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A Laplace Transform Dual-Reciprocity Boundary
Element Method for Axisymmetric Elastodynamic

Problems
B. I. Yun

Abstract—A dual-reciprocity boundary element method is pre-
sented for the numerical solution of a class of axisymmetric elas-
todynamic problems. The domain integrals that arise in the integro-
differential formulation are converted to line integrals by using the
dual-reciprocity method together suitably constructed interpolating
functions. The second order time derivatives of the displacement
in the governing partial differential equations are suppressed by
using Laplace transformation. In the Laplace transform domain, the
problem under consideration is eventually reduced to solving a system
of linear algebraic equations. Once the linear algebraic equations are
solved, the displacement and stress fields in the physical domain can
be recovered by using a numerical technique for inverting Laplace
transforms.

Keywords—Axisymmetric elasticity, boundary element method,
dual-reciprocity method, Laplace transform.

I. INTRODUCTION

THE axisymmetric boundary element method (BEM) has
been studied by many researchers. Some of the earliest

works on the axisymmetric BEM are Cruse, Snow, and Wilson
[1] (elasticity) and Wrobel and Brebbia [2] (transient heat
conductions). The boundary integral equations in [1] and [2]
are obtained by axially integrating the corresponding three-
dimensional boundary integral equations. The fundamental
solutions in the axisymmetric boundary integral equations
involve complete elliptic integrals of the first and second kind.

The axisymmetric BEM approach can be applied to axisym-
metric elastodynamic problems. Depending on the fundamen-
tal solutions used, the axisymmetric integral formulations may
contain domain integrals in addition to the usual boundary
integrals. For axisymmetric elastic problems, domain integrals
may be due to body force terms, nonhomogeneous elastic
properties and time dependent terms. One way to deal with
the domain integrals is to discretize the domain into elements,
but the advantages of the BEM will be lost. There are different
approaches to treat the domain integrals without discretizing
the solution domain [3]. Some of the methods are particu-
lar integral method [4], Galerkin vector approach [1], dual-
reciprocity method [5] and multiple reciprocity method [6].

Here, a dual reciprocity boundary element method is used to
solve the homogeneous and isotropic elastodynamic problems
in Laplace transform domain. The domain integrals, which
contain body forces and the second order time derivatives of
the displacements, can be transformed to line integrals by dual
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reciprocity method together with suitable interpolating func-
tions. In Agnantiaris, Polyzos and Beskos [7], the interpolating
functions obtained by axially integrating the corresponding
three dimensional interpolating functions are complicated to
evaluate. The axisymmetric interpolating functions used here
are in relatively simple forms and are easy to compute.

The boundary of the solution domain is discretized into
elements and a system of linear algebraic equations is formed
in the Laplace transform domain. Once the algebraic equations
are solved together with the initial-boundary conditions, the
displacement and stress fields in physical domain can be
obtained and recovered by a numerical method for inverting
Laplace transforms. A specific problem is given to check the
validity and accuracy of the numerical approach proposed
here.

II. BASIC EQUATIONS OF AXISYMMETRIC ELASTICITY

The solid is isotropic and homogeneous. Therefore, the
shear modulus μ, the Poisson’s ratio ν and the mass density
ρ are constant. The elastic field in the solid is transient and
varies with the spatial coordinates r and z. In the cylindrical
coordinates (r, θ, z), the only non-zero displacement compo-
nents are ur, uz and non-zero stress components are σrr, σrz,
σzz and σθθ.

The equilibrium equations of the axisymmetric elastody-
namics are given by

∂σrr
∂r

+
∂σrz
∂z

+
σrr − σθθ

r
+ Fr = ρ

∂2ur
∂t2

,

∂σrz
∂r

+
∂σzz
∂z

+
σrz
r
+ Fz = ρ

∂2uz
∂t2

, (1)

where Fr and Fz are the body force in r and z direction
respectively.

The stress components are given in terms of displacements
ur and uz by

σrr = 2μ(
∂ur
∂r

+
ν

1− 2ν [
∂ur
∂r

+
ur
r
+

∂uz
∂z
]),

σzz = 2μ(
∂uz
∂z

+
ν

1− 2ν [
∂ur
∂r

+
ur
r
+

∂uz
∂z
]),

σθθ = 2μ(
ur
r
+

ν

1− 2ν [
∂ur
∂r

+
ur
r
+

∂uz
∂z
]),

σrz = μ(
∂ur
∂z

+
∂uz
∂r
). (2)
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From (1) and (2), the governing equations are obtained and
written as

�2axisur −
ur
r2
+

1

1− 2ν
∂

∂r
(
∂ur
∂r

+
ur
r
+

∂uz
∂z
)

=
1

μ
(−Fr + ρ

∂2ur
∂t2

),

�2axisuz +
1

1− 2ν
∂

∂z
(
∂ur
∂r

+
ur
r
+

∂uz
∂z
)

=
1

μ
(−Fz + ρ

∂2uz
∂t2

), (3)

where �2axis =
∂2

∂r2 +
1
r
∂
∂r+

∂2

∂z2 .

III. INTEGRO-DIFFERENTIAL FORMULATION

Following closely the analysis in Bakr [8] and Gao and
Davies [9], the partial differential equations in (3) can be recast
to integro-differential form

γ(x0)uK(x0, t)

=

∫
Γ

(ΦJK(x;x0)pJ(x, t;n(x))

−ΨJK(x;x0;n(x))uJ(x, t))rds(x)

+

∫∫
Ω

ΦJK(x;x0)

μ
(FJ(x, t)− ρ

∂2uJ(x, t)

∂t2
)rdrdz

for x0 ∈ Ω ∪ Γ, (4)

where Ω is the solution domain in the Orz (axisymmetric
coordinate) plane, Γ is the line boundary of Ω, x = (r, z),
x0 = (r0, z0), the uppercase Latin subscripts such as J and
K are given the values r and z, xr = r, xz = z, n(x) is the
unit normal vector to Γ pointing away from Ω, pJ(x;n(x)) =
σIJnI/μ and ΦJK(x;x0) and ΨJK(x;x0;n(x)) are ax-
isymmetric fundamental solution for homogeneous isotropic
elasticity as given in the Appendix. Note that the Einsteinian
convention of summing over a repeated uppercase Latin sub-
script is adopted here.

Applying Laplace transformation (with respect to time) on
(4) yields

γ(x0)ũK(x0, p)

=

∫
Γ

(ΦJK(x;x0)p̃J(x, p;n(x))

−ΨJK(x;x0;n(x))ũJ(x, p))rds(x)

+

∫∫
Ω

ΦJK(x;x0)

μ
(F̃J(x, p)

− ρ[p2ũJ(x, p)− pfJ(x)− gJ(x)])rdrdz

for x0 ∈ Ω ∪ Γ and p > 0, (5)

where p is the Laplace transform parameter, fJ(x) and
gJ(x) are the known initial conditions given by fJ(x) =
uJ(x, 0) and gJ(x) = ∂

∂t [uJ(x, t)]
∣∣
t=0

, and ũJ(x, p),
p̃J(x, p;n(x)) and F̃J(x, p) are the Laplace transform of

uJ(x, t), pJ(x, t;n(x)) and FJ(x, t) respectively which are
given by

ũJ(x, p) =

∞∫
0

uJ(x, t) exp(−pt)dt,

p̃J(x, p;n(x)) =

∞∫
0

pJ(x, t;n(x)) exp(−pt)dt,

F̃J(x, p) =

∞∫
0

FJ(x, t) exp(−pt)dt. (6)

IV. DUAL-RECIPROCITY METHOD

By using the dual-reciprocity method, the double integral
in (5) can be approximated into line integral. Select M well
spaced out collocations points as y(1),y(2), · · · ,y(M−1) and
y(M) inside the solution domain Ω ∪ Γ, and the functions
which appear in the domain integral can be approximated as

1

μ
(−F̃J(x, p) + ρ[p2ũJ(x, p)− pfJ(x)− gJ(x)])

�
M∑
n=1

φJN(x;y
(n))α

(n)
N (p) for x ∈ Ω ∪ Γ, (7)

where α
(n)
N (p) are constant coefficients and φJN(x;y) are

interpolating functions given by

φrJ(x;y) = �2axisχrJ(x;y)−
χrJ(x;y)

r2

+
1

1− 2ν
∂

∂r
(
∂χrJ(x;y)

∂r

+
χrJ(x;y)

r
+

∂χzJ(x;y)

∂z
),

φzJ(x;y) = �2axisχzJ(x;y)

+
1

1− 2ν
∂

∂z
(
∂χrJ(x;y)

∂r

+
χrJ(x;y)

r
+

∂χzJ(x;y)

∂z
), (8)

where χKJ(x;y) are

χrr(x;y) =
1

9
{[σ(x;y)]3 + [σ(x;−β, ζ)]3}

−2
9
[σ(0, z;y)]3,

χzr(x;y) = χrz(x;y) = 0,

χzz(x;y) =
1

9
{[σ(x;y)]3 + [σ(x;−β, ζ)]3}, (9)

y = (β, ζ) and σ(x;y) =
√
(r − β)2 + (z − ζ)2.

Note that the choice of χrJ(x;y) and χzJ(x;y) in (9)
ensures that the interpolating functions φJN(x;y) are bounded
for r > 0.

From (7) and (8), the double integral in (5) can be written
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as ∫∫
Ω

ΦJK(x;x0)

μ
(F̃J(x, p)

− ρ[p2ũJ(x, p)− pfJ(x)− gJ(x)])rdrdz

�
M∑
n=1

α
(n)
N (p)W

(n)
KN(x0), (10)

where

W
(n)
KN(x0)

= −γ(x0)χKN(x0;y
(n))

+

∫
Γ

(ΦJK(x;x0)τJN(x;y
(n);n(x))

−ΨJK(x;x0;n(x))χJN(x;y(n)))rds(x), (11)

the parameter γ(x0) has the value 1 when x0 lies in the interior
of Ω, γ(x0) has the value 1/2 when x0 lies on a smooth part
of Γ,

τrN(x;y;n(x))

= 2nr(x){ ∂

∂r
[χrN(x;y)] +

ν

1− 2ν (
∂

∂r
[χrN(x;y)]

+
χrN(x;y)

r
+

∂

∂z
[χzN(x;y)])}

+nz(x){ ∂

∂z
[χrN(x;y)] +

∂

∂r
[χzN(x;y)]},

τzN(x;y;n(x))

= nr(x){ ∂

∂z
[χrN(x;y)] +

∂

∂r
[χzN(x;y)]}

+2nz(x){ ∂

∂z
[χzN(x;y)] +

ν

1− 2ν (
∂

∂r
[χrN(x;y)]

+
χrN(x;y)

r
+

∂

∂z
[χzN(x;y)])}. (12)

Taking x = y(k) (k = 1, 2, · · · ,M), (7) becomes

M∑
n=1

φJN(y
(k);y(n))α

(n)
N (p)

� 1

μ
(−F̃J(y

(k), p)

+ ρ[p2ũJ(y
(k), p)− pfJ(y

(k))− gJ(y
(k))])

for k = 1, 2, · · · ,M. (13)

By inverting (13), the constant coefficients α
(n)
N (p) can be

obtained.
The interpolating functions φJN(x;y) which can be used

to convert (10) into line integrals are not unique. In [7], the
interpolating functions are obtained by integrating axially the
corresponding three-dimensional interpolating functions and
are more complicated to evaluate. The interpolating functions
here as given by (8), (9) and (12) are in simple elementary
forms. Similar interpolating functions are used in Yun and Ang
[10] for axisymmetric heat conduction problems.

V. BOUNDARY ELEMENT SOLUTION

To solve the integral equation in (5), the boundary Γ is
discretized into N elements, which are Γ(1),Γ(2), · · · ,Γ(N−1)
and Γ(N). Along the curve Γ, the collocation points denoted
as y(1),y(2), · · · ,y(N−1) and y(N) which are the mid point of
Γ(1),Γ(2), · · · ,Γ(N−1) and Γ(N) respectively. In the interior
region Ω, L well space out collocation points are denoted as
y(N+1),y(N+2), · · · ,y(N+L−1) and y(N+L). Over the bound-
ary Γ(k), the functions ũJ(y

(k), p), p̃J(y
(k), p) are approxi-

mated as constants given by u
(k)
K (p) and p

(k)
J (p) respectively.

Therefore, the integral equations in (5) together with (10) now
become

γ(y(m))u
(m)
K (p)

=
N+L∑
n=1

α
(n)
N (p)W

(n)
KN(y

(m))

+
N∑
k=1

p
(k)
J (p)

∫
Γ(k)

ΦJK(x;y
(m))rds(x)

−
N∑
k=1

u
(k)
J (p)

∫
Γ(k)

ΨJK(x;y
(m);n(x))rds(x)

for m = 1, 2, · · · , N + L, (14)

and

N+L∑
n=1

φJN(y
(k);y(n))α

(n)
N (p)

� 1

μ
(−F

(k)
J (p)

+ ρ[p2u
(k)
J (p)− pf

(k)
J − g

(k)
J ]), (15)

where F
(k)
J (p) = F̃J(y

(k), p), f
(k)
J = fJ(y

(k)) and g
(k)
J =

gJ(y
(k)).

In any suitably prescribed boundary value problem, two of
the four components ũr, ũz, p̃r and p̃z are known. Thus,
equation (14) can be solved together with (15). There are total
of 2(N + L) algebraic equations and 2(N + L) unknowns
in (14) after the constant α

(n)
N (p) are calculated from (15).

The unknowns are two of the four components u
(k)
r (p),

u
(k)
z (p), p

(k)
J (p) and p

(k)
z (p) on the boundary element Γ(k) for

k = 1, 2, · · · , N, and u
(N+n)
r (p), u

(N+n)
z (p) at the interior

collocation points for n = 1, 2, · · · , L.

VI. INVERSION OF LAPLACE TRANSFORM

The solution ũJ(x, p) in Laplace transform can be inverted
to uJ(x, t) using numerical technique in Stehfest [11], that is,

uJ(x, t) ≈ ln(2)

t

2M∑
n=1

VnũJ(x,
n ln(2)

t
), (16)
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where M is the positive integer and

Vn = (−1)n+M

×
min(n,M)∑

m=[(n+1)/2]

mM (2m)!/[(M −m)!m!

× (m− 1)!(n−m)!(2m− n)!], (17)

where [a] denotes the integer part of the real number a.
The Stehfest’s formula can also be used to invert

p̃J(x, p;n(x)) to obtain pJ(x, t;n(x)), hence giving the trac-
tions tJ(x, t;n(x)) (tJ(x, t;n(x)) = μpJ(x, t;n(x))).

VII. STRESS FIELDS

In order to obtain the stresses σrr, σrz, σzz and σθθ, the
partial derivatives of displacements are required. Once the
uJ(x, t) are obtained from the BEM procedure, the partial
derivatives of uJ(x, t) can be approximated as functions of
uJ(x, t). Therefore, the stresses can be calculated numerically.

Let

ur(x, t) �
N+L∑
m=1

v(m)r (t)χ(x;y(m)),

uz(x, t) �
N+L∑
m=1

v(m)z (t)χ(x;y(m)), (18)

where χ(x;y(m)) is defined the same as χzz in (9), and

χ(x;y(m)) =
1

9
{[σ(x;y)]3 − [σ(x;−β, ζ)]3}. (19)

By letting x = y(k) for k = 1, 2, · · · , N + L and invert

(18) to get the constant variables v
(m)
r (t) and v

(m)
z (t), we

obtain the partial derivatives of uJ(x, t) in terms of the known
displacements

∂

∂xJ
[ur(x, t)] =

N+L∑
q=1

ur(x
(q), t)ϕ

(q)
J (x),

∂

∂xJ
[uz(x, t)] =

N+L∑
q=1

uz(x
(q), t)ϕ

(q)
J (x), (20)

where

ϕ
(q)
J (x) =

N+L∑
m=1

ω(mq)
∂

∂xJ
[χ(x;y(m))],

ϕ
(q)
J (x) =

N+L∑
m=1

ω(mq)
∂

∂xJ
[χ(x;y(m))], (21)

N+L∑
m=1

χ(x(k);y(m))ω(mq) =

{
1 if k = q,
0 if k �= q,

N+L∑
m=1

χ(x(k);y(m))ω(mq) =

{
1 if k = q,
0 if k �= q.

(22)

TABLE I
THE DISPLACEMENT ur AT t = 1 AT SELECTED INTERIOR POINTS

ur
(r, z) Set A Set B Exact

(0.25, 0.25) 0.097356 0.097569 0.097718
(0.50, 0.25) 0.195586 0.195389 0.195436
(0.75, 0.25) 0.294116 0.293337 0.293154
(0.25, 0.50) 0.114536 0.114675 0.114962
(0.50, 0.50) 0.229946 0.229641 0.229925
(0.75, 0.50) 0.345698 0.344876 0.344887
(0.25, 0.75) 0.143857 0.143474 0.143703
(0.50, 0.75) 0.287798 0.287107 0.287406
(0.75, 0.75) 0.431538 0.430973 0.431109

VIII. SPECIFIC PROBLEM

For a test problem, consider the solution domain 0 < r < 1,
0 < z < 1. The shear modulus, Poisson’s ratio and the density
are taken to be μ = 0.5, ν = 0.3 and ρ = 2 respectively.

The body force terms are taken to be

Fr(x, t) = (r + 2rz2) exp(−t),

Fz(x, t) = −5z exp(−t)

+(−7.5 + r2 + 0.5z2) exp(−0.5t).
The initial conditions are

ur(x, 0) = r + rz2,
uz(x, 0) = 2r2 + z2,
∂
∂t [ur(x, t)]

∣∣
t=0

= −(r + rz2),
∂
∂t [uz(x, t)]

∣∣
t=0

= −(r2 + 0.5z2),

⎫⎪⎪⎬
⎪⎪⎭ for

0 < r < 1,
0 < z < 1,

and the boundary conditions

tr(r, 1, t) = r exp(−t) + 2r exp(−0.5t)),
tz(r, 1, t) = 3 exp(−t) + 3.5 exp(−0.5t),

}
for 0 < r < 1, t > 0,

ur(1, z, t) = (1 + z2) exp(−t),
uz(1, z, t) = (2 + z2) exp(−0.5t),

}
for 0 < z < 1, t > 0,

ur(r, 0, t) = r exp(−t),
uz(r, 0, t) = 2r

2 exp(−0.5t),
}

for 0 < r < 1, t > 0.

In order to obtain the numerical results, the boundary
curve Γ is discretized into N equal length elements and L
well distributed interior collocation points are chosen. The
numerical results are obtained using (N,L) = (30, 49) (Set
A) and (N,L) = (120, 225) (Set B) at t = 1. The numerical
results of displacement ur and uz are compared with the exact
solutions,

ur(x, t) = (r + rz2) exp(−t),

uz(x, t) = (2r2 + z2) exp(−0.5t),
and are shown in Table I and II. To invert the solution in
Laplace transform in (16), we choose M = 5.

From Table I and II, two sets of numerical results are
compared with the exact solutions. The values in Set B, which
are obtained using more elements and collocation points in the
numerical procedure, are more accurate.
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TABLE II
THE DISPLACEMENT uz AT t = 1 AT SELECTED INTERIOR POINTS

uz
(r, z) Set A Set B Exact

(0.25, 0.25) 0.111441 0.112953 0.113724
(0.50, 0.25) 0.338387 0.340272 0.341173
(0.75, 0.25) 0.718264 0.719634 0.720255
(0.25, 0.50) 0.224238 0.226426 0.227449
(0.50, 0.50) 0.449987 0.453387 0.454898
(0.75, 0.50) 0.830329 0.832832 0.833980
(0.25, 0.75) 0.413560 0.416107 0.416990
(0.50, 0.75) 0.638269 0.642619 0.644439
(0.75, 0.75) 1.018955 1.021915 1.023520

In Fig. 1, the numerical displacements ur and uz are plotted
against time t at the point (r, z) = (0.5, 0.5) using (N,L) =
(120, 225) and are compared with the exact solution.

Fig. 1. The displacements ur and uz are plotted against time t at point
(r, z) = (0.5, 0.5).

From Fig. 1, it is clear that the numerical values of ur and
uz agree well with those calculated from the exact solution.

The stresses in the solution domain can be obtained from
(2) together with (20), (21) and (22). In Fig. 2 and Fig. 3, the
stresses are calculated numerically using (N,L) = (120, 225).
In Fig. 2, the stresses (except σθθ, because it has the same
values as σrr in this problem) are plotted at r = 0.5, 0 < z <
1 at t = 1 and compared with the exact solutions.

Fig. 2. The stresses σrr, σrz , σzz at r = 0.5 are plotted against z at t = 1.

The stress σrr at different values of t (t = 0.5, t = 1.0,
and t = 1.5) at r = 0.5, 0 < z < 1 are given in Fig. 3.

Fig. 3. The stress σrr at r = 0.5 is plotted against z at time t = 0.5,
t = 1.0, and t = 1.5.

From both Fig. 2 and Fig. 3, the numerical stresses are
in good agreement with the exact solutions. Furthermore, the
stress in Fig. 3 is decreasing exponentially with time t as
expected.

IX. SUMMARY

A dual-reciprocity boundary element method is proposed
for solving numerically a class of axisymmetric elastodynamic
problems. Relative simple interpolating functions are used in
the dual-reciprocity method for transforming domain integrals
to boundary integrals. The problem under consideration is first
solved in the Laplace transform domain. The displacement
and the stress fields in the Laplace transform domain can
be recovered to physical time domain by using a numerical
algorithm for inverting Laplace transforms.

From the specific test problem, the numerical solutions
obtained shows that the dual-reciprocity boundary element
approach is reliable and accurate to solve the axisymmetric
elastodynamic problem in homogeneous solids. For further
potential applications, this BEM procedure with the relative
simple interpolating functions can be applied to axisymmetric
thermoelastic problems in nonhomogeneous material with
appropriate modifications.

APPENDIX

The functions ΦIJ(x;x0) and ΨIJ(x;x0;n(x)) in (4) are
given by

Φrr(x;x0) =
1

8π(1− ν)r0C(x;x0)
{((3− 4ν)(r20 + r2)

+4(1− ν)(z0 − z)2)K(m(x;x0))

+(−[C(x;x0)]2(3− 4ν)
− (z0 − z)2

D(x;x0)
A(x;x0))E(m(x;x0))},

Φrz(x;x0) =
(z0 − z)

8π(1− ν)C(x;x0)
{−K(m(x;x0))

+
B(x;x0)

D(x;x0)
E(m(x;x0))},



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:6, 2012

679

Φzr(x;x0) =
r(z0 − z)

8π(1− ν)r0C(x;x0)
{K(m(x;x0))

−A(x;x0)− 2r20
D(x;x0)

E(m(x;x0))},

Φzz(x;x0) =
r

4π(1− ν)C(x;x0)
{(3− 4ν)K(m(x;x0))

+
(z0 − z)2

D(x;x0)
E(m(x;x0))},

Ψrr(x;x0;n(x))

= − r

2π(1− ν)
(Λ1(x;x0)nr(x) + Λ2(x;x0)nz(x)),

Ψrz(x;x0;n(x))

= − r

2π(1− ν)
(Λ3(x;x0)nr(x) + Λ4(x;x0)nz(x)),

Ψzr(x;x0;n(x))

= − r

2π(1− ν)
(Λ5(x;x0)nr(x) + Λ6(x;x0)nz(x)),

Ψzz(x;x0;n(x))

= − r

2π(1− ν)
(Λ7(x;x0)nr(x) + Λ8(x;x0)nz(x)),

where K(m) and E(m) being the complete elliptic integrals
of the first and second kind respectively and

m(x;x0) =
2b(r; r0)

a(x;x0) + b(r; r0)
,

and

Λ1(x;x0)

=
1

2r0r2C(x;x0)
{(1− 2ν)(A(x;x0) +H(x;x0))

− 1

[C(x;x0)]
2D(x;x0)

(−2(z0 − z)6

+(−5r20 − 4r2)(z0 − z)4 + (5r20r
2 − 4r40 − r4)(z0 − z)2

+(r2 − r20)
3)}K(m(x;x0))

+
1

2r0r2C(x;x0)D(x;x0)
{−(1− 2ν)(2A(x;x0)B(x;x0)

+3r2(A(x;x0)− 2r20))
+

1

[C(x;x0)]
2D(x;x0)

(−2(z0 − z)8

+(−6r2 − 7r20)(z0 − z)6

+(−9r40 + 2r20r2 − 5r4)(z0 − z)4

+(−5r60 + 10r40r2 − 5r20r4)(z0 − z)2

+(−r80 + 2r
6
0r
2 − 2r20r4 + r8))}E(m(x;x0)),

Λ2(x;x0) = Λ5(x;x0)

=
z0 − z

2r0rC(x;x0)
{(1− 2ν)

+
1

[C(x;x0)]
2D(x;x0)

((z0 − z)2(3A(x;x0)

−2(z0 − z)2) + 2(r20 − r2)2)}K(m(x;x0))
+

z0 − z

2r0rC(x;x0)D(x;x0)
{−(1− 2ν)A(x;x0)

− 1

[C(x;x0)]
2D(x;x0)

((z0 − z)4(4A(x;x0)− 3(z0 − z)2)

+(r20 − r2)2(2A(x;x0) + 3(z0 − z)2))}E(m(x;x0)),
Λ3(x;x0)

= − z0 − z

2r2[C(x;x0)]
3D(x;x0)

(2r2(r2 − r20 + 2(z0 − z)2)

+A(x;x0)B(x;x0))K(m(x;x0))

+
z0 − z

C(x;x0)D(x;x0)
{(1− 2ν)− 1

2r2[C(x;x0)]
2D(x;x0)

×(−[H(x;x0)]3 + r2(z0 − z)2(2r20 + r2 − 5(z0 − z)2)

+r2(7r40 − 11r20r2 + 5r4))}E(m(x;x0)),
Λ4(x;x0)

=
1

2rC(x;x0)
{(1− 2ν)

+
(z0 − z)2

[C(x;x0)]
2D(x;x0)

B(x;x0)}K(m(x;x0))

+
1

2rC(x;x0)D(x;x0)
{−(1− 2ν)B(x;x0)

+
(z0 − z)2

[C(x;x0)]
2D(x;x0)

(−A(x;x0)B(x;x0)

+6r2(A(x;x0)− 2r20))}E(m(x;x0)),
Λ6(x;x0) = Λ7(x;x0)

=
1

2r0C(x;x0)
{(1− 2ν)

− (z0 − z)2

[C(x;x0)]
2D(x;x0)

(A(x;x0)− 2r20)}K(m(x;x0))

+
1

2r0C(x;x0)D(x;x0)
{−(1− 2ν)(A(x;x0)− 2r20)

+
(z0 − z)2

[C(x;x0)]
2D(x;x0)

(A(x;x0)(A(x;x0)− 2r20)
−6r20B(x;x0))}E(m(x;x0)),
Λ8(x;x0)

=
(z0 − z)3

[C(x;x0)]
3D(x;x0)

K(m(x;x0)) +
(z0 − z)

C(x;x0)D(x;x0)

×{−(1− 2ν)− 4(z0 − z)2

[C(x;x0)]
2D(x;x0)

A(x;x0)}E(m(x;x0)),

A(x;x0) = r20 + r2 + (z0 − z)2,

B(x;x0) = r20 − r2 + (z0 − z)2,

C(x;x0) =
√
(r0 + r)2 + (z0 − z)2,

D(x;x0) = (r0 − r)2 + (z0 − z)2,

H(x;x0) = r20 + (z0 − z)2.
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