
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1170

Dynamic Meshing for Material Point Method
Computations

Wookuen Shin, Gregory R. Miller, Pedro Arduino, and Peter Mackenzie-Helnwein

Abstract—This paper presents strategies for dynamically creating,
managing and removing mesh cells during computations in the
context of the Material Point Method (MPM). The dynamic meshing
approach has been developed to help address problems involving
motion of a finite size body in unbounded domains in which the extent
of material travel and deformation is unknown a priori, such as in
the case of landslides and debris flows. The key idea is to efficiently
instantiate and search only cells that contain material points, thereby
avoiding unneeded storage and computation. Mechanisms for doing
this efficiently are presented, and example problems are used to
demonstrate the effectiveness of dynamic mesh management relative
to alternative approaches.

Keywords—Numerical Analysis, Material Point Method, Large
Deformations, Moving Boundaries.

I. INTRODUCTION

THE Material Point Method (MPM, see, e.g., [1], [2]) is a
hybrid Lagrangian/Eulerian computational approach for

solving continuum mechanics problems, and its hybrid nature
is such that it can be particularly effective in the context of
large deformation, flow-like behavior of solids or granular
materials [3], [4]. In such contexts it is not uncommon for
motions to occur in partially unbounded domains, and it is
often the case that the ultimate subset of the containing space
that will be visited by moving material is unknown prior
to the analysis. Because the MPM relies on a background
mesh during the momentum and position update part of each
time step, it is necessary to have some way of representing
unbounded domains for these classes of problems.

The simplest mesh generation approach relies on using a
statically allocated grid set up at the start of an analysis
and then used throughout. This approach has two primary
shortcomings: (i) it includes many unneeded cells (especially
in cases where the domain occupied by particles is relatively
small compared to that covering the trajectory of these parti-
cles); and (ii) the predicted domain may not bound the ensuing
motion (this is especially the case of situations like landslide
modeling where a priori prediction of the domain of the motion
can be difficult). Including unneeded cells in an analysis has
a direct computational cost and in some instances can create
impractically large memory demands. For example, assuming
an MPM node can be represented minimally by seven double-
precision (8-byte) numbers (nodal velocity and force plus
mass), a 500 × 500 × 500 background mesh would require
on the order of 6.5 GB of storage alone. Similarly, motions
that exceed predetermined grid boundaries are likely to require
the analysis to be halted and restarted. Thus computational

Department of Civil & Environmental Engineering, University of Washing-
ton, Box 352700, Seattle, WA 98195-2700.

efficiency, robustness, and feasibility are all affected by the
grid creation scheme, and although global static meshing of a
predetermined domain is the common approach used for the
MPM (see, e.g., [2], [5], [6], [7], [8], [9], [10]), this model
does not scale well to general situations.

In this paper we present a dynamic meshing implementation
capable of avoiding the cost of empty, unneeded cells while
adding negligible additional mesh management overhead. This
makes it possible to demonstrate the magnitude of the empty
cell overhead costs in terms of both memory and compu-
tational time, and also provides a means for dramatically
improved performance. The specific approach used in this
paper is tuned for use with uniform rectangular background
grids, but it could be extended to handle more general cases
by means of appropriate location-to-cell mappings.

The general problem of handling sparse spatial data arises in
many applications, and there have been a number of techniques
and approaches developed over the years to efficiently repre-
sent and compute such data sets. Several basic mechanisms for
managing sparse discrete blocks of space were introduced in
1979 in [11] in the context of database searching, and there has
been substantial activity in recent years in computer graphics
and image processing under the general heading of spatial
hashing (e.g., [12]). A recent paper that is closely related to the
present work considers the application of spatial partitioning
in the context of Smooth Particle Hydraulic (SPH) fluid
modeling [13]. This approach gives rise to similar particle-
in-cell issues that arise in the MPM algorithm, and the spatial
representation used in [13] has conceptual similarities to the
approach presented in the present paper. The implementation
details differ from the current approach, though, due to an
orientation of that work around fixed-size domains in the
context of GPU-based modeling.

This work has grown out of the development of an MPM-
based approach to the modeling of landslides and debris
flows, in which solid and liquid phases are treated as distinct,
interacting fields [4]. Although the examples used in this paper
do not consider multiple fields, the approach works well in that
context.

The paper is organized as follows. A minimalistic introduc-
tion to the material point method will be given in section II to
identify the basic algorithmic tasks and data required to per-
form the relevant computations. The concept of the employed
dynamic meshing approach is developed in section III and
its implementation is covered in section IV. A performance
analysis of the proposed dynamic meshing approach based
on representative numerical examples is given in section V.
Summary and conclusions complete the paper.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1171

II. MPM OVERVIEW

This section provides a simple MPM overview, the goal
being to illustrate the basic algorithmic steps required to
implement the method. More detailed descriptions of the
method are available in, e.g., [1], [2], [5].

The MPM works by using a fixed (Eulerian) background
grid to satisfy conservation of momentum (i.e., to solve the
equations of motion) and a set of freely distributed material
points which carry with them mass, constitutive behavior, and
state information as they move from one cell of the background
grid to another. Figure 1 provides an overview of a typical
computational cycle, depicting the roles of the background
grid nodes and the material points. As shown in Figure 1a, the
equivalent nodal mass and internal forces corresponding to a
configuration of material points can be computed via normal
finite element shape function interpolation. In equation form
this can be expressed as

mi =
Np∑
p=1

Ni(Xp)mp (1)

for the nodal mass at node i and

f i = f
ext
i −

Np∑
p=1

mp

ρp

σp · ∇N(Xp) (2)

for the equivalent force at node i. In these expressions, Np

represents the number of material points in a given cell, Xp

represents the location of material point p, ρp is the mass
density for material point p, σp is the current stress tensor at
material point p, and fext

i is any externally applied nodal load
at node i.

Given a set of assembled nodal forces and corresponding
nodal masses, the equation of motion can be used to update
the nodal velocities as shown in Figure 1b. A simple explicit
equation relating unknown velocity, vk+1

i , at time step k + 1
to the known velocity, vk

i , at time step k can be written as

vk+1
i = vk

i +
f i

mi

Δt (3)

in which Δt = tk+1− tk is the time increment, and the nodal
mass and force quantities are as defined above.

The background velocity field consistent with the updated
nodal velocities can then be used to compute velocity gradients
(and thus strain increments) and updated velocities at each
material point (Figure 1c). In equation form this becomes

ε̇p =
1
2
(
∇+∇T

) Nn∑
i=1

Ni(Xp)vk+1
i (4)

for the strain rate and

vk+1
p = vk

p +
Nn∑
i=1

Ni(Xp)
(
vk+1

i − vk
i

)
(5)

for the particle velocity update. Here the subscripts p and i
denote material point and nodal quantities, respectively, and
Nn is the number of nodes in a given cell (typically, Nn = 4
in 2D and Nn = 8 in 3D).

The updated velocities are used to convect the material
points to new locations as shown in Figure 1d (i.e., Xk+1

p =
Xk

p+vpΔt), the strain increments are used to compute internal
stress increments using appropriate constitutive relations, and
the entire cycle begins again.

For purposes of this paper, a key point to note is that grid
cells that do not contain material points do not participate in
the computation in regards to either solving the equations of
motion or updating particle states. In effect, in an expression
like equation 1, the number of particles, Np, in an empty cell
is zero, and so there is no mass and additional computation
is not necessary. Empty cells that have been instantiated thus
need only a cursory check involving minimal computation, but
it still can require significant effort and memory access to visit
all instantiated cells when there are many of them.

Algorithmically, the computational cycle outlined above can
be viewed as a set of iterations over material points, cells, and
grid nodes, with cells managing the connectivity between grid
nodes and material points. Thus step (a) in Figure 1 can be
implemented as an outer loop over the grid cells with an inner
loop over the material points in each cell. Step (b) consists of
a loop over the grid nodes and doing an explicit time step
update. Step (c) is once again a nested loop over cells and
contained material points, and step (d) is a simple loop over
all particles.

III. METHOD OF APPROACH

The basic idea for the dynamic meshing approach is simple:
in any given step of the computation, only background mesh
cells containing particles are instantiated—the rest of the mesh
is virtual. The trick with this variation on lazy evaluation [14]
is to accomplish it without introducing so much overhead as
to cancel out the benefits of reduced mesh cell counts. It is
also desirable that the approach be relatively straightforward
to understand and simple to implement.

The fundamental tasks for the cell management algorithm
to accomplish are twofold: (i) new grid cells must be created
(instantiated) as material points move into formerly unoccu-
pied space; and (ii) existing grid cells should be deleted when
they no longer contain material points. The key functionality
supporting these tasks is mapping between a particle location
and the associated grid cell—that is, given an arbitrary point
in space, one needs to be able to determine quickly the mesh
cell to which the point belongs.

Referring to Figure 1, it can be seen that within the MPM
algorithm the creation task can be carried out as part of
step (d). As each updated particle position is computed it can
be determined if it is leaving its previous containing cell. If
so, it can be reassigned to a new cell, either preexisting (when
the particle location maps to an existing cell) or newly created
(when the particle position does not map to an existing cell).

Similarly, the empty cell deletion process can be carried
out as part of step (a). As each cell is visited to update nodal
quantities, cells determined to be empty can be deleted.

In both these tasks it is necessary to manage the cell-node
relationships properly, as well. In general, nodes are shared
among cells, and so deletion and creation must be managed
accordingly to avoid dangling pointers or memory leaks.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1172

Material Point, p
Background Nodal Point, i

(b)

(c)

(d)

Update nodal velocities via
equations of motion.

Compute strain increments and
updated velocities at material points.

Update material point
positions.

(a) i

Compute nodal masses & forces

Fig. 1. The basic Material Point Method computational cycle.

The simplest, though brute-force approach for this task is
a pointer array. However, returning to the 500×500×500 3D
mesh, a pointer array would require 0.5 GB (1.0 GB) on a 32
bit (64 bit) architecture, and require repeated checking for null-
pointers. An efficient alternative is to use a multi-dimensional,
sparse, spatial array. Its characteristics and implementation
details are discussed in the next section.

IV. IMPLEMENTATION

This section outlines the specifics of the implementation
used to generate the results presented in the next section. It is
convenient to consider initially a 1-D case before considering
the full 3-D case, and so the presentation is composed of two
subsections. This presentation focuses on the core computa-
tional aspects of the standard, explicit MPM algorithm—a full
description of the implementation code architecture for the
overall program can be found in [3].

A. 1-D Implementation Example

Figure 2 shows a simple 1-D configuration of a set of cells,
nodes, and material points as needed for MPM analysis. Using
C++ (or other object-oriented language) each of these entities
can be represented using classes. There are various possible
ways to represent the relationships among the classes, but to
accommodate the MPM algorithm as depicted in Figure 1 it is
necessary to have available either explicitly or implicitly the
following data structure groupings and capabilities:

• A list of all active cells to enable the outer iteration of
steps (a) and (c).

• A list of particles and nodes belonging to each cell to
perform the inner loop particle→node mapping/iteration
of step (a) and its reverse for step (c).

• A list of all active nodes for the iteration of step (b).

• A list of all particles for the position update iteration
of step (d) (this step can actually be subsumed into the
iteration of step (c)).

• A mechanism for mapping particle locations to mesh
cells.

n1 n2 n3 n4p1

c2c1 c3

Material Points, pi
Nodes, ni
Cells, ci

x1 x3x2 x4

Δx Δx Δx

Fig. 2. 1-Dimensional MPM implementation example

In the case of static mesh allocation approaches and regular
grids, the mesh data can be implemented directly as static
arrays using straightforward looping, with a relatively simple
grid-snap approach to map particle locations to cells, similar to
the data ranging approach in [11]. For example, in reference to
Figure 2, a 3-element array of cells could represent the mesh,
iteration would consist of 3-step loops, and a particle’s cell
could be determined by its index into the cell array. Thus for
the configuration shown, the cell index can be calculated from
the particle position, xp, and the uniform cell size, Δx, as

i = floor
[
(xp − x1)

Δx

]
(6)

in which the floor operation truncates to return the integer
part of its argument. Once the cell index is determined, the
corresponding shape function arguments and nodal values can
be determined directly.

In the case of dynamic meshing for this same configuration,
the cell data structure would consist of only a single element

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1173

(c3), because that is the only cell containing particles at
the time shown. It can be seen that in principle 1/3 the
memory would be required to represent the cells (and 1/2
the memory for the nodes), but now the direct array-index
lookup approach based on Equation 6 to map particles to
cells breaks down, so some alternative must be identified. One
approach would be to use a search algorithm for each particle,
essentially checking each cell to see if each particle belongs
to it using a geometric inclusion check. It is not difficult
to see that this kind of nested looping does not scale well
since it needs to be carried out at each time step, and can
thus be quite expensive as the number of particles and cells
becomes large. A related alternative would be to use an initial
exhaustive search combined with ongoing checks for particles
leaving cells (and entering neighboring cells), but this requires
extensive representation of neighboring cells (which may or
may not exist prior to the time step in question), and relatively
intricate consideration of all possible excursion cases.

What is needed is an approach that preserves the efficiency
and simplicity of the direct spatially-based index lookup, but
allows for the dynamic flexibility of only including active
cells and nodes in the computation. A common solution to
this kind of problem is to use an associative map, and that
is the approach taken here. In particular, location-based key-
value association via the built-in C++ std::map data structure
[15] is used to achieve the desired capabilities. The std::map
class supports rapid addition and deletion of elements, random
access lookup, and iteration. Because these tasks tend to run
at cross purposes (e.g., optimal iteration speed relies on data
ordering and locality, while rapid insertion/deletion generally
implies distributed data with implicit rather than explicit
ordering), this does introduce some performance compromises,
but as will be seen, the gains can greatly outweigh the costs.

Referring again to Figure 2, the std::map representation
for this cell mesh would be set up by using a cell-based
index as the lookup key via something like the pseudocode
in Figure 3. Line 1 defines the MeshCells data structure as a
map between an integer key and pointer to a Cell instance.
Line 2 corresponds to the creation of a new Cell instance for
cell index i computed according Equation 6, which is then
inserted into the map in line 3. To find the cell associated
with a given particle then boils down to using Equation 6 to
map the particle location to an integer index, followed by a
lookup in the MeshCells map using the relevant index.

std::map<int, Cell*> MeshCells ;
Cell* newCell = new Cell(. . .);
MeshCells[key] = newCell ;

Fig. 3. Simple cell creation and storage using the C++ std::map.

In practice, the construction of the MeshCells data structure
is driven from the particle side as outlined in the code in
Figure 4. Here the coordinate-based index is computed for
each particle, and then the index is looked up in the MeshCells
data structure (line 3). If the cell exists, it is hooked up to the
particle in question (line 4). If the particle does not exist, it is
created, added to the cell database, and linked to the particle in

question (lines 6-8). The details of linking particles and cells
is not shown, but the basic idea is to associate particles with
cells for the algorithmic purposes identified earlier, and so the
AddParticle function involves both the addition to the given
cell’s list of particles and the removal from the previous cell’s
particle list, as needed. Tagging particles with their current cell
accelerates the lookup process, and it is only in the event of
cell crossings that anything more involved than a quick pointer
check is required to determine if a particle’s cell has changed.
Because the number of particles in a cell remains relatively
small, the amount of list processing work needed to transfer
a particle among cells is relatively small, as well.

for eachParticle in Particles do
int key = std::floor((eachParticle→ GetLocation()
- Origin)/CellSize);
if MeshCells.find(key) != MeshCells.end() then

// ---found cell, link it to particle
MeshCells[key]→ AddParticle(eachParticle);

else
// ---cell does not exist, so create

it
Cell* newCell = new Cell(. . .);
MeshCells[key] = newCell;
newCell→AddParticle(eachParticle);

end
end

Fig. 4. Material point-driven cell creation

Once the particle/cell linkages have been updated via the
process in Figure 4, empty cells can be identified and removed.
This ensures that only cells that contain particles participate in
the remainder of the processing for the time step in question.

Although not included in the above discussion, the man-
agement of nodes is an important part of the process, as well.
The basic processes and techniques involved are essentially
the same as those used for cells, and so the details have been
left out to avoid redundancy. Also not included in the above
pseudocode is the use of redundant lists (based on std::vectors)
of cell and node pointers that simplify and streamline iteration,
again with some additional overhead cost. The full code
used to obtain the results presented later uses such additional
iteration-friendly data structures, and the related costs will be
shown to be minor.

B. 3D Implementation Overview

The previous subsection has outlined the basic ideas un-
derlying the coordinate-key, map-based approach to dynamic
mesh management in the case of 1-dimensional problems. To
extend these ideas to 3-D it is simply necessary to accom-
modate 3-D position data in the mapping process (i.e., to
map 3-D particle locations to associated cells). The overall
MPM framework and procedures from the 1-D case remain
essentially the same.

There are various ways to use direct spatial hashing for
this kind of problem, but the approach taken in this work to
accommodate higher dimensional location data has been to
use nested C++ std::map structures. This nesting introduces

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1174

some reduced baseline efficiency compared to direct coordi-
nate hashing, but in the context of the overall MPM imple-
mentation, testing indicated that the performance difference
was negligible. The approach has the advantage that it uses
standard C++ data structures and is not sensitive to custom
hash algorithm details.

Using the nested map approach the analog to the MeshCells
data structure declaration for the 1-D case is defined as shown
in Figure 5. Here the MeshCells3D data structure uses a nested
lookup to associate three integer keys with a Cell pointer. In
analogy with the 1-D case, the creation and storage of an
individual cell with array indices

ix = floor
[
(xp − x1)

Δx

]
(7)

iy = floor
[
(yp − y1)

Δy

]
(8)

iz = floor
[
(zp − z1)

Δz

]
(9)

can be accomplished as shown in Figure 6. Note that these
indices should be interpreted in analogy with the 1-D case,
corresponding to the array indices that would identify the cell
in a statically-allocated, 3-D array.

std::map<int, std::map<int, std::map<int, Cell*> > >

MeshCells3D;
Cell* newCell = new Cell(. . .);
// ---ix, iy, iz specified
MeshCells3D[ix][iy][iz] = newCell ;

Fig. 5. Simple 3D cell creation and storage using nested map structures.

As in the 1-D case, the cell (and node) management is driven
by the particles. Combining nested map with a straightforward
expansion of the grid snapping expression from Equation 6
to account for three coordinate directions, the lookup code
corresponding to that of Figure 3 can be written as shown in
Figure 6. The similarity between the 1-D and 3-D cases is
apparent.

There is one complicating factor in managing the 3-D case,
and that involves the removal of cells that contain no particles.
To avoid the creation of memory leaks it is necessary to use
explicit nested deletion of the map entries. This is illustrated
in Figure 7, in which the cell with indices ix, iy, iz is deleted
(assuming it currently exists and has been found to contain no
particles). The initial call to delete frees the memory associated
with the cell object itself, and then the subsequent calls to the
built in std::map::erase free up the memory associated with
the pointer map storage slots themselves. This incremental
freeing up of memory from vacated cells is insignificant for
small problems but can be critical for problems experiencing
large displacements and an associated use of a large number
of different cells during the lifetime of an analysis.

As described earlier, C++ maps (or similar data structures)
perform reasonably well for insertion, deletion, lookup, and
iteration, but with some compromises relative to data structures
optimized for only some of these tasks. It is therefore impor-
tant to investigate the performance of the approach in actual

for eachParticle in Particles do
int ix = std::floor((eachParticle→ GetXLocation()
- Origin.GetXLocation())/CellSizeX);
int iy = std::floor((eachParticle→ GetYLocation()
- Origin.GetYLocation())/CellSizeY);
int iz = std::floor((eachParticle→ GetZLocation()
- Origin.GetZLocation())/CellSizeZ);
if MeshCells3D.find(ix) != MeshCells3D.end()
and MeshCells3D[ix].find(iy) != MeshCells3D[ix].end()
and MeshCells3D[ix][iy].find(iz) !=
MeshCells3D[ix][iy].end()
then

// ---found cell, link it to particle
MeshCells3D[ix][iy][iz]→ AddParticle(eachParticle);

else
// ---cell does not exist, so create

it
Cell* newCell = new Cell(. . .);
MeshCells[ix][iy][iz] = newCell;
newCell→AddParticle(eachParticle);

end
end

Fig. 6. Material point-driven cell creation for the 3-D case

// ---Delete the unneeded cell
delete MeshCells3D[ix][iy][iz];
// ---Perform nested map cleanup
MeshCells3D[ix][iy].erase(iz);
if MeshCells3D[ix][iy].size() == 0 then

MeshCells3D[ix].erase(iy);
end
if MeshCells3D[ix].size() == 0 then

MeshCells3D.erase(ix);
end

Fig. 7. Cell removal for the 3-D case showing nested deletion to avoid
memory leaks

problem contexts to evaluate the usefulness of the approach
in enhancing overall computation time.

V. EXAMPLE PROBLEMS AND PERFORMANCE RESULTS

This section presents a set of example problems to illustrate
the use of the dynamic MPM meshing approach described in
the previous sections. Consideration is given to both memory
demands and computational speed, although these two are
not entirely independent, especially when memory demands
exceed available physical RAM. Three cases are considered
for each problem: (i) simple static allocation for the entire
domain; (ii) dynamic cell creation without cell deletion; and
(iii) fully dynamic cell creation and deletion. It should be noted
that the simple static allocation case uses the same overall
framework as the dynamically meshed cases, and so there is
some additional iteration overhead associated with std::vector
iteration versus raw array iteration.

The problems chosen represent cases involving large dis-
placements and unpredictable domains of travel, since these
are the classes of problems for which this approach has been
developed. For problems involving few particle cell crossings,
simpler reduced static allocation methods would be adequate,

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1175

although the approach presented here can handle these cases,
as well.

As a basic benchmark, it is not difficult to show that optimal
basic memory demand and iteration size reductions should
scale like the ratio of the body volume(s) to the volume of the
containing space. For unbounded domains this clearly is not
a meaningful metric, but using an effective bounding box on
the motion for the containing space can provide a reasonable
baseline alternative. Although in general this bounding box
would not be known a priori, within the current benchmarking
context it is easy to determine it in an a posteriori fashion once
the analysis is complete.

Because of the variety of implementations, compilers, and
hardware configurations and combinations that are possible,
it is not feasible to investigate performance exhaustively, and
so the results presented here should be considered indicative
rather than definitive. These results were obtained using C++
with the gcc 4.0 compiler running on AMD Opteron 64 bit
processors and 4 GB of RAM.

A. Tumbling Rod

The first example involves the analysis of a prismatic elastic
bar bouncing off a flat horizontal surface, as shown in Figure 8.
The bar behaves in a relatively rigid fashion, but it is not
simple to predict where the bar will travel.

Figure 9 shows a set of images taken at a fixed point in
time during the bar’s motion, with each sub-image showing
one of three mesh allocation strategies for the same instant
in time. Figure 9(a) shows the case of a statically-allocated,
unchanging background mesh, which would be the typical
default approach used for a problem of this kind. Figure 9(b)
shows the case in which mesh cells are allocated dynamically
as needed, but which are not removed after all material has left.
This approach trades off the computational cost of deallocation
with the cost associated with carrying unneeded cells through
the analysis. Finally, 9(c) shows the fully dynamic allocation
approach in which only needed cells are used throughout the
analysis. Although difficult to see in a figure of this size, the
bar itself is represented by a set of material points arranged
to match the bar’s (original) geometry, and the material points
carry forward the analysis.

Testing the performance of these three scenarios makes it
possible to examine the advantages and disadvantages of each
strategy, and to assess the overhead required to manage the
background mesh dynamically. Figure 10 shows the absolute
performance behavior for the three bouncing bar analyses. In
particular, accumulated CPU time is shown as a function the
simulation time used in the analysis. For the static and fully
dynamic cases the observed behavior is essentially linear as
expected, consistent with the fact the each time step takes a
relatively constant amount of time to execute. The dynamic
case without cell removal shows nonlinear behavior as the
slope increases with time, an effect caused by the accumulating
problem size associated with the wake of undeleted cells.
Initially, though, the no-deletion approach outperforms the
fully dynamic case, because of the saving of the overhead
associated with identifying and deleting unused cells.

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Analysis Duration (sec)

A
cc

um
ul

at
ed

 C
P

U
 T

im
e

(s
ec

)

Dynamic
Dynamic & No Deletion
Static

Fig. 10. Comparison of performance for the tumbling bar problem for three
mesh management strategies.

Figure 11 shows the relative performance of the two dy-
namic schemes referenced to the static allocation case. The
fully dynamic case remains steady around 10-11% of the static
mesh time, while the dynamic, no-deletion case starts around
8% and then increases steadily as the analysis proceeds. The
rod dimensions were 2 m×8 m×2 m, and the static mesh
shown was 10 m×32 m×10 m, so the actual body/static
background mesh volume ratio for this problem is 0.01 (i.e.,
1%). Because a significant portion of the computations in-
volves the particles, one would not expect a direct correlation
between the cell ratio and the performance ratio, but this
shows that the computational cost of including empty cells and
unneeded nodes can be substantial. It should be noted that the
problem size was chosen such that everything fit into physical
memory—in the event that the extra storage associated with
unneeded cells and nodes forces the problem to be solved
using virtual memory, the static mesh approach could increase
by orders of magnitude and become impractical. It is thus
worth looking at the memory usage benefits of the dynamic
approach, as well.

Memory usage comparison between the fully dynamic and
static allocation schemes is shown in Figure 12. As can be seen
in the figure, the memory use ratio remains relatively constant
throughout the analysis as would be expected, with a value
around 3.4%. Because total memory use is a composite of cell
and node storage, particle storage, and general supporting data
structure storage, this ratio would not be expected to match
the volume ratio directly, since the volume ratio correlates
to cell and node storage only. Nonetheless it can be seen to
track this ratio more closely than in the case of the CPU-
time metric presented above. Again, as mentioned above, these
kinds of memory savings could have a significant impact
on performance, and even feasibility for some classes of
problems.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1176

Fig. 8. Snapshots from a 3D analysis of a tumbling bar showing its initial configuration (blue) before contact with the horizontal surface, and a series of
configurations in 5 second intervals for a duration of 30 seconds.

��� ��� ���

Fig. 9. Snapshots from a 3D analysis of a tumbling bar showing three different mesh management strategies: (a) static allocation; (b) dynamic allocation
with no removal; and (c) fully dynamic allocation.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1177

5 10 15 20 25 30

0.08

0.09

0.1

0.11

0.12

0.13

Analysis Duration (sec)

C
P

U
 T

im
e

R
at

io

Dynamic
Dynamic & No Deletion

Fig. 11. Comparison of dynamic meshing with and without cell deletion:
CPU time is shown relative to the static allocation case.

5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

Analysis Duration (sec)

M
em

or
y

C
on

su
m

pt
io

n
R

at
io

Dynamic

Fig. 12. Comparison of dynamic meshing with and without cell deletion:
memory usage is shown relative to the static allocation case.

B. Flow Examples

The example in the previous section illustrated the ability
of the dynamic meshing approach to introduce significant
memory and performance improvements in efficient fashion.
In this section some more challenging problems in regards to
complex deformations and flow-like behavior are considered,
the point being to show the relative robustness of the approach
for general mesh tracking.

Figure 13 shows a sequence of images from a breaking
dam water flow analysis. This particular analysis has been set
up to constrain the motion to 2-D, although the underlying
framework is 3-D. At t = 0 a rectangular container of water
subjected to gravity is put into motion by instantaneously
removing a constraining wall bounding the right side side
of the fluid. The details of this analysis and correlation with
experimental observations can be found in [3], but the key
point for the present discussion is to observe that the mesh
successfully tracks the flow as the material takes on complex

geometries and even disaggregates as it splashes. Compared to
a conventional meshing and array pointer, the memory saving
and the reduction in particle/cell search effort are significant.
Memory reduction for the dam-break problem is above 90 %
at all times throughout the analysis.

Figure 14 shows an example of a channel debris flow
analysis in which an erodable embankment is placed in the
path of the sliding soil mass (again, the general aspects and
details of this analysis can be found in [3]). The channel
walls and the sliding surface are not shown, and this partic-
ular sequence of images depicts the material point particle
representations rather the background mesh, but as in the
previous example the dynamic meshing is capable of tracking
the distinct body motions, deformations, and interactions while
saving the overhead associated with unneeded cells throughout
the analysis.

VI. SUMMARY AND CONCLUSIONS

This paper has presented a computationally efficient ap-
proach to background grid management for use with the MPM
that ensures only grid cells that contain material points are
instantiated at each time step. For problems with significant
motion of material points in an unbounded domain, this
removes the need to build an estimated bounding mesh a priori,
and it results in both a reduction in the memory required
to store the mesh and the iteration costs associated with
computing on the mesh. The amount of reduction is related
to the size of the material domain relative to the size of the
background domain, which in the 3D case scales roughly like
the ratio of the volume of the body to the rectilinear volume
of the bounding space. For the test problems considered in
this paper, these ratios ranged from 1% to 10%.

The specific nested-map, grid-snap-based mesh manage-
ment method presented in this paper has been shown to be
robust and efficient in terms of handling general problem types
while introducing negligible additional overhead in regards to
cell and node creation and deletion. Thus, complex material
motions such as arise in debris flows or instances of tumbling,
colliding bodies can be closely tracked with minimal grid cell
counts, while preserving straightforward and efficient iteration.

The memory savings provided by the dynamic meshing
algorithm can be in the order of 90–99 %, depending on
the type and spatial dimension of the problem. This enables
computation of larger problems at higher resolution on existing
hardware.

The method in its current form is only directly applicable to
uniform, rectilinear background meshes, but there are various
ways to extend the method so that this could be achieved.
However, the use of specialized meshes is not common for the
classes of problems considered here involving motion/flow in
unbounded domains. The method also has not yet been imple-
mented to run in parallel environments, but this development
work is currently underway and will be reported at a later date.

ACKNOWLEDGMENT

This research was supported through the UW Royalty
Research Fund and NSF grant CMMI–0900318, which is
gratefully acknowledged.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1178

�������	
�� �������	
�� ������
	
��

Fig. 13. Image sequence from an analysis of a fluid release and splashing in a container illustrating mesh tracking with disaggregating material.

�������	
�� �������	
�� �������	
��

����������

�����	��������

Fig. 14. Sequence of images from chute debris flow analysis with eroding embankment obstacle. Chute walls and background mesh not shown.

REFERENCES

[1] D. Sulsky, Z. Chen, and H. L. Schreyer, “A particle method for history-
dependent materials,” Computer Methods in Applied Mechanics and
Engineering, vol. 118, no. 1–2, pp. 179–196, 1994.

[2] D. Sulsky, S. Zhou, and H. L. Schreyer, “Application of a particle-in-
cell method to solid mechanics,” Computer Physics Communications,
vol. 87, no. 1–2, pp. 236–252, 1995.

[3] W.-K. Shin, “Numerical simulation of landslides and debris flows using
an enhanced material point method,” Ph.D. dissertation, University of
Washington, 2009.

[4] P. Mackenzie-Helnwein, P. Arduino, W. Shin, J. A. Moore, and G. R.
Miller, “Modeling strategies for multiphase drag interactions using the
material point method,” International Journal for Numerical Methods in
Engineering, 2010, in print.

[5] S. Bardenhagen, J. U. Brackbill, and D. Sulsky, “The material point
method for granular materials,” Computer Methods in Applied Mechan-
ics and Engineering, vol. 187, no. 3–4, pp. 529–541, 2000.

[6] S. Bardenhagen, J. Guilkey, K. Roessig, J. Brackbill, W. Witzel, and
J. Foster, “An improved contact algorithm for the material point method
and application to stress propagation in granular material,” Computer
Modeling in Engineering & Sciences, vol. 2, pp. 509–522, 2001.

[7] W. Hu and Z. Chen, “A multi-mesh MPM for simulating the meshing
process of spur gears,” Computers & Structures, vol. 81, no. 20, pp.
1991–2002, 2003.

[8] J. A. Nairn, “Material point method calculations with explicit cracks,”
Computer Modeling in Engineering and Sciences, vol. 4, pp. 649–664,
2003.

[9] M. Steffen, R. M. Kirby, and M. Berzins, “Analysis and reduction of
quadrature error in the material point method (MPM),” Int. J. Numer.
Meth. Engng., vol. 76, no. 6, pp. 922–948, 2008.

[10] Y. Zhang, J. Guilkey, J. Hoying, and W. J.A., “Mechanical simula-
tion of multicellular structures with the material point method,” in c-
CMBBE2004, March 2004, p. (6 pages).

[11] J. Bentley and J. H. Friedman, “Data structures for range searching,”
Computing Surveys, vol. 11, no. 4, pp. 397–409, 1979.

[12] S. Lefebvre and H. Hoppe, “Perfect spatial hashing,” ACM SIGGRAPH,
pp. 579–588, 2006.

[13] T. Harada, S. Koshizuka, and Y. Kawaguchi, “Sliced data structure for
particle-based simulations on gpus,” in GRAPHITE ’07: Proceedings of
the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia. New York, NY, USA:
ACM, 2007, pp. 55–62.

[14] D. A. Watt, Programming Language Concepts and Paradigms. Prentice-
Hall, 1990.

[15] B. Stroustrup, The C++ Programming Language, 3rd ed. Addison-
Wesley Professional, 1997.

