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Abstract—This paper presents a procedure of forming the 

mathematical model of radial electric power systems for simulation 
of both transient and steady-state conditions. The research idea has 
been based on nodal voltages technique and on differentiation of 
Kirchhoff's current law (KCL) applied to each non-reference node of 
the radial system, the result of which the nodal voltages has been 
calculated by solving a system of algebraic equations. Currents of the 
electric power system components have been determined by solving 
their respective differential equations. Transforming the three-phase 
coordinate system into Cartesian coordinate system in the model 
decreased the overall number of equations by one third. The use of 
Cartesian coordinate system does not ignore the DC component 
during transient conditions, but restricts the model's implementation 
for symmetrical modes of operation only. An example of the input 
data for a four-bus radial electric power system has been calculated. 

 
Keywords—Mathematical Modelling, Radial Power System, 

Steady-State, Transients 

I. INTRODUCTION 

IMULATION languages and development in simulation 
methodologies have made mathematical modelling one of 

the most used tools in scientific research and system analysis. 
Study of the interaction of a complex system, or of a part 

within a complex system can be achieved by simulation. The 
experience obtained in designing a mathematical model may 
be of great value toward suggesting improvement in the 
system under study and by changing the inputs and observing 
the resulting output; valuable knowledge may be obtained in 
which variables are most important and how variables interact 
[1], [2]. 

Modelling of electric power systems is an area of increasing 
interest in the transmission, distribution and control systems. 
Mathematical modelling and simulation of the electric power 
system is necessary for both planning and operation and 
depends on appropriate mathematical models. In the operation 
sector, models are typically more complex than those used for 
planning. Operational models support analysis of incoming 
data as well as simulation of expected and unexpected 
operational conditions [3]-[5]. 

Designing, maintenance and verification of mathematical 
models are significant activities for most operators. 
Distribution companies also face new mathematical modelling 
tasks with the increasing deployment of distribution 
management systems.  
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While their capabilities vary from system to system, all 

require mathematical models of the sub-transmission and 
networks. 

Mathematical model for maintenance solutions developed 
for energy management systems are rarely suitable. Unlike 
most main transmission systems, a typical distribution system 
is subject to continuous expansion and restructuring. Thus, it 
is worth reviewing the traditional modelling approaches to 
find developments. New techniques should enable engineers 
to meet challenges they now face. 

The current paper aims to develop a procedure for 
mathematical modelling of the radial power system and that 
can be used for analysis of both transient and steady-state 
conditions. In section two, the procedure of formation of the 
model is explained using a four-bus study system. Section 
three shows an example of input-data preparation.  

II. MATHEMATICAL MODEL FORMATION 

In Fig. 1, the one-line diagram of a simple 4-bus radial 
electric power system is shown and considered, in this paper, 
for forming the differential-algebraic model. 

Transforming the voltages of the power supply system from 
three-phase coordinate system into Cartesian coordinate 
system is obtained as follows: 
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where 

yx vv 11 , - the voltages at the infinite bus (node 1) represented 

in rectangular system of coordinates; 

cba vvv 111 ,, - the phase voltages at the infinite bus. 

When Cartesian coordinate system is used, the number of the 
differential and algebraic equations is decreased by one third 
and the mathematical model is restricted for analysis of the 
symmetrical modes of operations only. However, the DC 
component is not ignored. 
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Fig. 1 The one-line diagram of the study 4-bus radial power system 

 
In this paper, transmission lines are assumed to be short and 

represented by their lumped series impedances. Thus, the 
derivatives of the currents flowing through the transmission 
lines, with positive direction according to their double-
subscript notation in x axis, are: 
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where 

xxx iii 342312 ,, - the currents flowing through the transmission 

lines connected between buses 1-2, 2-3 and 3-4 in x axis, 
respectively; 

xxx vvv 432 ,, - the nodal voltages at buses 2, 3 and 4 

represented in x axis, respectively; 

342312 ,, RRR  - the resistances of the transmission lines 

connected between buses 1-2, 2-3 and 3-4, respectively; 

342312 ,, LLL  - the inductances of the transmission lines 

connected between buses 1-2, 2-3 and 3-4, respectively. 
 
 
 
 

 
If the transmission lines are considered to be medium-

length lines then the shunt capacitors should be taken into 
account [6]. Transformers are also represented by resistive-
inductive branches to which the load impedance is connected 
in series. The load parameters, in this example, are considered 
constant and thus the derivatives of the load currents flowing 
through the transformers, in x axis, can be expressed as: 
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where 

xxx iii 432 ,, - the load currents flowing through the 

transformers connected to buses 2, 3 and 4 in x axis, 
respectively; 

432 ,, TTT RRR - the resistances of the transformers connected 

to buses 2, 3 and 4, respectively; 

432 ,, LLL RRR - the resistances of the loads connected to buses 

2, 3 and 4, respectively; 

432 ,, TTT LLL - the inductances of the transformers connected 

to buses 2, 3 and 4, respectively; 

432 ,, LLL LLL - the inductances of the loads connected to buses 

2, 3 and 4, respectively. 
 
Applying KCL to the non-reference nodes 2, 3 and 4 

respectively yields: 
 

022312 =−− xxx iii   (10) 

033423 =−− xxx iii   (11) 

0434 =− xx ii    (12) 

 
Differentiating (10)-(12), substituting (4)-(9) in them and 

rearranging with respect to the unknown voltages yield: 
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xx IBV 1−=    (16) 

where 
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The nodal voltages, in x axis, can be calculated by solving 

(16) with zero-initial values of the currents. The determined 
nodal voltages are used then to find the next iteration of the 
currents in (4)-(9). 

The above algorithm should be written for y axis as well, 
thus, the system of algebraic equations for the study system, in 
matrix form, is as follows: 
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and where 

yyy iii 432 ,, - the load currents flowing through the transformers 

connected to buses 2, 3 and 4 in y axis, respectively; 

yyy iii 342312 ,, - the currents flowing through the transmission 

lines connected between buses 1-2, 2-3 and 3-4 in y axis, 
respectively; 

yyy vvv 432 ,, - the nodal voltages at buses 2, 3 and 4 

represented in y axis, respectively. 

 
The system of differential equations for y axis is as follows: 
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The calculated nodal voltages, currents of the transmission 

lines and loads are transformed then from Cartesian coordinate 
system into the three-phase coordinate system. For example, 
the three-phase voltage at bus 2 can be found using the 
transformation matrix as follows: 
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 In matrix form:
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where 

cba vvv 222 ,, - the phase voltages at bus 2. 

 
Fault can be simulated by a fault switch at the fault location 

[7], [8]. This switch allows taking into account the effect of 
the stored energy in the load on the fault current and increases 
the accuracy of the simulation results. 

III.  INPUT DATA PREPARATION 

Assume that the three-phase transformers of Fig.1 are 
identical and rated 25 MVA, 138/20 kV with leakage 
reactance of 11% and resistance of 2%. The loads are assumed 
to be constant-impedance load. In this article, it is modeled by 
constant impedance that is calculated as follows [8]: 
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where 

ϕcos,Sload
- the given apparent power and the power factor of 

the given load, respectively. 
 
Table I shows the parameters of the loads connected to the 

buses of the study system. These parameters are indicated in 
both actual values and per unit (pu). 

Assuming a base power of 25 MVA, the base values for the 
distribution part of the power system are as follows: 
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TABLE I 

PARAMETERS OF THE LOADS 

Parameter 
Bus to which load is connected 

2 3 4 
Power, MVA 8 12 10 
Power factor 0.8 0.85 0.9 
Line current, A 230.94 346.41 288.675 
Resistance, Ω 40 28.333 36 
Inductive reactance, Ω  30 17.559 17.436 
Resistance, pu 2.5 1.771 2.25 
Inductive reactance, pu 1.875 1.097 1.089 

 
Table II shows the transmission line parameters, where the 

conductors of the transmission line are assumed to be Rock 
with resistance of 0.1603 Ω/mi and inductive reactance of 
0.8277 Ω/mi. The base values for transmission part of the 
power system are: 
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TABLE II 

PARAMETERS OF THE TRANSMISSION LINES  

Parameter 
Transmission line 

1-2 2-3 3-4 
Length, mi 45 48 50 
Resistance, Ω 7.214 7.694 8.016 
Inductive reactance, Ω 37.247 39.730 41.386 
Resistance, pu 0.010 0.011 0.012 
Inductive reactance, pu 0.053 0.057 0.060 

 
To overcome the voltage drop on the transmission lines, the 

power supply voltage, in this example, should be more than 
1.0 pu. 

IV.  CONCLUSION 

The procedure of forming the differential-algebraic model 
of the radial electric power system is developed. This 
procedure is based on nodal voltages technique and on 
differentiation of Kirchhoff's current law applied to each non-
reference node. It is, thus, composed of two systems of 
equations: differential for currents flowing through the power 
system components and algebraic for nodal voltages. It can be 
used for simulation of both transients and steady-state 
conditions. 

The use of the rectangular Cartesian coordinate system 
decreases the overall number of the equations by one third. 
This restricts the use of the developed model for analysis of 
symmetrical modes of operation only. It can be used for 
protection and stability studies. 
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