, the system
estimates the likelihood of being correct for the next
consecutive answers (based on the respective Bayesian tree
structure).

Questions that are considered to be answered correctly
easily, according to a decision-threshold which is initially
configured by the administrator, are by-passed and never
prompted to the user of the e-learning system. The decision-
threshold denotes the difficulty of a particular question. This
is implemented by using a Black List in which all the
questions to be skipped are deposited.

The benefit of this scheme is that the student does not have
to spend time by answering questions that are considered to be
far easy for his/her knowledge level.

B. Implementing Questioner Assessment Agent
In order to provide the questioner assessment functionalities

according to the Βayesian network - based approach,
introduced in this paper, a Questioner Assessment Agent is
implemented. This agent is developed using the Java
programming language and the JavaBayes [17] class library.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3963

This library comprises a set of tools for the creation and
manipulation of Bayesian networks. The Questioner
Assessment Agent functionalities are implemented in a java
class that includes the following methods:

Initialize_Questioner(xml_file): This method has as input
an xml file that is structured according to the XMLBIF xml
schema and is used from the JavaBayes class in order to pass
to the Bayesian network the probabilities of the questions and
the decisions’ thresholds that are assigned from the tutor to
each specific questioner. Also, there are additional
information such as the questioner id and the student id that
are used by the agent in order to identify the requests.
Furthermore this initialization function creates the necessary
log files for storing the student answers in order to be utilized
from the proposed genetic algorithms. Two log files are
initialized:

o The “question_reportdata” log file that stores for
each question the answers of each student, the next

question that is selected and the threshold of the
question.

o The “student_reportdata” log file that stores a
history for the questioners and the associated
answers that have been executed from a particular
student.

Get_Questioner_Answer(student_id,questioner_id,query_id,
answer): This method is used in order to execute the Bayes
inference rule and calculate the next question that will appear
to the student according to the answer that he/she gave to the
previous question. The student’s answer and the result of the
algorithm executed on Bayesian network are logged in

Get_Questioner_Result(student_id,questioner_id): This

method is executed when the students are finished with the
questioner. It processes the wrong and correct answers and, by
taking accounts the questions that do not appear to him/her, it
calculates the result of the questioner exam for the specific
student. In addition this function is executing the Genetic
Algorithm for student classification. The genetic algorithm
parses the log files and according to the rules described above
decides the level of classification of the student that has
answered the questioner.

The next step of the implementation is to publish the
functionalities of the Questioner Assessment Agent to the
Dispatcher Agent. This works by adding references of the
corresponding methods to the initialization function of the
Dispatcher Agent.

The Questioner Assessment Agent is communicating
directly with the Dispatcher Agent of the proposed agent
platform through ACL messages. Using the Bayesian_Logic
library the Query Assessment Agent is responsible to react to

the requests coming from the Dispatcher Agent.
The main processes are:

1. Initialization of the questioner for the user.

2. Identification of the next question that the user has
to answer.

3. Calculation and provision to the e-learning legacy
system whether the user has passed the questioner
or not.

4. Execution of a Genetic Algorithm that classifies
the users (students) in categories (eg. good,
intermediate, novice) and updates the respective

Fig. 3 Dispatcher Agent SOAP Request – Response example

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3964

user model.

C. E-learning Platform Integration
Using the Eclipse Web Tools Platform [18] a SOAP

wrapper is generated on the Dipsatcher Agent in order to
publish the functionalities of the Questioner Assessment
Agent through the Internet infrastructure. The Web Service
that is generated has three operations similar to the
functionalities of the Questioner Assessment Agent:

• initialize_questioner().

• get_questioner_answer().

• get_questioner_result().

Additionally, the corresponding WSDL document is
created, having the invocation and grounding description of
the above operation. Both the WSDL document and the SOAP
server code are deployed in an application server (in our case
the Apache Tomcat has been used) in order to be accessed
through the Internet. Fig. 3 presents an example of the SOAP
messages (request and response) that are exchanged between
the e-learning system and the Dispatcher Agent in order to
invoke the functionality Get_Questioner_Answer of the
Questioner Assessment Agent.

The three mentioned operations can be easily invoked from
a legacy e-learning system with a SOAP client which can be
implemented in any of the well known programming
languages. A legacy e-learning system can use these
functionalities and interoperate with the Questioner
Assessment Agent through the Internet by adding some lines
of code. The legacy e-learning system used in our application
was implemented using the PHP language. Some blocks of
code were added to the e-learning system in order to allow the
tutor to assign probabilities and threshold values to the
questions of a questioner. Also, a SOAP client is adjusted to
the routines implementing the exam for the communication
with the Dispatcher Agent. Furthermore, the e-learning system
is capable of retrieving the results of the agent’s execution and
uses it in order to assess the examination process of a
particular student.

V. RESOURCES RETRIEVAL AGENT
Another problem that is usually presented in the classical e-

learning environments is the lack of additional information
about a particular educational subject that could not be found
in the course’s notes nor presentations. In order to face this
problem, a second agent is proposed in this paper, specifically,
the Resource Retrieval Agent. The Resource Retrieval Agent
is an agent that takes advantage of the well known Google
search engine in order to search the Internet for information
about a specific educational subject. The agent is initiated for
the following method:

Retrieve Data (search_string): This function has as input a
query string that comes from the e-learning environment and
includes the description of the educational subject for which a

student needs more information. The next step of the agent is
to send a search request to the Google search engine using a
SOAP client to invoke the Google API [19]. The SOAP
response is filtered from the agent and the results that can be
both web-site links and file links are forwarded to the e-
learning system.

In order to publish the functionalities of the Resource
Retrieval Agent to the legacy e-learning environments we
utilize the same methodology for creating the appropriate web
services in the Questioner Assessment Agent example. Using
the Eclipse Web Tools Platform a new method named
retrieve_data() is added to the methods of the web service that
is published from the Dispatcher Agent.

The overall process that is executed from the Resource
Retrieval Agent is depicted in Fig. 4.

Fig. 4 Resources Retrieval Agent

VI. THE GENETIC ALGORITHM MODULE

A. Evolutionary Computation Techniques
Evolutionary computation techniques have been developed

by attempting to imitate the mechanisms of natural selection
and natural genetics. They have been around for quite some
time, but have recently gained popularity, due to the advances
in computing equipment, which make their implementation
feasible and efficient. One of the most popular approaches to
evolutionary computation is Genetic Algorithms (GAs)
initially introduced by John H. Holland [20]. GAs operate on
binary string structures, analogous to biological creatures.
These structures are evolving in time according to the rule of
survival of the fittest by using a randomized, yet structured
information exchange scheme. Thus, in every generation, a
new set of binary strings is created, using parts of the fittest
members of the old set [21, 22, 25].

GAs process a binary coding of the parameter space and
work on it. This coding (which is an essential part of the GA

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3965

design procedure) results in formation of binary strings.
Having decided on the binary coding to be used, an initial set
of strings (a population) is created at random. Next, a set of
operators is applied to this initial population to generate
successive generations that hopefully will improve over time.
An objective function (usually referred to as fitness function
in GA terminology) serves as a measure of goodness of a
string, and is a functional of the function that we are trying to
optimize. Several operators have been proposed at times;
however, three simple operators perform well in a wide
variety of search and optimization problems. These are the
Selection operator, the Crossover operator and the Mutation
operator [23, 24, 26].

Since this approach is significantly different from others,
GAs have been successfully applied to search and
optimization problems where other approaches failed [28].
GAs have proven to be well suited to optimization of specific
non-linear multivariable systems and are being used in a
variety of real – world applications including scheduling [29,
30], resource allocation [29, 31], training of ANNs [29, 32,
33, 34] and selecting rules for fuzzy systems [29, 34].

GA techniques are also included in the agent platform
presented in this contribution. The GA Module of the
proposed platform will be better described in the following
sections.

Fig. 5 The Process Model used in the GA Module

B. The Structure and Operation of the GA module
1. Modeling Students’ Performance
The proposed module uses a GA in order to extract efficient

information (classifying rules) based on the students’
answering input data. The idea of using a GA in order to fulfil
this difficult task came from the fact that GAs have been
widely used in applications including classification of
unknown data [29, 35].

2. Extracting Classifying Models
The process model used in the GA module is shown in Fig.

5. The system initially, gathers the following information:
1. The percentage of correct answers in the student’s

last attempt to answer the questioner.
2. The mean time for all answers a student has

attempted to answer.

3. How many times a student has attempted to answer
the questioner.

4. The mean number of times a student has attempted to
answer each question of the questioner.

TABLE III

CLASSIFYING RULES USED IN THE GA MODULE
1st Criterion: Percentage of correct answers in the
student’s last attempt to answer the questioner.
Value: Α Value: Β Value: C
>85% >65% and <=85% >50% and <=65%

2nd Criterion: Mean time for all answers a student has
attempted to answer
Value: Α Value: Β Value: C
<=1 minute >1 and <=2 minutes >2 minutes

3rd Criterion: Number of times a student has attempted
to answer the questioner
Value: Α Value: Β Value: C
>=1 and <4 >=4 and <7 >=7

4th Criterion: Mean numbers of times a student has
attempted to answer each question of the questioner
Value: Α Value: Β Value: C
>=1 and <4 >=4 and <7 >=7

Next, the system codes the gathered information in order to

create the initial population of the GA and starts the GA
evolution procedure. After a few generations, the GA provides
many different binary strings each corresponding to one of the
different students that have answered the questioner. Each
binary string constitutes an efficient classifier for each
respective student. Each such classifier comprises a binary
string matching all the features that characterize a specific
student. In this way, every classifier can describe the
knowledge and answering performance of each student and all
together can constitute a system for extracting models,
according to each student’s performance data. After that, the
classification procedure is taking place. Each model resulted
by the proposed module is compared with the classification
rules given by the tutor. The classification rules used in the
presented work, which are based on four major criteria, are
shown in Table III.

In order each student to be classified; his/her model is
compared with the rules presented above. The result of this
comparison is a proposal to the tutor to classify a student to a
specific knowledge level. The relational matrix of the above
classification rules used for the final classification of each
student is shown in Table IV.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3966

TABLE IV
THE RELATIONAL MATRIX OF THE CLASSIFICATION RULES

1st
Crite
rion

2nd
Crite
rion

3rd
Criterion

4th
Crite
rion

Final
Classificatio

n
1 Α Α Α Α Good
2 Α Α Α Β Good
3 Α Α Α C Good
4 Α Α Β Α Good
5 Α Α Β Β Good
6 Α Α Β C Good
7 Α Α C Α Good
8 Α Α C Β Good
9 Α Α C C Good

10 Α Β Α Α Good
11 Α Β Α Β Good
12 Α Β Α C Good
13 Α Β Β Α Good
14 Α Β Β Β Good
15 Α Β Β C Good
16 Α Β C Α Good
17 Α Β C Β Good
18 Α Β C C Good
19 Α C Α Α Intermediate
20 Α C Α Β Intermediate
21 Α C Α C Intermediate
22 Α C Β Α Intermediate
23 Α C Β Β Intermediate
24 Α C Β C Intermediate
25 Α C C Α Intermediate
26 Α C C Β Intermediate
27 Α C C C Intermediate
28 Β Α Α Α Good
29 Β Α Α Β Good
30 Β Α Α C Good
31 Β Α Β Α Good
32 Β Α Β Β Good
33 Β Α Β C Good
34 Β Α C Α Intermediate
35 Β Α C Β Intermediate
36 Β Α C C Intermediate
37 Β Β Α Α Intermediate
38 Β Β Α Β Intermediate
39 Β Β Α C Intermediate
40 Β Β Β Α Intermediate
41 Β Β Β Β Intermediate
42 Β Β Β C Intermediate
43 Β Β C Α Intermediate
44 Β Β C Β Intermediate
45 Β Β C C Intermediate
46 Β C Α Α Novice
47 Β C Α Β Novice

48 Β C Α C Novice
49 Β C Β Α Novice
50 Β C Β Β Novice
51 Β C Β C Novice
52 Β C C Α Novice
53 Β C C Β Novice
54 Β C C C Novice
55 C Α Α Α Intermediate
56 C Α Α Β Intermediate
57 C Α Α C Intermediate
58 C Α Β Α Intermediate
59 C Α Β Β Intermediate
60 C Α Β C Intermediate
61 C Α C Α Intermediate
62 C Α C Β Intermediate
63 C Α C C Intermediate
64 C Β Α Α Novice
65 C Β Α Β Novice
66 C Β Α C Novice
67 C Β Β Α Novice
68 C Β Β Β Novice
69 C Β Β C Novice
70 C Β C Α Novice
71 C Β C Β Novice
72 C Β C C Novice
73 C C Α Α Novice
74 C C Α Β Novice
75 C C Α C Novice
76 C C Β Α Novice
77 C C Β Β Novice
78 C C Β C Novice
79 C C C Α Novice
80 C C C Β Novice
81 C C C C Novice

3. Variables and Values
The definition of the set of parameters that play major role

in the modeling and classification procedure, for each of the
entities in the process model that represent students’
performance data (Fig. 5), was based mostly on our expert
tutor. In the GA module, there are only input and output
parameters (no intermediate ones). So, the parameters used by
the GA module are the following:

Input parameters: percentage of correct answers in the
student’s last attempt to answer the questioner, mean time for
all answers a student has attempted to answer, number of
times a student has attempted to answer the questioner, mean
number of times a student has attempted to answer each
question of the questioner.

Final output parameter: final classification. It is the only
final output parameter with three possible values: Good,
Intermediate and Novice.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3967

The domain of each parameter has been determined by the
aid of the tutor, the statistical analysis of input data and the
literature.

4. Architecture and Design
In this section, the basic structure and operation of the GA

module is described. Specifically, the coding parameter unit,
the GA evolution structure and the models extractor unit are
presented.

The coding parameter unit operates as follows: The
students’ performance input data, which comprises of four
input parameters, is coded into a binary string. This binary
string is in fact the genome of the GA that will be evolved.
Each parameter is coded using 31 bits. As a result the whole
genome length equals 124 bits (Fig. 6). A set of such genomes
constitutes the GA’s population.

44444 344444 21
4342143421

4

3131

1100...1100...0011...1010

Fig. 6 The structure of the genome used in the evolution procedure

The structure of the GA used in the GA module is presented
in Fig. 7.

Fig. 7 General structure of the GA used

The initial population is generated using a set of random
binary strings taken from the coding parameter unit. The
objective function, estimates the goodness (fitness) of each
individual (binary string). The fitness of each individual is: the
number of cases that the individual has the same value, for
specific input parameters, with instances (students’
performance data) belonging to a specific student and is
calculated as shown in Fig. 8.

for each students’ performance data in the input set
belonging to a specific student do
 genome_fitness = 0;

for each genome do
if the value of the first gene is the same with the
value of the first input parameter then
 genome_fitness = genome_fitness + 1;
if the value of the second gene is the same with
the value of the second input parameter then
 genome_fitness = genome_fitness + 1;
if the value of the third gene is the same with the
value of the third input parameter then
 genome_fitness = genome_fitness + 1;
if the value of the fourth gene is the same with the
value of the fourth input parameter then
 genome_fitness = genome_fitness + 1;…

return genome_fitness
end

end

Fig. 8 Genomes’ fitness computation procedure for a student

This procedure is repeated for each different student. The
termination criterion is the number of generations, that is, the
evolution procedure is terminated when a specific number of
generations (in our case 5) are completed. While the
termination criterion is not met, the whole evolution procedure
is taking place for the current population, that is, selection,
crossover and mutation. When the termination criterion is met,
the GA evolution procedure is terminated and results to many
classifying models, one for each different student.

5. Implementation Issues
As stated before, the type of GA used in the GA module is

the classic simple GA [23, 24]. The representation used for the
genomes of the genetic population is the classic binary string.
As far as the reproduction operator is concerned, the classic
biased roulette wheel selection is used. The crossover operator
used is uniform crossover (with crossover probability equal to
0.9), while the mutation operator is the flip mutator (with
mutation probability equal to 0.001. Except of that, the size of
the population is set to 50 while the GA uses linear scaling
and elitism [21, 22, 27].

The GA module is implemented using the C++ Library of
Genetic Algorithms GAlib [36] and especially the
GASimpleGA class for the implementation of the GA (non-
overlapping populations) and the GABin2DecGenome class
for the binary string genomes (an implementation of the
traditional method for converting binary strings to decimal
values). All the experiments were carried out on an Intel
Pentium IV 2.7GHz PC with 256 MB RAM.

VII. CONCLUSION
The proposed agent platform provides an integrated

approach towards achieving the utilization of various
assessment and retrieval agents and computational intelligence
techniques such as genetic algorithms in legacy e-learning
environments. Our proposal enhances significantly the overall
system in terms of flexibility and efficiency while it

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3968

introduces a high degree of agents and e-learning platforms
interoperability utilizing web services technology. The
presented multi-agent platform can support various intelligent
agents that provide assessment services and information
retrieval based on computational intelligence techniques such
as Bayesian Networks and Genetic Algorithms.

The specific contribution establishes the basis for a
continuous scientific work in the field of e-learning systems
and more specifically in intelligent and adaptive e-learning
environments. The utilization of artificial and computational
intelligence techniques can be extended and provide even
more sophisticated intelligent services as components of e-
learning systems.

More specifically, the utilization of a multi-agent platform
with more sophisticated agents that extend the intelligent and
adaptive services to the learners and tutors is in progress. The
use of Genetic Algorithms in order to identify more suited
threshold values to the questions, a more sophisticated
Genetic Algorithm for the updating procedure of the user
model and, of course, designing more sophisticated agents that
facilitate not only the process of the exam, but also the
learning content, will be the main issues of our future work.

REFERENCES
[1] K. C. Giotopoulos, C. E. Alexakos, G. N. Beligiannis and S. D.

Likothanassis, “Computational Intelligence Techniques and Agents’
Technology in E-learning Environments”, International Journal of
Information Technology, Volume 2, Number 2, 2005,ISSN:1305-2403,
pp. 147-156.

[2] S. Buraga, “Developing Agent-Oriented E-Learning Systems”, in
Proceedings of The 14th International Conference on Control Systems
And Computer Science – vol. II, I. Dumitrache and C. Buiu, Eds,
Politehnica Press, Bucharest, 2003.

[3] A. Angehrn, T. Nabeth, L. Razmerita, and C. Roda., “K-inca: Using
artificial agents for helping people to learn new behaviors”, in
Proceedings of the IEEE International Conference on Advanced
Learning Technologies (ICALT 2001), Madison USA, August 2001, pp.
225-226.

[4] A. Andronico, A. Carbonaro, G. Casadei, L. Colazzo, A. Molinari, and
M. Ronchetti, “Integrating a multi-agent recommendation system into a
Mobile Learning Management System”, in Proceedings of Artificial
Intelligence in Mobile System 2003 (AIMS2003), October 12, Seattle,
USA.

[5] O. R. Zaiane, “Building a Recommender Agent for e-Learning
Systems”, in Proceedings of the International Conference on Computers
in Education, Auckland, New Zealand, December 2002, pp. 55-59.

[6] V. Pankratius, O. Sandel, W. Stucky, “Retrieving Content with Agents
in Web Service E-Learning Systems”, Symposium on Professional
Practice in AI, IFIP WG12.5 – in Proceedings of the First IFIP
Conference on Artificial Intelligence Applications and Innovations
(AIAI), Toulouse, France, August 2004.

[7] F. Bellifemine, G Caire, A. Poggi and G. Rimassa, “JADE A White
Paper”, Telecom Italia EXP Magazine, Volume 3, Number 3 September
2003

[8] Foundation of Intelligent Physical Agents (FIPA), http://www.fipa.org/
[9] FIPA ACL Message Structure Specification, FIPA Standard,

http://www.fipa.org/repository/aclspecs.html
[10] W3C - Web Services Activity http://www.w3.org/2002/ws/
[11] F. V. Jensen, An Introduction to Bayesian Networks, Springer Verlag,

New York, 1996.
[12] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference, Morgan Kaufmann, San Mateo, CA, 1988.

[13] J. Martin and K. VanLehn, “Student assessment using bayesian nets”,
International Journal of Human-Computer Studies, vol. 42, pp. 575-591,
1995.

[14] Cristina Conati, Abigail Gertner and Kurt Van Lehn, “Using Bayesian
Networks to Manage Uncertainty in Student Modelling”, User
Modelling and User-Adapted Interaction, vol. 12, pp. 371-417, Kluwer
Academic Publishers, Printed in the Netherlands, 2002.

[15] C. Conati, A. S. Gertner, K. Van Lehn, and M. J. Druzdel, “On-line
student modelling for coached problem solving using Bayesian
networks”, in Proceedings of the Sixth International Conference on User
Modelling, A. Jameson, C. Paris and C. Tasso, Eds, Vienna, New York,
Springer, 1997, pp. 231-242.

[16] R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, Wiley-
Interscience, 2nd edition, October 2000.

[17] JavaBayes, Bayesian Networks in Java,
http://www.cs.cmu.edu/~javabayes/

[18] Eclipse Web Tools Platform (WTP), http://www.eclipse.org/webtools/
[19] Google API, http://www.google.com/apis/index.html
[20] J. H. Holland (1975), Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence, University of Michigan Press (second edition:
MIT Press, 1992).

[21] D. E. Goldberg (1989), Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, Reading, Mass.

[22] Z. Michalewicz (1999), Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, Berlin.

[23] M. Mitchell (1996), An Introduction to Genetic Algorithms, The MIT
Press, Cambridge, Massachusetts, London, England.

[24] M. D. Vose (1998), The Simple Genetic Algorithm: Foundations and
Theory, MIT Press.

[25] L. D. Whitley (1993), Foundations of Genetic Algorithms 2, Morgan
Kaufmann.

[26] L. D. Whitley and M. D. Vose (1995), Foundations of Genetic
Algorithms 3, Morgan Kaufmann.

[27] D. B. Fogel (1995), Evolutionary Computation: Toward a New
Philosophy of Machine Learning, IEEE Press.

[28] Z. Michalewicz, D. B. Fogel (2000), How to Solve It: Modern
Heuristics, Springer-Verlag, Berlin, Heidelberg.

[29] T. Back, D.B. Fogel, and Z. Michalewicz (1997), Handbook of
Evolutionary Computation, Bristol, UK: Institute of Physics, and New
York, NY: Oxford University Press.

[30] M. Gen, R. Cheng (1997), Genetic Algorithms and Engineering Design,
John Wiley & Sons, Ltd.

[31] Xiang Wu, Bayan S. Sharif and Oliver R. Hinton, ‘An Improved
Resource Allocation Scheme for Plane Cover Multiple Access Using
Genetic Algorithm’, IEEE Transactions on Evolutionary Computation,
Vol. 9, No. 1, February 2005.

[32] J. D. Schaffer, D. Whitley, and L. J. Eshelman, ‘Combinations of
Genetic Algorithms and Neural Networks: A Survey of the State of the
Art’, International Workshop on Combinations of Genetic Algorithms
and Neural Networks, Baltimore, Maryland, June 6, 1992, pp. 1-37.

[33] M. Annunziato, M. Lucchetti, S. Pizzuti: ‘Adaptive Systems and
Evolutionary Neural Networks: a Survey’, EUNITE2002, Albufeira,
Portugal, Sept. 2002.

[34] E. Georgopoulos , S. Likothanassis and A. Adamopoulos, ’Evolving
Artificial Neural Networks using Genetic Algorithms’, International
Conference on Artificial Neural Networks and Intelligent Systems
(NNW 2000), Prague, Chez Republic, July 9-12, 2000.

[35] O. Cordon, H. Herrera, and M. Lozano, ‘A classified review on the
combination fuzzy logic-genetic algorithms bibliography’, Tech. Report
95129, URL:http://decsai.ugr.s/herrera/flga.html, Department of
Computer Science and AI, Universidad de Granada, Granada, Spain,
1995.

[36] GAlib - A C++ Library of Genetic Algorithm Components, Matthew
Wall, Massachusetts Institute of Technology (MIT). Available:
http://lancet.mit.edu/ga/.

