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Abstract—An evolutionary method whose selection and recom-
bination operations are based on generalization error-bounds of
support vector machine (SVM) can select a subset of potentially
informative genes for SVM classifier very efficiently [7]. In this
paper, we will use the derivative of error-bound (first-order criteria)
to select and recombine gene features in the evolutionary process,
and compare the performance of the derivative of error-bound with
the error-bound itself (zero-order) in the evolutionary process. We
also investigate several error-bounds and their derivatives to com-
pare the performance, and find the best criteria for gene selection
and classification. We use 7 cancer-related human gene expression
datasets to evaluate the performance of the zero-order and first-order
criteria of error-bounds. Though both criteria have the same strategy
in theoretically, experimental results demonstrate the best criterion
for microarray gene expression data.
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I. INTRODUCTION

Patient samples for bioinformatic analyses are fairly small
in number compared to the number of genes investigated
such as microarray datasets. The vast amount of raw gene
expression data leads to statistical and analytical challenges
including the classification of datasets into correct classes. In
machine-learning terminology, these data sets have high di-
mension and small sample size. Though the data management
system allows researchers to gather number of genes of ever-
increasing size, many of which are irrelevant to the distinc-
tion of samples. These irrelevant genes have negative effect
on the accuracy of the classifier. The microarray data also
contain technical and biological noise. Selection of relevant
genes that will give higher accuracy for sample classification
(for example, to distinguish cancerous from normal tissues)
is a common task in most microarray data studies. There exist
several ranking based and evolutionary computation methods
for gene selection in the microarray data. Gene selection
by evolutionary methods can outperform others, however;
the success of these evolutionary methods depends on the
appropriate choice of selection and recombination operations
as well as choice of the appropriate classifier.
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Recently, Debnath and Kurita have proposed an evolution-
ary SVM classifier that can select a subset of potentially
informative genes based on SVM error-bound value for
an SVM classifier very efficiently [7]. In the conventional
gene selection and classification evolutionary methods, the
selection and recombination operations are obtained based on
GA-based algorithms, whereas fitness function is evaluated
by classifiers such as SVM, £NN, and neural networks. The
problem of these evolutionary methods is that the selection
and recombination operations that select informative genes
are independent from the algorithm used to construct the
classifiers and thus selection and recombination operations
do not directly reflect the performance of the classifier. The
advantage of the error-bound based evolutionary method over
conventional evolutionary methods is that the selection and
recombination operators are chosen based on SVM error-
bound values, whereas the SVM evaluates the fitness value.
Thus, selected genes directly reflect to some extent the
performance of SVM classifiers. Experimenting on various
datasets, it is found that the error-bound based evolutionary
method can select a subset of potentially informative genes
for SVM classifier very efficiently [7].

In this paper, we will use derivative of error bound (first-
order criteria) to select and recombine gene features in the
evolutionary process, and compare the performance of the
derivative of the error-bound with the error-bound itself
(zero-order) in the evolutionary process. We also investi-
gate several error-bounds such as radius-margin bound [12],
Opper-Winther bound [8], Jaakkola-Haussler bound [9] and
Zhou-Tuck bound [10], and their derivatives and the deriva-
tive of weight vector (V||w||?) to compare the performance,
and find the best criteria for gene selection and classification.
We use 7 cancer-related human gene expression datasets to
evaluate the performance of the zero-order and first-order
criteria of error-bounds. Though both criteria have the same
strategy in theoretically, from experimental results we see that
zero-order criteria show better classification accuracy than
first-order criteria. Among zero-order criteria, Opper-Winther
bound and Zhou-Tuck bound perform better than others.

The paper is organized as follows: In Section I, we briefly
describe the SVM classifier and its several error bounds and
their derivatives. In Section 11, we briefly describe the SVM
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error bound based evolutionary algorithm that is presented
in [7]. Computational results are presented in Section IV.
Section V concludes the paper.

Il. SVM CLASSIFIER

The SVM is a very popular supervised learning algo-
rithm that often achieves superior generalization perfor-
mance compared to other learning algorithms across most
domains and tasks. The SVM classifier is a binary classifier
that finds an optimal hyperplane as a decision function
in a high dimensional space. Given [ training examples
(x1,91), (X2,%2), -+, (X1, 1), Where x; € RY i =1,...,1
and y; € {1,—1} is the class label of x;. The method
consists in first mapping x into a high dimensional space via
a function ®, then computes a decision function that does
the separation with maximizing margin as:

f(x) = (w, ®(x)) +b, ()

where w is a weight vector and b is a bias. Assume that the
nearest points lie on f(x;) = £1 for some ¢, the margin is
then defined by

1
v = T 2

The SVM problem is expressed by the following optimization
problem:

1
min 5w l? @

subject to yi(wid(x) +b)>1, i=1,...,1.(4)

Using the Lagrangian, this new optimization problem can be
converted into a dual form, which is a quadratic programming
problem defined by

l l
o 1
maximize g ai—§ E OéiajyiyjK(xian) (5)
i=1

ij=1
l
subject to Z a;y; = 0, (6)
i=1
>0, i=1,...,1,

where «; are Lagrange multipliers and K(x;,x;) =
(®(x;), ®(x;)) is the Gram matrix of the training data. The
w is then computed as

!
w = Zaiyiq’(xi) @
im1

and b is computed by taking any x; corresponding to a;; > 0
as
l
b=y;— > yiaiK(xi,%;). ®)
=1
For misclassified examples, slak variables and trade-off pa-
rameter are introduced in Egs. (3) and (4). The solutions of

the new problems are obtained using the Lagrangian theory
where w is the same as derived previously but b is computed
with different conditions. For mathematical formulations and
derivations of algorithms for misclassified examples, see [12].
The interesting point of SVMs is that they are provided with
many statistics that allow to estimate their generalization
performance from bounds on the leave-one-out error. The
leave-one-out error is an unbiased estimate for the true error
rate of a classifier. Several error bound theories for binary
SVMs exist. In this paper, we apply the following bounds
and their derivatives, and the derivative of weight vector for
feature selection. We briefly describe several error bounds
and their derivative in the following subsections.

A. Radius-margin Bound

Vapnik [12] has developed the radius-margin bound for
hard-margin SVM on the number of errors in the leave-one-
out procedure without bias term b given as

4
too < 3 R [wl[*. ©

where loo is the leave-one-out error rate, ||w]|? is the weight
vector, and R is the radius of the smallest spare containing
all x;. R? is computed by solving the following optimization
problem:

l l
R? = maximize ZﬂiK(xi,xi)— ZﬁiﬂjK(xi,xj)
i=1

4,j=1

l
subject to Zﬁl =1,
i=1
ﬁi > 07

i=1,...,1.

To calculate the derivative of the bound value, a virtual
scaling factor (whose value is 1) is introduced with each
feature, and then the gradient of bound value is computed
with respect to that scaling factor. Thus K (x;,x;) becomes:

K x;,v-xj)
where - denotes the componentwise vector product and v is

a vector with all elements are 1. The radius-margin gradient
with respect to a feature i:

1 0K (v - xp, v - X;)

HIET: R
0K (v -xp,V-X;

+R2Zakajykij (10)

ov;
k,j !

where 0, = 1 if j = k, otherwise d;;, = 0.
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B. Opper-Winther Bound

Opper and Winther [8] have developed the following
bound on the number of errors in the leave-one-out procedure
for the hard-margin SVM without bias term b is given as

l
loo < EZ ( - 1) , (11)
I = sv>

where K gy is the matrix of dot-products between support
vectors. The step function is not a good choice for feature
selection due to the small number of samples in microarray
datasets. Avoiding step function, an upper bound of Opper-
Winther bound is used for feature selection as
1 ! «
upper P
loo < lp; CE (12)

Opper-Winther bound gradient with respect to a feature i:
l
1 0Kgy .
Tt (i 25 w5t )
p=1 pp

where S, =1/ (K3y),,

(13)

C. Jaakkola-Haussler Bound

Jaakkola and Haussler [9] have developed the following
bound on the number of errors in the leave-one-out procedure
for SVM without bias term b given as

l
mg%z (o K (x4,%;) — 1), (14)

where ¥ is a step function: ¥(z) = 1 when z > 0 and
U(x) = 0 otherwise. Avoiding step function, it can be written
as:

loo"PPeT < Zaz (xi,%;) (15)
Jaakkola-Haussler bound gradlent:

l

1 0K (v - Xy, V- Xg)
- R Xk, ¥ * Xk) 1
lkzzlak 50, (16)

D. Zhou-Tuck Bound

Recently, Zhou and Tuck [10] have proposed an error
bound for the SVM, which can be applicable in either
separable or non-separable cases. The bound is given as

4ngv
C )

1
loo <\ | W (@) > (D2+Dy?) + 7
p
where W («) is the objective value of the dual problem
generated from SVM classification, >° () indicates that
the sum is taken only over support vectors x,, D, is the
Euclidean distance between support vector x,, and its nearest

support vector in the same class, while Dj, is the Euclidean
distance between support vector x, and its farthest sample
(not support vector) in the other class, and ngy is the number
of support vectors. The Euclidean distance in the feature
space, ¢(-), is calculated using the kernel function as

D, = min [|2(x;) — (i) |

= min \/(8(x,). ©(x,)) — 2D (x,), Dock)) + (i), (i)

= min \/K(xp,xp) — 2K (xp,xi) + K (x5, Xy),

where x;, are the support vectors in the same class of x,,.
Gradient of W (a):

VX, V- Xj)

Zaka]yky]f (18)

Gradient of distance:

min 1/2 ($ K - xp v -xp)

SK(v-xp, v - xp)
2

Su; s,

i

R 6K(V~zkju-xk)> (19)

I1l. EVOLUTIONARY SVM

The evolutionary algorithm that we use maintains a pop-
ulation of predictors whose effectiveness can be determined
by using them as features in an SVM classifier. The initial
predictors in the population are randomly constructed from
the gene features set. Instead of applying crossover and
mutation operations, the method selects and recombines new
features based on leave-one-out error bound values of SVMs
and the frequency of occurrence of the features in the
evolutionary approach. If T,, is the bound value of m gene
features on a predictor and T}, is the bound value of
all genes except gene ¢ of that predictor. Then, 77, _, for
all i are calculated. The 77 | < Tk _, means removing
gene j from the predictor can reduce error bound much
more than removing gene k. Thus genes j with small 77, ,
should be deleted in the next generation. Again, if T},
is the bound value of m genes on a predictor plus a new
gene i. The 77 ., < T¥ ., means adding gene j to the
predictor can reduce error bound much more than adding
gene k. The k-fold cross validation is used as an estimator
of the generalization performance that also measures the
fitness value. The termination criteria is defined using both
the maximum number of generations and the criteria of no
improvement of maximum fitness value of the population.
The algorithm is described below:

1. A population E, of n predictors {G1,G>,...,G,} is

created. A predictor G; is a subset of m gene features
{91, 92,...,gm } initially created randomly. Evaluate
the fitness values of all predictors. Fitness values are
evaluated by SVMs.

2. Until termination criteria not satisfied, do the follow-

ing:
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3. For each predictor G; € E, create a new predictor G,

3.1. Delete p genes from G, whose error bound values
are minimum and selected in a few previous gen-
erations as briefly described above. For details,
see [7].

3.2. Add the same number of p genes from a random
subset of data except those are in G; in population
E}, whose error bound values are minimum with
the rest of the genes in Gy after deletion and
frequently selected in the previous generations.

3.3. Compute the fitness function for the new predictor
G’ using SVMs.

4. Create a new population Ej.; by replacing all new
G,

5. Replace some worse predictors of the new population
FEy1 based on classification accuracy by some best
predictors from the previous generation. To do this,
merge the features of some best predictors from the
previous generation and then randomly split features
of the merged features set into the same number of
predictors. Then select some predictors for new G.

This procedure will be performed for a set of SVM hyperpa-
rameters and the best hyperparameters for each predictor will
be obtained. Different combinations of genes with the same
high accuracy rate can be evaluated in evolutionary com-
putations through generation of individuals of a population.
From this procedure we will get n’ feature sets according
to the best high classification accuracies where n’ < n.
From the n’ sets we will choose N,.,; features according
to occurrence frequency and classification accuracy rate. The
hyperparameters for the final learning machine (SVM) will
be selected by averaging the best hyperparameters of that
n' predictors. For details about the algorithm and principles
behind these, see [7].

IV. COMPUTATIONAL EXPERIMENTS

In our experiments, we use 7 cancer-related human gene
expression datasets that are described in Table I. The
dataset are available on http://www-gems-system.org for
non-commercial use. The studied datasets were produced
primarily by oligonucleotide-based technology. Specifically,
all datasets except for SRBCT, RNA were hybridized to
high-density oligonucleotide Affymetrix arrays HG-U95 or
Hu6800, and expression values (average difference units)
were computed using Affymetrix GENECHIP analysis soft-
ware. The SRBCT dataset was obtained by using two-color
cDNA platform with consecutive image analysis performed
by DeArray Software and filtering for a minimal level of
expression. The datasets have 2-5 distinct diagnostic cate-
gories, 50-102 patient samples, and 2308-11225 variables
(gene features) after preprocessing (details in [6]). We rescale
gene expression values of these datasets linearly into the
range [-1,1].

The number of predictors is set to 50. The size of each
predictor and the numbers of deletions and additions of genes
are set experimentally (usually half of the predictor is deleted
and added in our experiments). In each generation, at best 10
worst predictors in the new population is replaced with the 10
best predictors of the previous population according to step 5
of the algorithm. To evaluate the performance of the proposed
method we use 5-fold cross-validation on each dataset. The
stopping condition of the algorithm is to use 100 generations.
Only linear kernel is used for experiments because linear
kernel shows better performance than RBF kernel. The SVM
trade-off parameter is set to [272,271, ..., 29 210],

The comparison of performances of zero-order and first-
order SVM error-bound criteria in the evolutionary process
is shown in Table Il. We performed experiments on all
error-bounds and their derivatives but reported the results
in the table of the bounds and their derivatives that show
the best performance. From the experimental results we see
that zero-order criteria show better performance than first-
order criteria. Among the zero-order criteria, Opper-Winther
bound and Zhou-Tuck bound perform better than others.
Among the first-order criteria, derivative of weight vector
shows the best results and then the derivative of Zhou-
Tuck and Opper-Winther bounds. Other derivatives are not
as good as derivatives of weight vector and Zhou-Tuck
bound. From the experiments and theoretical analyses, we see
that computational cost using weight derivative is minimum,
followed by the cost of Jaakkola-Haussler bound and Zhou-
Tuck bound, then Opper-Winther upper bound, and then the
cost of radius-margin bound. The derivative of each error-
bound is computationally more expensive than the cost of
itself. Regarding the accuracy rate and computational cost,
Opper-Winther bound and Zhou-Tuck bound perform better
than others. Thus, we suggest that Opper-Winther bound and
Zhou-Tuck bound are more suitable for practical use.

V. CONCLUSION

In this paper, we compare the performance of zero-order
and first-order SVM error-bound criteria in the evolutionary
process. From the experimental results we see that zero-
order criteria show better performance than first-order cri-
teria. Moreover, zero-order criteria are computationally less
expensive than first-order criteria. Only derivative of weight
vector shows better results among the derivative criteria,
however it’s results are not as good as zero-order criteria.
Regarding computational complexity among all, the cost of
the derivative of weight vector is the least. However, con-
sidering both accuracy rate and computational cost, Opper-
Winther bound and Zhou-Tuck bound perform better than all
zero-order and first-order criteria.
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Table I: Features of microarray datasets.
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Dataset Diagnostic Task #Samples | #Genes | #Classes
Brain_Tumorl Five human brain tumor types 90 5920 5
Brain_Tumor2 Four malignant glioma types 50 10367 4

SRBCT Small, round blue cell tumors of childhood 83 2308 4

Leukemial Accute myelogenous leukemia (AML), acute lympboblastic 72 5327 3
leukemia (ALL) B-cell, and ALL T-cell

Leukemia2 AML, ALL, and mixed-lineage leukemia (MLL) 72 11225 3

Prostate_Tumor Prostate tumor and normal tissue 102 10509 2

DLBCL Diffuse large B-cell lymphomas and follicular lymphomas 77 5469 2

Table Il: Mean accuracy (Ac.) rate of the zeor-order and first-order criteria in the evolutionary method. Here ‘OW’, ‘ZT’,
‘RM’, and ‘JH’ represent the Opper-Winther bound, Zhou-Tuck bound, radius-margin bound, and Jaakkola-Haussler bound,

respectively.

Dataset #Genes Zeor-order Criteria First-order Criteria
(Selected) | Ac. Rate (%) Bounds Ac. Rate (%) Bound Derivatives
Brain_Tumorl 6 97.84 ow 93.39 MK
Brain_Tumor2 5 100.0 OW/ZT/RM/JH 100.0 MR Z4)
SRBCT 4 100.0 OW/ZT/IRM/JH 100.0 VOowW
Leukemial 3 100.0 OW/ZT/RM/IH 100.0 V[
Leukemia2 3 100.0 OW/ZT/RM/JH 100.0 V||w[[2IVOW/VZT
Prostate_Tumor 3 100.0 OW/ZT 97.10 V(wl?
DLBCL 3 100.0 OW/ZT/RM/IH 100.0 VW[V OWIVZT
Technology of Japan.
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