
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

200

Abstract—Safety Critical hard Real-Time Systems are ever

present in the avionics industry. The Model Driven Architecture
(MDA) offers different levels of model abstraction and generation.
This paper discusses our concerns relating to model development and
generation when using the MDA approach in the avionics industry.
These concerns are based on our experience when looking into
adopting the MDA as part of avionics systems development. We
place emphasis on transformations between model types and discuss
possible benefits of adopting an MDA approach as part of the
software development life cycle.

Keywords—Model Driven Architecture, Real-Time Avionics
Applications.

I. INTRODUCTION
N recent years there has been an increase in the number of
companies adopting the Object Management Groups’

(OMG) Model Driven Architecture (MDA) approach [1]. The
model driven approach to system development facilitates
better understanding of system requirements capture, design,
construction, and generation. Transformations are used to
convert one model type into another model type. In [1], when
discussing transformations the following was stated:

“There are many ways in which such a transformation may be

done. However it is done, it produces, from a platform
independent model, a model specific to a particular

platform.”

Thus there is no generic approach to defining transitions as
part of the MDA.

Hard real-time systems are ever present in the safety-critical
domain of avionics applications [2]. A hard real-time system
is where failure to meet a specified deadline can potentially
lead to catastrophic consequences [3]. A hard real time
system must be computationally correct and exhibit an
acceptable degree of timeliness. Since the applications being
developed will spend a large section of their active time in the
air, failure of these applications is unacceptable – safety is of
the highest priority. This idea of safety leads us to the concept
of dependability. Dependability is described in [4] as:

B. Gorry is with BAE Systems Rapid Engineering, Military Air Solutions,

Warton Aerodrome, Preston, Lancashire, England.

“the trustworthiness of a computer system such that reliance
can justifiably be placed on the service it delivers.”

Dependability relates to fault tolerance where concepts of

what an error is and how faults are managed present
themselves. This is further complicated in avionics
applications since the majority of real-time systems are
embedded. In embedded real-time systems the hardware and
software are treated as a self-contained product, therefore the
communications medium and architecture must also be taken
into account during system development. In order to utilize
shared resources, many of these systems take a distributed
form [5]. The use of shared resources can create resource
contention problems, but at the same time, the reduction in the
quantity of resources required may also reduce the
development costs of a system.

Modular approaches to software development have spread
from the mainstream software engineering community to the
development of avionics applications. This modularity
provides two benefits:

• Components can be developed in isolation with the
provision of well defined interfaces.

• Components, once verified for correctness, can be
documented for future use and maintainability.

This modularity also spawns the possibility of utilizing

mainstream approaches to software development such as the
OMGs Unified Modeling Language (UML) [6]. This allows
the avionics industry to begin to look into adopting a more
commercial approach to software development. However, as
attractive as these approaches are, avionics applications must
conform to stringent development standards, as outlined in [7]
and [8]. These outline a number of safety, development, and
documentation requirements. Each of these must be shown to
be fulfilled. To show that these requirements have been met
formal approaches to verification, such as Model Checking
[9], have been adopted. Problems associated with adopting
the MDA approach when developing safety critical software
have been discussed in [10].

This paper discusses issues relating to the adoption of an
MDA approach as part of the development life cycle of
avionics applications. Section 2 provides some background to

Concerns Regarding the Adoption of the Model
Driven Architecture in the Development of

Safety Critical Avionics Applications

Benjamin Gorry

I

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

201

the MDA and transformations. Section 3 presents an
architectural view of a proposed MDA approach for use in the
safety critical avionics domain. Section 4 discusses the
transformations between different model types. Section 5
provides a focused discussion on the possible benefits of
adopting the approach outlined in sections 3 and 4. Finally,
section 6 lists the conclusions of our research.

II. MDA AND TRANSFORMATIONS
The Model Driven Architecture (MDA) was covered briefly

in Section 1 of this paper. This section takes a more detailed
look at the MDA with particular focus placed on the types of
models and transformations between models types.

A. A Separation of Concerns
When using the MDA we discuss terms such as modularity,

differing model types, and transformations between model
types. By separating the details of a system development into
different models we can focus our attention on a particular
point of the system development process. Dijkstra describes
this as a “separation of concerns” [11]:

“This is what I mean by “focusing one’s attention upon a
certain aspect”; it does not mean completely ignoring the

other ones, but temporarily forgetting them to the extent they
are irrelevant for the current topic.”

In the MDA, the concerns which are separated are different

model types. When we have a lucid understanding of the
required model types, we can then begin to establish a number
of transformations between them.

By using the MDA several benefits are provided, such as:

• Productivity – this is improved since a developer can
shift their focus from writing source code to
developing an abstract model. This allows them to
focus on solving the problem rather than being
weighted down with implementation details.

• Portability – platform specific details can be isolated
by means of using platform independent models.

• Maintenance and Documentation – since a model is
an abstract representation of the source code, the
model, to a certain degree, fulfils the function of
high-level documentation

B. MDA Model Types
In the MDA specification [1], several model types are

outlined. The most commonly referred to model types are
PIMs (Platform Independent Models) and PSMs (Platform
Specific Models). A PIM represents the details of a system
without relating it to a specific platform (i.e. programming
language or hardware construct). The PSM views the system
from the specific point of a chosen platform.

Fig. 1 Illustration of PIM to PSM Transformation

To move between a PIM and a PSM, the MDA
specification [1] discusses the concept of model
transformations. Fig. 1, adapted and taken from [1], illustrates
this in its basic form. In addition to the transformation of the
platform independent system details from the PIM to the
PSM, it may be necessary to augment the PSM with platform
specific data. The PIM can be thought of as an abstraction of
the desired system; this allows multiple PSMs to be derived
from this abstracted PIM. What would be required is a
number of different transformations and possibly additional
information relating to the specific problem domain. This
leads us to a discussion of the different transformation types
which are available.

C. A Corpus of Model Transformations
The OMG “Request for Proposal” [12] for the MOF (Meta

Object Facility) [13] version 2.0. outlined a request to support
QVT (Queries / Views / Transformations) for models. The
MOF is an industry standard, developed by the OMG, to
facilitate the exporting of models from one application to
another, the importing of models, and the translating of
models into different formats. In QVT, queries are
expressions which are evaluated over an entire model, views
are models which are completely derived from other models,
and transformations are used to generate target models from
source models [14]. In [15], the OMG outlines that a
transformation consists of a number of “mappings”.
Mappings may be:

• Vertical (changes are made to the source model and
disseminated to the target model),

• Horizontal (these describe relationships between
different views),

• Unidirectional, or
• Bidirectional (synchronized).

There are differing approaches to declaring mappings, each
of which agree that a mapping must consist of a domain and a
range. In [14] two approaches to declaring mappings are
discussed; imperative and declarative mappings. Declarative
approaches represent relationships between source and target
components. These relationships often take the form of a
fixed set of inference rules or functions. Imperative
approaches explicitly state a sequence of steps which must be
followed to produce the required result. The most commonly
used is the declarative approach.

(1) → (a)
(2) → (b)
(3) → (c)

PSM Transformation

PIM

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

202

(3) → (d)
(4) → (e)
 (*) → (z)

Fig. 2 Declarative Transformations

Fig. 2 provides an example of six declarative mappings.
These mappings take the form of an integer value at the
source, this maps to a character value at the destination point
of the mapping. Each mapping is vertical and unidirectional.
The first two mappings in Fig. 2, along with the fifth mapping,
are straightforward integer to character mappings. However,
as we can observe in the mappings on lines 3 and 4 of Fig. 2,
both mappings have the same domain value. In this case we
cannot always guarantee what the range value will be, it could
be either of the characters ‘c’ or ‘d’. The sixth and final
mapping consists of what is known as a “wildcard” value (this
will recognize any of the five possible domain values as being
valid), hence the wildcard value is valid at any time a valid
integer value is present in the domain; making rule selection
non-deterministic and increasing the possibility of an
undesirable range value occurring. This simple example
illustrates how important it is to define deterministic
(dependable) mappings.

If we then make these mappings bidirectional, as shown in
Fig. 3, this further complicates matters. In Fig. 3, from range
values ‘c’ and ‘d’ we map back to domain value ‘3’. If we
then map from domain value ‘3’ we are not guaranteed to map
back to our original value of ‘c’ or ‘d’. We could repeat

 (1) ↔ (a)
(2) ↔ (b)
(3) ↔ (c)
(3) ↔ (d)
(4) ↔ (e)
(*) ↔ (z)

Fig. 3 Bidirectional Transformations

this process continually in both directions without us ever
being able to map to our desired range value. If mappings
between models are bidirectional we can say that this exhibits
a degree of synchronization between the models. The greatest
care must be taken when defining even the most basic of
mappings if true synchronization of models is to be achieved.

III. PROPOSED APPROACH
To adopt an MDA-based approach as part of the

development cycle of avionics applications the
transformations between model types must be well-defined.
Tools such as FeaVer (Feature Verification) [16] and
frameworks such as PARTES (Performance Analysis of Real-
Time Embedded Systems) [17] have been developed. These
facilitate the transformation of program source code into
formal models for analysis. In tools like these, the

transformations which are used are based on abstraction
decisions made by the tool developers. We must then ask
ourselves two questions:

1. How can we be certain that the abstraction decisions
made by the tool developers are sound?

2. In keeping with the MDA approach, how can we
define transitions in a tractable fashion so that they
can be easy altered, if required, at a future point in
time?

Fig. 4 An MDA Approach for the Development of Avionics
Applications

Attempts have been made to address these points. Mapping

languages such as XMap [18] exist. XMap is designed to
support unidirectional mappings which are described in terms
of patterns which describe what a mapping does. Patterns
represent a link between the source and target models and are
declarative. However, since the form that these mappings take
is structured round the abstraction decisions made by the
developers we must remember that they may not fulfill our
requirements. It may be the case that bidirectional mappings
would be more appropriate in some examples of our models;
XMap does not facilitate the use of bidirectional mappings.
Also, if unidirectional mappings were acceptable at the
present time, it may be the case that we will require
bidirectional mappings after n revisions of our software –
hence the mappings produced may not be suitably tractable.

 We focus on the issue of transformations because in the
scope of developing an avionics application several different
types of transformations exist. Over a project lifecycle of
twenty to thirty years, if the transformations between each of
these stages are not clearly defined this could have huge cost
implications for the project. A diagram representing a
simplified MDA approach to avionics systems development is
displayed in Fig. 4. This diagram illustrates the approach
which is proposed for use when developing avionics
applications.
 The transformations listed in Fig. 4 take five different
forms; these are represented by the black arrows which are
numbered and are displayed as being unidirectional to show
the flow of progress through the various development stages.

Requirements
Specification

Design
(PIM)

Implementation

(PSM)

2

Customer(s) and
Domain expert(s)

PSD

Target Source
Code File(s)

4

Verification of
Source Code

1

3

6

5

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

203

However, these transformations may also be bidirectional.
These will be discussed in detail in the section that follows.
The dashed-line box bounds the internal model
transformations; these are classified as this since the system
developer should not be required to know anything about
them. Human interaction with the approach is restricted to
those elements that lie outside the bounding box.
 The issues with MDA transformations are discussed in [19].
Paper [19] discusses how the Object Management Groups
specification for the Common Warehouse Metamodel (CWM)
specification [20] describes transformations. However, as
stated in [19], the CWM does not describe a methodology for
implementing transformations; it provides a model for
describing the existence of mappings. Other approaches to
model transformation such as those found in graph theory are
discussed in [19]. This approach has been taken in tools such
as [17] and involves a set of rules which describe mappings
from source to target models where either or both models
contain graph-like structures. This approach is common in
tools which employ Petri net [21] approaches.
 In Fig. 4, the seven boxed areas relate to general areas of
systems development; an overview of these areas is now
provided. Firstly, depending on the aircraft being developed,
system requirements are captured from the target customer(s)
with assistance from experts in the development of similar
products. From these requirements a system design is
formulated. The design is then transformed into an
implementation of the target system. This also includes
Platform Specific Data (PSD) elements (represented as linking
into the implementation stage via a dashed line in Fig. 4).
These may include new hardware features which are to be
incorporated as part of the system, or specific features for
different evolutionary developments of the basic design -
these elements consist of actual application data which is
required as part of the implementation. From the
implementation stage, the target program source code is
automatically generated. Finally, this source code is verified
using formal approaches to program verification such as
testing. We now discuss the various transformations which
take place between these stages.

IV. TRANSFORMATIONS BETWEEN STAGES
In Fig. 4, six transformations between the stages of a

proposed MDA approach are listed; these are now discussed.
The first transformation involves capturing the requirements
of the target system from the customer(s) with the assistance
of domain experts. This stage generally involves formulating
a natural-language textual description of the requirements that
must be fulfilled. These requirements can then be specified
formally in a notation such as, for example, Z [22] or the
Vienna Development Method (VDM) [23]. At this stage of
the process the customer(s) have the opportunity to state any
particular features they wish the system to contain. This
transformation leads us into the internal section of the
approach. In theory, it should not be necessary for us to

discuss the internal working of the MDA transformations; but
for illustrative purposes this is a useful exercise.

The second stage of transformations involves moving
between the requirements specification to a design
representation. A design generally takes a graphical form,
such as a UML [6] diagram, which allows the target system to
be viewed from a number of different angles. If the
requirements are well-defined in a formal representation, such
as Z, a set of mapping rules (transformations) can be defined.
This is where the first area of concern with an MDA approach
arises. It is understandable that we have to rely on human-
based decisions to formulate a requirements specification. At
the requirements stage we are guided by notations such as Z,
but when we move from requirements to design we rely on
abstraction decisions made by the engineer who is responsible
for developing the transformation rules.
 It would be expected that the transformations are
unidirectional, however it may be beneficial to utilize
bidirectional transformations as we may wish to change the
design at the graphical, i.e. UML, stage and then witness the
corresponding changes in the requirements specification.
Before we discuss the remaining four transformations we shall
address the issue of abstraction.
 Abstraction is used as a means of providing scientific
descriptions of the world [24]. A programming language can
be thought of as an abstraction that has been developed to
ignore details of specific machine instructions and
architectures. Abstractions are limited by domain, grain, and
level [25]. Domain refers to the statements and the types
which are supported (in his case the types of mappings which
are supported). When a programming language is developed
it has a certain grain (or structure) which is core to the way in
which it should be used. When using the language it is
beneficial to use this grain by following the desired style, this
is how to achieve maximum usage of the language. In the
case of model transformations there may be a structure to
developing these transformations. This grain will have been
decided upon by the developer of the mapping structure.
Therefore we have to trust that the developer has made
appropriate abstraction decisions; this leads us to level. The
level of abstraction which is employed must facilitate the
development of lucid and tractable transformations. In
avionics applications the size of the PIM and PSM will be
considerable and may be extremely complex in certain areas.
To assist in understanding the relationships between these
models we should employ transformation languages which
allow us to work at a design (and possibly flexible) level of
abstraction for differing applications.
 Transformation three involves moving from a PIM
representation to a PSM representation which relates directly
to the target hardware upon which the system will be
deployed. Stage 4 inserts the PSD into the implementation
PSM. Again, mapping from the PIM to the PSM raises issues
of abstraction. At the end of the third and fourth
transformations we should have in our possession a model
which takes into account hardware components and software

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

204

interface points within these components.
 The fifth transformation involves mapping the PSM model
into an appropriate source code representation. For avionics
applications, a typical language of choice is the high level
programming language SPARK Ada [26]. This process of
mapping from a PSM to program source code can be thought
of as auto-code generation. Like the previous transformations
which we have discussed, this also suffers from the problem
of showing that the transformations perform as desired. If we
do not develop an appropriate set of transformations we will
generate incorrect code. In avionics systems we often deploy
complex files containing a large number of lines of source
code. Even if our transformations provide us with correct
code, they may cause us to develop inefficient code which
does not provide an optimum representation of the system
software. This has implications on areas such as:

• Shared resources,
• Allocation of redundant components, and the

deployment of an appropriate fault-tolerance
strategy.

• The development of efficient code should be a
central factor when considering which transformation
approach to adopt when generating system source
code.

 The final transformation, number six, leads us out of the
bounded box. This involves us verifying the source code for
correctness. This is currently the most well defined
transformation of Fig. 4. The SPARK Approach [26]
(SPARK is a safety-critical subset of the Ada language)
advocates design by construction through a series of program
annotations.
A series of verification tools are available to analyze the Ada
source code. In addition to this approach, traditional real-time
source code testing approaches can be employed. These
specify different levels of program testing and build in
facilities for features such as stress and regression testing.
This discussion of the seven transformations listed in Fig. 4
leads us to other concerns regarding model transformations.

A. Further Issues to Consider
When discussing transformations the issue of abstraction

was frequently raised. This is a common problem and it has
been given attention in fields such as model checking [9].
Since abstraction is regarded as being a common problem in
modeling, guided approaches to model abstraction and the
definition of model transformations have been developed. An
example of this is PARTES [17]. Even if we have followed a
guided abstraction approach and we are satisfied that the
transformations act as required, how can we ensure that they
are correct? From the point of view of the avionics industry, a
structured argument which demonstrates that the model
transformations which have been employed are both
syntactically and semantically correct is required. A possible
mechanism to ensure correctness would be to use Hoare-style

[27] assertions which take the form of pre and post conditions.
For example, in:

Pre {T} Post

where Pre is a precondition which must be met for
transformation T to be selected and Post is the result of
transformation T, we can say that if assertion Pre is true
before transformation T takes place and assertion Post is true
after transformation T takes place then the transformation is
valid with respect to the specification Pre {T} Post, can’t we?
 For a simple unidirectional transformation this is
acceptable. However, as outlined in [28], some
transformations may contain internal transformations which
are required to aid construction of intermediate
representations (also known as rule organization [28])
required for use by other transformations. Also, it may be the
case that transformations may be parameterized – this could
increase the flexibility of the transformation approach by
increasing the re-use factor of a transformation from a 1 to an
n-value parameter range.
 If transformation rules contained sub-rules, we may find
that rules begin to grow in complexity as the levels and
breadth of rule hierarchy’s increase. In this situation we
would have to place constraints on which rules can be coupled
with other rules and in which order. If we did this, we could
then use Hoare-style assertions to determine the overall
correctness of a transformation rule by determining the
correctness of the sub-rules which are used within it. In [28]
the concept of “rule scheduling” to determine the order in
which rules may be applied is discussed.

When we are satisfied that our transformations are correct,
we must then look at what, if any, overhead is placed on the
MDA process. Overheads may include:

• increasing the size of the transformation code, or
• increasing the time taken to map between PIM, PSM,

and program source code.
For a large number of transformations, the time it may take to
prove that these are correct may be considerable. Also, the
idea of “rule scheduling” would require increased resources
when executing transformations. This may act as a syntax
check in relation to rule-ordering. However, as discussed
previously, this would not provide a guarantee that the
transformations which have been employed are correct.
 In Fig. 4 the element of PSD was included. This data may
refer to the hardware architecture which is being used. In
modern day distributed architectures measures have been
taken to ensure timeliness while employing fault-tolerant
mechanisms to ensure that safety constraints are met. Four
such architectures are:

• SAFEbus – used by Honeywell Aerospace,
• SPIDER – used by NASA,
• TTA - used by Honeywell Aerospace, and
• FlexRay – developed by a consortium including

BMW.
An overview and comparison of these architectures is

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

205

provided in [29]. If an overhead is placed on ensuring that the
transformation between PIM and PSM are correct, we must
make sure that this overhead does not impact on the
performance of the hardware architecture in any way. The
cost of an overhead may defeat the purpose of using such an
architecture.
 In [30] Czarnecki and Helsen outline over twenty model-
transformation approaches. In providing a list of these
approaches we are given an opportunity to survey the
approaches which are available with an aim to making a
choice which will satisfy our requirements. Unfortunately, it
appears that none of these approaches address the issues
which have been discussed in this section. In [30], it is stated
that:

“industrial-strength and mature model-to-model
transformation systems are still not available, and the area of

model transformation continues to be a subject of intense
research.”

This supports the findings of our assessment of current
approaches. It appears that no current strategy for specifying
model transformations, which addresses the issues discussed
in section 4 of this paper, exists. The main reason for this is
that the capabilities to formally verify the model
transformations which are used do not exist. However, it is
recognized that existing techniques (i.e. testing) exist to show
whether or not the source code, which is produced from an
MDA process, conforms to safety-critical standards.
 When discussing the types of transformation rules which
are available, [30] covers points which support some of our
concerns; these relate to:

• rule reuse - rules should be structured generally to

facilitate ease of reuse, and
• directionality – determining the direction which a

transformation can be executed in.

The idea of rule re-use was identified as being a problem
which will require further attention in [10]:

“it may require very careful engineering to produce
transformations and meta-models which can actually be re-

used in multiple contexts.”

For directionality, we previously discussed unidirectional and
bidirectional transformations. In [30] the concept of
multidirectional transformations is suggested. To solve the
issue of non-determinacy relating to the selection of mapping
rules (as discussed in section 2 of this paper), [30] suggests
application conditions. Application conditions are conditions
that must be true before a rule will fire. application conditions
are part of a strategy which is used. A strategy may be
deterministic, nondeterministic, or interactive. In a
deterministic strategy there will be a defined rule for each
transformation scenario. In a non-deterministic strategy there

may be more than one rule which is applicable in a given
situation; and in an interactive strategy the engineer would be
presented with a selection of rules. They would then make
their choice of rule.
 The idea of developing a strategy when it comes to the
selection of transformation rules is a step in the right
direction. Ideally, as discussed in section 2 of this paper, we
would require a deterministic strategy. If this was in place for
every possible model transformation in our system, we would
be provided with a degree of assurance that the correct
transformations were being selected at each stage of the MDA
process. The final part of this section discusses current
attempts which have been made to address some of the issues
which have been raised.

B. Approaches to Proving Correctness of Transformations
– Related Work

Several problem areas relating to transformations between
model types have been discussed in the previous parts of this
section. To address some of these issues, research has been
carried out. One approach to showing correctness of
transformations in the MDA involves using testing approaches
[31]. In [31] it is discussed that that transformations should be
expressed as operations within the OCL [32] (Object
Constraint Language) – a language which can be used to
enhance the precision of a model by associating assertions
(constraints) with model elements. The OCL has been
developed to assist in the removal of ambiguities from UML
diagrams by using a notation which cannot alter the model,
each statement simply returns a value as it is evaluated, and is
easier to utilize than traditional formal approaches to
specifying model constraints. In OCL, pre and post
conditions take the form of assertions. As discussed in [30],
pre-conditions specify constraints on the input parameters
while post-conditions specify the effect of the transformation
by linking the input and the output parameters. This sounds
similar to the pre and post-condition concept raised in section
4.1 of this paper. Unfortunately, as for the reasons discussed
in section 4.1 of this paper alongside [28], this does not
provide suitable analysis of more complex transformations.

In [31] the idea of using partition analysis is raised.
Partition analysis involves dividing the input domain of the
program under test into several sub-domains than do not
overlap. A unique test case is then chosen from each sub-
domain. Partition analysis works under the assumption that if
the program behaves correctly with one test case from each
sub-domain, it should then be valid for all test cases [31].
Also, “classes must be well chosen and the number of classes
must be reasonable”. Right away we must ask – how do we
ensure that the choice of test case is correct? In [31] proposed
methods of partitioning are discussed. However, for a large-
scale avionics application we may be facing a possibility of
creating tens of thousands of partitions; this breaks the
requirement that the number of classes which are chosen
should be “reasonable”.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

206

In [33], the verification of triple graph grammar
transformations is discussed. Triple graph grammars are a
specification technique which is used to specify model to
source code transformation. A graph grammar rule is applied
by substituting the domain of the rule with the target if the
domain can be matched. In [33], verification of triple graph
grammars is carried out using the theorem prover
ISABELLE/HOL [34]. In this approach, abstraction decisions
have been taken to transform representations of graph
transformation rules into type definitions which are comprised
of all the structured information from the graph transformation
rules. The results of this can then be analyzed using
ISABELLE/HOL. The problem with this approach relates to
the abstraction decisions which are taken in order to transform
the graph transformation rules into type definitions. Even if
we assume that the abstractions are lucid; [33] indicates that a
large number of lines of proof code are required to show that
transformations are accurate. Since [33] does not discuss
scalability of this approach; it is unclear whether such an
approach could scale to a major avionics application.

Another approach is discussed in [35]. In [35] approaches
to white-box testing are outlined. The authors of [35] have
indicated that their approach partially overcomes the
challenges of:

• generating test cases from model transformation
specifications, and

• generating test oracles to determine the expected
result of a test.

Firstly, constraints expressed in the OCL (as the work
discussed in [31] outlined) can be used. These constraints can
be used to construct interesting test cases; if a constraint is
violated we are presented with a possible test case. In this
situation, the test oracle is the execution environment. The
execution environment checks the constraints after each
transformation is applied. The form which the program
constraints will take is not discussed. Also, as with [33], the
scalability of this approach is not discussed. In section 4.1 of
this paper, we discussed how transformations may contain
sub-rules and these can contribute to the complexity of the
transformation. In [35] this issue is raised with reference to
ensuring the confluence of transitions which are dependent on
one another. This involves ensuring that any conflicting
transformation steps are captured and analyzed to decide
whether or not a suitable approach can be identified. Again,
the scalability of this approach is not discussed.

To bring this section to a close, the work presented in [36]
is discussed. The approach in [36] is based on the approach
taken in the development of application software. This is
likened to the waterfall development life cycle and the author
presents an approach which checks the syntactic correctness
of basic rules. In this approach UML models are translated to
CSP [37]. To ensure that the transformation is syntactically
correct, the OCL constraints in the UML models are checked
and the CSP part is checked against the syntax of CSP by
replacing all non-terminal items in the CSP with terminal
items. If both the UML and CSP models are syntactically

correct, the transformation is said to be correct. This
approach, like the others, has only been tried out on small
scale systems. Also, it only relates to transformations between
UML and CSP, there are no bidirectional or platform
independent transformations.

V. BENEFITS OF PROPOSED APPROACH
By being able to separate model types, and design our

applications in a platform independent fashion the strength of
MDA is evident. In large-scale avionics projects the cost of
development reaches into a factor of billions of pounds. This
cost increases if we have to continually construct models
when the project evolves between stages. By embracing the
concept of a PIM, two benefits are immediately spawned.

Firstly, by designing the application using a PIM approach,
we are abstracting away from the concrete system view.
Transitioning from our PIM design to the actual PSM would
then take place via a number of model transformations. By
developing models as PIM we can utilise notations such as the
UML. Since the UML has been integrated as part of many
University software engineering degrees; when employing
new staff to work on projects they may already have some
knowledge of how to use an approach. This would save on
staff training and development costs. Since we can make a
convincing argument for the use of notations such as the
UML, and since the techniques used to develop PSM have a
proven track record, this leaves us with having to provide a
method of assuring that the transformations between these
model types are reliable and will act deterministically.

The second benefit to adopting an MDA approach lies in
technology change. By adopting a “separation of concerns”
between our PIM and PSM we are beginning to plan ahead for
future avionics applications or revisions to the current system.
By adopting an approach such as that outlined in Figure 4, we
are keeping the PIM, PSM, and PSD separate. This would
allow us to alter the PSD and PSM at future stages of the
project. This may be extremely useful if the desired target
source code language changes or if one of the distributed
architectures, such as those stated in section 4.1 of this paper,
is adopted.

Outwith the standard benefits of adopting an MDA
approach, the idea of transformation patterns is a possible
concept which could emerge from a well-defined, reliable, and
structured approach to model transformations. In object-
oriented design there exists a range of design patterns [38]
which have developed over the past few decades. Each of
these patterns prescribes a solution for differing model
architectures. In general, these patterns have been
incorporated into notations such as the UML. These patterns,
which are already used to develop MDA PIM, provide
guidance on how to design systems from particular
viewpoints. If we could build up a corpus of transformations
we could utilize transformations of different types with
reference to:
different design approaches (patterns), and other

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

207

transformations; with the aim of constructing well-defined
hierarchical structures for the more complicated
transformations. This would show that the time spent
developing a reliable and tractable approach to model
transformation would reap rewards in relation to what are now
well-established approaches to object-oriented design.

VI. CONCLUSION
This paper has discussed the outstanding issues and

concerns regarding the adoption of the Model Driven
Architecture (MDA) as part of the development of avionics
applications. This discussion has taken the form of referring
to an outline of an avionics application which has raised a
number of issues relating to proving the correctness of model
transformations. Referring back to the two questions that we
asked earlier:

1. How can we be certain that the abstraction decisions
made by the tool developers are sound?

2. In keeping with the MDA approach, how can we
define transitions in a tractable fashion so that they
can be easy altered, if required, at a future point in
time?

We can now say that, after researching current practical and

theoretical attempts at answering these questions, that these
questions remain unanswered at this point in time. Some of
the work discussed in section 4.2 has made progress; however
it will require further investigation and proof by application. If
these questions could be answered, we are certain that this
would be a significant step towards the adoption of the MDA
as part of development of avionics applications. The benefits
and potential cost savings during systems development are
clear and may lead to reduced development costs while
providing assistance to traditional approaches to systems
development.

ACKNOWLEDGEMENT
Thanks go to Kevin Dockerill and John Rowlands for their

useful feedback and comments.

REFERENCES
[1] Object Management Group. MDA Guide Version 1.0.1, Technical

Guide, Object Management Group, June 2003.
[2] Cheng A. M. K. Real-Time Systems – Scheduling, Analysis, and

Verification. John Wiley & Sons, Inc, 2002.
[3] Burns A., Wellings, A. Real-time Systems and Programming

Languages. Pearson Education Limited, 2001.
[4] Laprie J-C, Dependability: Basic Concepts and Terminology.

Springer-Verlag Wien New York, 1991.
[5] Coulouris G., Dollimore, J., Kindberg, T. Distributed Systems –

Concepts And Design. Pearson Education Limited, 2001.
[6] Pooley R, Stevens P, Using UML – Software Engineering With

Objects and Components. Addison-Wesley, 1999.

[7] RTCA-EUROCAE. Software Considerations In Airborne Systems
and Equipment Certification. Do-178B/ED-12B. RTCA and
EUROCAE, 1992.

[8] Ministry Of Defence. Safety Management Requirements for
Defence Systems. DEF-STAN 00-56, Draft Issue 3, UK Ministry Of
Defence, 2004.

[9] Clarke E. M., Grumberg O., Peled D. A., Model Checking. MIT
Press, Cambridge, Massachusetts, 1999.

[10] Conmy P., Paige R.F., Challenges when using Model Driven
Architecture in the development of Safety Critical Software.
Proceedings of 4th International Workshop on Model-based
Methodologies for Pervasive and Embedded Software (MOMPES),
2007.

[11] Dijkstra E. W., A Discipline of Programming. Prentice Hall Series
In Automatic Computation, Prentice-Hall Inc, Englewood Cliffs,
New Jersey, 1976.

[12] Object Management Group, Request For Proposal: MOF 2.0 Query
/ Views / Transformations RFP. Object Management Group, 2002.

[13] Object Management Group, Meta Object Facility (MOF) 2.0 Core
Specification. Object Management Group, 2004.

[14] Gardener T., Griffin C., Koehler J., Hauser R., A review of OMG
MOF 2.0 Query / Views / Transformations Submissions and
Recommendations towards the final Standard. OMG Document:
ad/03-08-02.

[15] Object Management Group, Meta Object Facility 2.0
Query/View/Transformation Specification. 2005.
http://www.omg.org/docs/ptc/05-11-01.pdf

[16] Holzmann G. J., Smith M.H., An Automated Verification Method
for Distributed Systems Software Based on Model Extraction. IEEE
Transactions On Software Engineering, 28(4):364-377, 2002.

[17] Gorry B., Ireland A., King P., PARTES: Performance Analysis of
Real-Time Embedded Systems. Proceedings of 4th International
Conference on the Quantitative Evaluation of Systems (QEST), pg
271- 272, 2007.

[18] Clark T., Evans A., Sammut P., Willans J, Applied Metamodelling:
A Foundation for Language-Driven Development Version 0.1.
www.xactium.com .

[19] Gerber A., Lawley M., Raymond K., Steel J., Wood A.,

Transformation: The Missing Link of MDA. Proceedings of the
First International Conference on Graph Transformation (ICGT),
2002.

[20] CWM Partners, Common Warehouse Metamodel (CWM)
Specification. OMG Documents: ad/01-02- {01,02,03}, February
2001.

[21] Petri C. A., Communications with Automata. Technical Report
RADC-TR-65-377, New York, 1966.

[22] Spivey J. M., The Z notation: a reference manual. Prentice-Hall
International Series In Computer Science, 1989.

[23] Jones C. B., Software Development: A Rigorous Approach. Prentice
Hall International, 1980.

[24] Ben-Ari M., Principles of Concurrent and Distributed Programming.
Prentice-Hall International, 1990.

[25] Dix A. J., Formal Methods for Interactive Systems. Academic Press,
1991.

[26] Barnes J., High Integrity Ada: The Spark Approach. Addison-
Wesley Professional, 1997.

[27] Hoare C. A. R., An axiomatic basis for computer programming.
Communications of the ACM, 1969.

[28] Czarnecki K., Helson S., Classification of Model Transformation
Approaches. Proceedings of Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA) Workshop on
Generative Techniques in the Context of Model-Driven
Architecture, 2003.

[29] Rushby J., A Comparison of Bus Architectures for Safety-Critical
Embedded Systems. Technical Report, Computer Science
Laboratory, SRI International, 2001.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

208

[30] Czarnecki K., Helsen S., Feature-based survey of model
transformation approaches. IBM Systems Journal, Volume 45,
Number 3, 2006.

[31] Fleurey F., Steel J., Baudry B., Validation in Model-Driven
Engineering: Testing Model Transformations. Proceedings of the
First International Workshop on Model, Design and Validation, pg
29-40, 2004.

[32] OMG, Object Constraint Language (OCL), OMG Available
Specification, Version 2.0. 2006.
http://www.omg.org/docs/formal/06-05-01.pdf

[33] Giese H. et al., Towards Verified Model Transformations.
Proceedings 9th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, 2006.

[34] Nipkow T., Paulson L. C., Wenzel M., Isabelle/HOL : A Proof
Assistant for Higher-order Logic. Springer-Verlag Berlin and
Heidelberg GmbH & Co. K, 2002.

[35] Kuster J. M., Abd-El-Razik M., Validation of Model
Transformations – First Experiences using a White Box Approach.
Proceeding of Model Driven Engineering Languages and Systems
(MoDELS), pg 193-204, 2006.

[36] Kuster J. M., Systematic Validation of Model Transformations.
Proceedings of the 3rd UML Workshop in Software Model
Engineering (WiSME), 2004.

[37] Hoare C. A. R., Communicating Sequential Processes. Prentice-Hall
International, 1985.

[38] Gamma E. et al, Design Patterns : Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995.

