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Abstract—Many real-world optimization problems involve 
multiple conflicting objectives and the use of evolutionary algorithms 
to solve the problems has attracted much attention recently. This 
paper investigates the application of multi-objective optimization 
technique for the design of a Thyristor Controlled Series 
Compensator (TCSC)-based controller to enhance the performance of 
a power system. The design objective is to improve both rotor angle 
stability and system voltage profile. A Genetic Algorithm (GA) based 
solution technique is applied to generate a Pareto set of global 
optimal solutions to the given multi-objective optimisation problem. 
Further, a fuzzy-based membership value assignment method is 
employed to choose the best compromise solution from the obtained 
Pareto solution set. Simulation results are presented to show the 
effectiveness and robustness of the proposed approach.

Keywords—Multi-objective Optimisation, Thyristor Controlled 
Series Compensator, Power System Stability, Genetic Algorithm, 
Pareto Solution Set, Fuzzy Ranking.

I. INTRODUCTION

OWER system oscillations and system voltage profile are 
the two important criteria which define the performance of 

a power system subjected to a disturbance [1]. There has been 
much research interest in developing new control 
methodologies for increasing the performance of the power 
system. Recent development of power electronics introduces 
the use of Flexible AC Transmission Systems (FACTS) 
controllers in power systems. Thyristor Controlled Series 
Compensator (TCSC) is one of the important members of 
FACTS family that is increasingly applied with long 
transmission lines by the utilities in modern power systems [2-
8]. The majority of the control methodologies presented in 
literature concerns improvement of only one type of stability 
                                                          

S. Panda is working as a Professor in the Department of Electrical and 
Electronics Engineering, NIST, Berhampur, Orissa, India, Pin: 761008.        
(e-mail: panda_sidhartha@rediffmail.com ). 

S. Swain is working as an Assistant Professor in the Electrical Engineering 
Department, School of Technology, KIIT University, Bhubaneswar, Orissa, 
India (e mail:scs_132@rediffmail.com). 

A.K.Baliarsingh is a Research Scholar in the Electrical Engineering 
Department, School of Technology, KIIT University, Bhubaneswar, Orissa, 
India (e-mail:scs_132@rediffmail.com). 

A. K. Mohanty is an Ex-Professor in N. I. T. Rourkela. now working as a 
Professor in Electrical Engg. Deptt. at KIIT UNIVERSITY Bhubaneswar 

C. Ardil is with National Academy of Aviation, AZ1045, Baku, 
Azerbaijan, Bina, 25th km, NAA (e-mail: cemalardil@gmail.com). 

performance; either improving the oscillatory stability 
performance (reflected in the deviation in generator speed) or 
the system voltage profile and minimization of a single 
objective function is employed to get the desired performance. 
Multi-objective genetic algorithm approach has been applied 
to design a TCSC controller [9], where the three objectives are 
closely related and the voltage deviations are not taken into 
account. Further, the procedure to obtain the best compromise 
solution from the obtained Pareto set is not addressed. 
Obviously, the main purpose of design of any controller is to 
enable it to improve both oscillatory stability and system 
voltage profile. Design of such kind of controller is inherently 
a multi-objective optimisation problem. 

There are two general approaches to multiple objective 
optimisations. One approach to solve multi-objective 
optimisation problems is by combining the multiple objectives 
into a scalar cost function, ultimately making the problem 
single-objective prior to optimisation. However, in practice, it 
can be very difficult to precisely and accurately select these 
weights as small perturbations in the weights can lead to very 
different solutions. Further, if the final solution found cannot 
be accepted as a good compromise, new runs of the optimiser 
on modified objective function using different weights may be 
needed, until a suitable solution is found. These methods also 
have the disadvantage of requiring new runs of the optimiser 
every time the preferences or weights of the objectives in the 
multi-objective function change [10]. The second general 
approach is to determine an entire Pareto optimal solution set 
or a representative subset. Pareto optimal solution sets are 
often preferred to single solutions because they can be 
practical when considering real-life problems, since the final 
solution of the decision maker is always a trade-off between 
crucial parameters [11]. 

The main motivation for using Genetic Algorithm (GA) to 
solve multi-objective optimisation problems is because GAs 
deal simultaneously with a set of possible solutions (the so-
called population) which allows the user to find several 
members of the Pareto optimal set in a single run of the 
algorithm, instead of having to perform a series of separate 
runs as in the case of the traditional mathematical 
programming techniques. The Pareto optimal solutions are 
ones within the search space whose corresponding objective 
vector components cannot be improved simultaneously. 
Additionally, GAs are less susceptible to the shape or 
continuity of the Pareto front as they can easily deal with 
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discontinuous and concave Pareto fronts, whereas these two 
issues are known problems with mathematical programming 
[12].  

In this paper, the design problem of a TCSC is formulated 
as a multi-objective optimisation problem. GA based multi-
objective optimisation method is adapted for generating Pareto 
solutions in designing a TCSC-based controller. The design 
objective is to improve the oscillatory stability and system 
voltage profile of a power system following a disturbance. 
Further a fuzzy based membership function value assignment 
method is employed to choose the best compromise solution 
from the obtained Pareto set. Simulation results are presented 
at various loading conditions to show the effectiveness and 
robustness of the proposed approach. 

The reminder of the paper is organized in five major 
sections. Power system modeling with the proposed TCSC-
based supplementary damping controller is presented in 
Section II. The proposed design approach and the objective 
function are presented in section III. In Section IV, an 
overview of multi-objective optimization gas been presented. 
The results are presented and discussed in Section V. Finally, 
in Section VI conclusions are given. 

II. MODELING THE POWER SYSTEM WITH TCSC

The single-machine infinite-bus (SMIB) power system 
installed with a TCSC, shown in Figure 1 is considered in this 
study.  In the figure, XT and XL represent the reactance of the 
transformer and the transmission line respectively; VT and VB
are the generator terminal and infinite bus voltage 
respectively.

TCSC is one of the most important and best known FACTS 
devices, which has been in use for many years to increase line 
power transfer as well as to enhance system stability. 
Basically, a TCSC consists of three main components: 
capacitor bank C, bypass inductor L and bidirectional 
thyristors SCR1 and SCR2. The firing angles of the thyristors 
are controlled to adjust the TCSC reactance in accordance 
with a system control algorithm, normally in response to some 
system parameter variations. According to the variation of the 
thyristor firing angle or conduction angle, this process can be 
modeled as a fast switch between corresponding reactance 
offered to the power system. 

1T

2T

TCSCX

TV
CX LX

BV

PX

TX C

L
Generator busInfinite

Fig. 1 Single machine infinite bus power system with TCSC 

A. Non-Linear Equations 

The non-linear differential equations of the SMIB system 
with TCSC are derived by neglecting the resistances of all 
components of the system (generator, transformer and 
transmission lines) and the transients of the transmission lines 
and transformer. The non-linear differential equations are 
[13]: 
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Fig. 2 Simplified IEEE type ST 1A excitation system 
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The simplified IEEE Type-ST1A excitation system is 
considered in this work. The diagram of the IEEE Type-ST1A 
excitation system is shown in Fig. 2. The inputs to the 
excitation system are the terminal voltage VT and reference 
voltage VR. The gain and time constants of the excitation 
system are represented by KA and TA respectively. 

B. Linearized Equations 

In the design of electromechanical mode damping stabilizer, 
a linearized incremental model around an operating point is 
usually employed. The Phillips-Heffron model of the power 
system with FACTS devices is obtained by linearizing the set 
of equations (1) – (5) around an operating condition of the 
power system. The linearized expressions are as follows: 
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The modified Phillips-Heffron model of the single-
machine infinite-bus (SMIB) power system with TCSC-based 
damping controller is obtained using linearized equations (6)-
(9) as shown in Fig. 3.  
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Fig. 3 Modified Phillips-Heffron model of SMIB with TCSC-based 
supplementary damping controller 

III. THE PROPOSED APPROACH

A. Structure of Proposed TCSC-based Supplementary 
Damping Controller 

The commonly used lead–lag structure is chosen in this 
study as TCSC-based supplementary damping controller as 
shown in Fig. 4. The structure consists of a gain block; a 
signal washout block and two-stage phase compensation 
block. The phase compensation block provides the appropriate 
phase-lead characteristics to compensate for the phase lag 
between input and the output signals. The signal washout 
block serves as a high-pass filter which allows signals 
associated with oscillations in input signal to pass unchanged. 
Without it steady changes in input would modify the output.  

WT
WT
sT

sT
1 2

1
1
1

sT
sT

4
3

1
1

sT
sT

TK

Gain
Block Washout

Block

Two stage
lead-lag Block

Input Output

)s(GTCSC

Fig.  4. Structure of the proposed TCSC-based supplementary 
damping controller 

The damping torque contributed by the TCSC can be 
considered to be in to two parts. The first part KP, which is 
referred as the direct damping torque, is directly applied to the 
electromechanical oscillation loop of the generator. The 
second part KQ and KV, named as the indirect damping torque, 
applies through the field channel of the generator. The 
damping torque contributed by TCSC controller to the 
electromechanical oscillation loop of the generator is:  

DTPDD KKKTT 0          (10) 

The transfer functions of the TCSC controller is: 

y
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Where, uTCSC is the output signal of TCSC controller and y 
is the input signal. The input signal of the proposed TCSC-
based controller is the speed deviation  and the output is 
the change in conduction angle . During steady state 
conditions  = 0 and so the effective reactance EffX  is 

given by: )( 0TCSCTLTEff XXXX . During dynamic 
conditions the series compensation is modulated for damping 
system oscillations. The effective reactance in dynamic 
conditions is given by: )(TCSCTLTEff XXXX , where 

0  and )(2 , 0  and 0  being initial 
value of firing and conduction angle respectively. 

From the viewpoint of the washout function the value of 
washout time constant is not critical in lead-lag structured 
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controllers and may be in the range 1 to 20 seconds [1].  In the 
present study, washout time constant of TWT 10 s is used. The 
controller gains KT ; and the time constants T1, T2, T3 and T4
are to be determined. 

B. Objective Function 

It is worth mentioning that the TCSC controller is designed 
to damp power system oscillations and improve the system 
voltage profile after a disturbance. A multi-objective function 
based on  and VT is used as an objective function in the 
present study. The objective can be formulated as the 
minimisation of function F given by: 

21 , FFF                (12) 

Where,       
1

0
1 ..||

t
dttF           (13) 

and            
1

0
2 ..||

t

T dttVF           (14)

In the above equations, ||  and || TV  denote the 
absolute values of rotor speed and terminal voltage deviations 
following a disturbance and t1 is the time range of the 
simulation. For the objective function calculation, the time-
domain simulation of the power system model is carried out 
for the simulation period. 

C. Optimization Problem 

In this study, it is aimed to minimize the proposed objective 
functions F. The problem constraints are the TCSC Controller 
parameter bounds. Therefore, the design problem can be 
formulated as the following optimization problem: 

Minimize F             (15)
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The proposed approach employs genetic algorithm to solve 
this optimization problem and search for optimal set of the 
TCSC Controller parameters. 

IV. MULTI-OBJECTIVE OPTIMIZATION

A. Multi-objective optimization  

A multi-objective optimization problem (MOP) differs from 
a single-objective optimization problem because it contains 

several objectives that require optimization.  In case of single 
objective optimization problems, the best single design 
solution is the goal. But for multi-objective problems, with 
several and possibly conflicting objectives, there is usually no 
single optimal solution. Therefore, the decision maker is 
required to select a solution from a finite set by making 
compromises. A suitable solution should provide for 
acceptable performance over all objectives. 

A general formulation of a MOP consists of a number of 
objectives with a number of inequality and equality 
constraints. Mathematically, the problem can be written as 
[14]: 

minimise/maximise  fi(x)  for i =1, 2,…,n.        (21) 

Subject to constraints: 

gj (x)  0 j = 1, 2, …, J 

hk (x)  0 k = 1, 2,…, K 

Where 

fi(x) = { f1(x),…fn(x)} 

n = number of objectives or criteria to be optimized 

x = {x1, …, xp} is a vector of decision variables 

p = number of decision variables 

There are two approaches to solve the MOP. One approach 
is the classical weighted-sum approach where the objective 
function is formulated as a weighted sum of the objectives. 
But the problem lies in the correct selection of the weights or 
utility functions to characterise the decision-makers 
preferences. In order to solve this problem, the second 
approach called Pareto-optimal solution can be adapted. The 
MOPs usually have no unique or perfect solution, but a set of 
non-dominated, alternative solutions, known as the Pareto-
optimal set. Assuming a minimisation problem, dominance is 
defined as follows: 

A vector u = (u1,….,un) is said to dominate v = ( v1,…..,vn)
if and only if u is partially less than v ( u p< v),   

i  {1,…,n}, ui  vi i  {1,…,n}; ui < vi    (21)

A solution xu U  is said to be Pareto-optimal if and only 
if there is no xv U for which v = f(xv) = (v1,…,vn) dominates 
u = f(xu) = ( u1,…,un).

B. Pareto-optimal solutions 

Pareto-optimal solutions are also called efficient, non-
dominated, and non-inferior solutions. The corresponding 
objective vectors are simply called non-dominated. The set of 
all non-dominated vectors is known as the non-dominated set, 
or the trade-off surface, of the problem. A Pareto optimal set is 
a set of solutions that are non-dominated with respect to each 
other. While moving from one Pareto solution to another, 
there is always a certain amount of sacrifice in one objective 
to achieve a certain amount of gain in the other. The elements 
in the Pareto set has the property that it is impossible to further 
reduce any of the objective functions, without increasing, at 
least, one of the other objective functions. 
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Pareto-optimal solutions are also called efficient, non-
dominated, and non-inferior solutions. The corresponding 
objective vectors are simply called non-dominated. The set of 
all non-dominated vectors is known as the non-dominated set, 
or the trade-off surface, of the problem. A Pareto optimal set is 
a set of solutions that are non-dominated with respect to each 
other. While moving from one Pareto solution to another, 
there is always a certain amount of sacrifice in one objective 
to achieve a certain amount of gain in the other. The elements 
in the Pareto set has the property that it is impossible to further 
reduce any of the objective functions, without increasing, at 
least, one of the other objective functions. 

C. GA method for generating Pareto solutions 

The ability to handle complex problems, involving features 
such as discontinuities, multimodality, disjoint feasible spaces 
and noisy function evaluations reinforces the potential 
effectiveness of GA in optimisation problems. Although, the 
conventional GA is also suited for some kinds of multi-
objective optimisation problems, it is still difficult to solve 
those multi-objective optimisation problems in which the 
individual objective functions are in the conflict condition. 

Start

Initialize population and
Pareto optimal set

Time-domain simulation of
power system model

Objective function evaluation

Obtain Pareto solution set

Pareto size >
max. size ?

Gen. >
max. Gen. ?

Apply GA opterators
(selection, crossover and

mutation)

Reduce Pareto
optimal set size

Stop

Gen. = 0

Gen. = Gen. +1 Yes

No

Yes

No

Fig. 5 Flowchart of the multi-objective genetic algorithm     
optimization algorithm to generate Pareto solutions 

Being a population based approach; GA is well suited to 
solve MOPs. A generic single-objective GA can be easily 
modified to find a set of multiple non-dominated solutions in a 
single run. The ability of GA to simultaneously search 
different regions of a solution space makes it possible to find a 
diverse set of solutions for difficult problems with non-
convex, discontinuous, and multi-modal solutions spaces. The 

crossover operator of GA exploits structures of good solutions 
with respect to different objectives to create new non-
dominated solutions in unexplored parts of the Pareto front. In 
addition, most multi-objective GA does not require the user to 
prioritise, scale, or weigh objectives. Therefore, GA has been 
the most popular heuristic approach to multi-objective design 
and optimization problems. 

Pareto-based fitness assignment was first proposed by 
Goldberg [15], the idea being to assign equal probability of 
reproduction to all non-dominated individuals in the 
population. The method consisted of assigning rank 1 to the 
non-dominated individuals and removing them from 
contention, then finding a new set of non-dominated 
individuals, ranked 2, and so forth. In the present study, before 
finding the Pareto-optimal individuals for the current 
generation, the Pareto-optimal individuals from the previous 
generation are added. The computational flow chart of the 
proposed multi-objective optimization algorithm is shown in 
Fig. 5. 

V. RESULTS AND DISCUSSIONS

A. Application of Genetic Algorithm  

The objective function given by equation (12) is evaluated 
by simulating the system dynamic model considering a 10 % 
step increase in mechanical power input ( Pm ) at t = 1.0 sec. 
Optimization is terminated by the prespecified number of 
generations. While applying GA, a number of parameters are 
required to be specified. An appropriate choice of the 
parameters affects the speed of convergence of the algorithm. 
Table I shows the specified parameters for the GA algorithm. 
One more important factor that affects the optimal solution 
more or less is the range for unknowns.  

TABLE I PARAMETERS USED IN MULTI-OBJECTIVE GENETIC ALGORITHM

Parameter Value/Type 

Maximum generations 100 

Population size 50

Mutation rate 0.01

Selection operator Pareto-optimal sorting 

Recombination operator Blending

Type of selection Pareto optimal selection 

For the very first execution of the program, a wider solution 
space can be given and after getting the solution one can 
shorten the solution space nearer to the values obtained in the 
previous iteration. The final Pareto solution surface is shown 
in Fig. 6 where the Pareto solutions are shown with the marker 
‘o’. 

B. Best Compromise Solution  

In the present paper, a Fuzzy-based approach is applied to 
select the best compromise solution from the obtained Pareto 
set.  The j-th objective function of a solution in a Pareto set fj
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Fig. 6 Pareto solution surface 

is represented by a membership function j defined as  [16]: 
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where max
jf  and min

jf are the maximum and minimum 
values of the j-th objective function, respectively. 

For each solution i, the membership function i  is 
calculated as:

m

i

n

j

i
j

n

j

i
j

i

1 1

1             (23) 

where, n is the number of objectives functions and m is the 
number  of solutions. The solution having the maximum value 
of i is the best compromise solution.  

Using the above approach the best compromise solution is 
obtained as: 

KT =55.8577, T1 = 0.1684 s, T2 = 0.0637 s, T3 = 0.3126 s 
and T4 = 0.3126 s 

C. Eigenvalue Analysis  

To assess the effectiveness and robustness of the proposed 
stabilizers, three different loading conditions given in Table II 
are considered. The system electromechanical mode 
eigenvalues without and with the proposed controllers are 
shown in Table III. Table III also shows the system 
electromechanical eigenvalues without optimized TCSC 
controller parameters. In this case the values are randomly 
chosen as: 

KT =40, T1 =0.2 s, T2 =0.05 s, T3 =0.25 s and T4 =0.05 s. 

It is clear from Table III that the open loop system is 
unstable at all the loading conditions because of negative 
damping of electromechanical mode (s = 0.2655, 0.0278, 
0.4864 for nominal, light and heavy loading respectively). 
Without optimized TCSC controller parameters the system 
stability is maintained as the electromechanical mode 
eigenvalue shift to the left of the line in s-plane (s = -0.0081, -
1.1828, -0.0088 for nominal, light and heavy loading 
respectively) for all loading conditions. It is also clear that 
MOGA optimized TCSC controller shifts substantially the 
electromechanical mode eigenvalue to the left of the line (s = -
3.6835, -3.8535, -2.3982 for nominal, light and heavy loading 
respectively) in the s-plane, which enhances the system 
stability and improves the damping characteristics of 
electromechanical mode.  

TABLE II LOADING CONDITIONS CONSIDERED

Loading 

conditions

P

(pu)

Q

(pu)
0

(deg.)

Nominal loading 0.9 0.4652 68.51 
Light loading 0.4 0.1286 30.06 
Heavy loading 1.1 0.777 87.81 

TABLE III SYSTEM ELECTROMECHANICAL MODE EIGENVALUES

Loading
Conditions

Without
control

Without
optimized 

TCSC 

With MOGA 
optimized 

TCSC 
Nominal
loading

0.2655    
4.9846i

-0.0081
 0.0283i 

-3.6835
1.8176i

Light
loading

0.0278
 5.5445i 

-1.1828
4.1526i

-3.8535
3.3751i

Heavy 
loading

0.4864
 3.9793i 

-0.0088
 0.0209i 

-2.3982
1.5389i

D. Simulation Results  

In order to verify the effectiveness of the proposed 
approach, the performance of the MOGA optimized TCSC 
controller is tested for different loading conditions and 
compared with the case where the TCSC-based controller 
parameters are not optimized (i.e. using the randomly chosen 
values as the TCSC-based controller parameters). A 10 % step 
increase in mechanical power input at t =1.0 sec is considered. 
The response with TCSC without optimization are shown in 
dotted lines (with legend NO); and the responses with MOGA 
optimized TCSC controllers are shown with solid lines (with 
legend MOGA). The system is unstable without control for the 
above contingency and the responses are not shown in figures. 
The system speed deviation and terminal voltage response for 
the above contingency at all the loading condition are shown 
in Figs. 7 and 8 respectively. These simulation results 
illustrate the effectiveness and robustness of proposed design 
approach. It is clear that the proposed TCSC controller has 
good damping characteristics to low frequency oscillations 
and stabilizes the system quickly for all loading conditions. 
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Fig. 7 Speed deviation responses for a 10 % step increase in 
mechanical power input (a) nominal loading (b) light loading 
(c) heavy loading. 

VI. CONCLUSIONS

In this study, the performance improvement of a power 
system by optimal design of a TCSC-based controller is 
presented and discussed. The design objective is to improve 
both rotor angle stability and system voltage profile. A 
Genetic Algorithm (GA) based solution technique is applied to 
generate a Pareto set of global optimal solutions to the given 
multi-objective optimisation problem. Further, a fuzzy-based 
membership value assignment method is employed to choose 
the best compromise solution from the obtained Pareto 
solution set. Eigenvalue analysis and simulation results are  
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Fig. 8 Terminal voltage responses for a 10 % step increase in 
mechanical power input (a) nominal loading (b) light loading 
(c) heavy loading. 

presented under various loading conditions to show the 
effectiveness and robustness of the proposed approach.The 
proposed method is valuable for the design of the interactive 
decision making. The decision makers can choose from the 
solutions in the Pareto-optimal set to find out the best solution 
according to the requirement and needs as the desired 
parameters of their controllers. The results show that 
evolutionary algorithms are effective tools for handling multi-
objective optimization where multiple Pareto-optimal 
solutions can be found in one simulation run.  
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